Efficacy and Safety of Coadministered Amlodipine and Atorvastatin in Patients With Hypertension and Dyslipidemia: Results of the AVALON Trial

Franz H. Messerli, MD; 1 George L. Bakris, MD; 2 R. David Ferrera, MD; 3 Mark C. Houston, MD, MS; 4 Robert J. Petrella, MD, PhD; 5 John M. Flack, MD, MPH; 6 William Sun, PhD; 7 EunMee Lee, PharmD; 8 Joel M. Neutel, MD, 8 on behalf of the AVALON Investigators*

The AVALON study was a randomized, multicenter trial to assess the efficacy and safety of coadministered amlodipine and atorvastatin in patients with hypertension and dyslipidemia. Phase one was an 8-week, double-blind, double-dummy, placebo-controlled period whereby patients received amlodipine 5 mg, atorvastatin 10 mg, amlodipine 5 mg and atorvastatin 10 mg, or placebo. Thereafter, all patients received single-blind amlodipine 5 mg and atorvastatin 10 mg for 8-weeks, followed by 12 weeks of open-label treatment where doses could be titrated to improve low-density lipoprotein cholesterol and blood pressure control. A total of 847 patients entered the double-blind phase. At Week 8, 45% of the patients receiving amlodipine 5 mg and atorvastatin 10 mg reached both their blood pressure and low-density lipoprotein cholesterol goals, compared with 8.3% with amlodipine (p<0.001), 28.6% with atorvastatin (p<0.001), and 3.5% with placebo. At 28 weeks, 67.1% of patients coadministered amlodipine and atorvastatin (mean doses, 7.6 mg and 28.4 mg, respectively) achieved both targets. Framingham estimated 10-year risk of coronary heart disease declined from baseline levels of 15.1% to 6.9% at Week 28. Following coadministered treatment, the adverse events reported were similar to either agent alone. Concomitant administration of amlodipine and atorvastatin is an effective and well tolerated treatment for coexisting hypertension and dyslipidemia. (J Clin Hypertens. 2006;8:571–581) ©2006 Le Jacq

Cardiovascular disease (CVD) is one of the leading contributors to global disease burden, accounting for 30% of total deaths worldwide1 and 37% of deaths in the United States during 2003.2 Hypertension (HTN), and particularly, elevated systolic blood pressure (BP), is a strong predictor of CVD.3 Patients with HTN frequently have additional cardiovascular (CV) risk factors such as dyslipidemia (DYS).4,5 Individual risk factors such as HTN and DYS interact to augment an individual’s absolute CVD risk.6,7 Accordingly,
CVD risk management should focus on multifactorial therapeutic interventions to manage a patient’s overall risk of CVD, rather than treating single CV risk factors.8,9 Recent clinical trials have embraced the approach of overall CV risk management and have shown that a multifactorial approach reduces CV events.10–13 Strategies that reduce BP and lipid levels simultaneously are likely to lead to a greater reduction in the incidence of CVD-related events than treating either factor in isolation.14 Treatment guidelines are increasingly recognizing the importance of modifying a patient’s overall CV risk.15–17 In practice, this can be achieved by treating patients to goals for both BP and low-density lipoprotein cholesterol (LDL-C). However, despite the availability of many safe and efficacious treatments for lowering BP and lipids, the screening, diagnosis, and treatment rates of patients requiring antihypertensive and lipid-lowering therapy are low.18–24

One approach to help patients achieve goals for both BP and lipid disorders is the use of combination therapy to simultaneously target more than one CV risk factor.8 Both amlodipine, a calcium channel blocker (CCB), and atorvastatin, a statin, have proven clinical benefits in the treatment of HTN and DYS, respectively, and have been shown to reduce CV events.10,13,25–33 The pharmacokinetics of these medications are favorable for combination into a single pill, with each possessing a long half-life that enables once-daily dosing, at any time of day, with or without food.34 An additional advantage of combining treatments into a single pill is the potential for an increase in patient adherence, since a lower pill burden and starting therapy simultaneously have been demonstrated to improve adherence to therapy.35–38

The AVALON trial evaluated the efficacy and safety of coadministered amlodipine 5 mg and atorvastatin 10 mg as separate pills compared with either agent alone or placebo in the treatment of concomitant HTN and DYS in patients with varying degrees of CV risk.

METHODS

Design and Study Population

The AVALON trial was a multicenter, randomized, controlled trial conducted between February 2001 and May 2003 in 105 centers in the United States and Canada. Study participants were men and women, aged 18–75 years, of any ethnicity, with a diagnosis of concomitant HTN and DYS (defined in accordance with the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure39 except for group III patients, who were at lower goals for the purpose of this study;††defined according to National Cholesterol Education Program Adult Treatment Panel III15

<table>
<thead>
<tr>
<th>CV risk factors*</th>
<th>HTN + DYS; no additional CV risk factors</th>
<th>HTN + DYS with ≥1 additional CV risk factor, excluding CHD and DM</th>
<th>HTN + DYS + CHD, DM, or other atherosclerotic disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry criteria**</td>
<td>SBP 140–179 and/or DBP 90–109</td>
<td>SBP 140–179 and/or DBP 90–109</td>
<td>SBP 130–159 and/or DBP 85–99</td>
</tr>
<tr>
<td>BP (mm Hg)</td>
<td><140/90</td>
<td><140/90</td>
<td><130/85</td>
</tr>
<tr>
<td>LDLC†† (mg/dL [mmol/L])</td>
<td><160 (<4.1)</td>
<td><130 (<3.4)</td>
<td><100 (<2.6)</td>
</tr>
</tbody>
</table>

HTN=hypertension; DYS=dyslipidemia; DM=diabetes mellitus; SBP=systolic BP; DBP=diastolic BP; *includes: age ≥45 yr (male) or ≥55 yr (female), history of coronary heart disease (CHD) in parent or sibling before age 55 yr (male) or 65 yr (female), smoking (current), high-density lipoprotein cholesterol (HDL-C) <40 mg/dL. Patients with HDL-C ≥60 mg/dL required two additional CV risk factors; **average of measurements collected at two or three visits 7–14 days apart; ††defined according to the Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, except for group III patients, who were at lower goals for the purpose of this study; ††defined according to National Cholesterol Education Program Adult Treatment Panel III.
a 2–6-week washout period before randomization into the double-blind phase of the study.

Individuals were excluded if they had a history of intolerance to dihydropyridine CCBs and/or statins. Additional exclusion criteria included pregnancy or lactation, impaired hepatic or renal function, a history of myocardial infarction within 6 months of screening, stroke, angina, coronary artery bypass or intracoronary interventions within 3 months of screening, a history of congestive heart failure or cardiomyopathy, hemodynamically significant valvular disease, secondary DYS or HTN of any etiology, diabetes mellitus, and any serious disorder that would interfere with the conduct of the study or interpretation of data.

Additional antihypertensive or lipid-regulating therapies, apart from study medications, or drugs known to affect lipid levels or to alter the absorption/metabolism of the study medications, were not permitted.

AVALON consisted of four phases, the first of which was an 8-week, randomized, double-blind, double-dummy, placebo-controlled phase in which patients were randomized to receive once-daily treatment with amlodipine 5 mg and atorvastatin 10 mg, or amlodipine 5 mg and placebo, or atorvastatin 10 mg and placebo, or placebo and placebo (Figure 1). The second phase of the trial was a further 8-week, single-blind phase in which all patients received once-daily amlodipine 5 mg plus atorvastatin 10 mg. The third phase was a 12-week, open-label phase during which patients’ therapy could be titrated to the maximum doses of amlodipine 10 mg and atorvastatin 80 mg in an effort to attain recommended goals for BP and LDL-C (Table I). The final phase was a 64-week, open-label extension phase that will be reported separately. Compliance was assessed by a tablet count at each visit and was defined as taking 80%–120% of the protocol-specified study medication.

Study End Points

The primary end points of this trial were to compare:

- The percentage of patients in the amlodipine 5 mg plus atorvastatin 10 mg group to the percentage of patients in the atorvastatin 10 mg group who reached their recommended JNC VI BP goals at the end of Week 8
- The percentage of patients in the amlodipine 5 mg plus atorvastatin 10 mg group to the percentage of patients in the amlodipine 5 mg group who reached their recommended NCEP ATP III LDL-C goals at the end of Week 8

Secondary end points included:

- The percentage of patients in each group who reached both NCEP ATP III and JNC VI goals at the end of each phase
- The mean change from baseline to the end of each phase in BP and lipids (LDL-C, total cholesterol, triglycerides, high-density lipoprotein cholesterol [HDLC-C], and apolipoprotein B)
- The change from baseline to the end of each phase in global risk factor score (converted to Framingham estimated 10-year risk of CHD)
- An evaluation of the safety profile of coadministered amlodipine and atorvastatin

The presence of CV risk factors was used to calculate the global risk factor score, based on a patient’s gender, age, HDL-C, BP, and smoking status. Age and smoking were presumed to be constant during...
the study for the calculation. The global risk factor score was converted to the Framingham estimated 10-year CHD risk percentage.

Safety
The severity, duration, date of onset, action taken (if any), and the suspected relationship to study drug of all adverse events (AEs) were recorded at each visit. The safety profile of coadministered amlodipine and atorvastatin treatment was compared with that of either treatment alone or placebo.

Statistical Analyses
The sample size, based on a two-sided chi-square test ($p=0.05$), was determined for the primary end point, such that a sample size of 1000 patients (250 patients per treatment group) would have approximately 90% power to detect an absolute 15% difference between coadministered amlodipine and atorvastatin compared with amlodipine therapy alone for reaching NCEP ATP III therapeutic goals, and 13% difference between coadministered amlodipine and atorvastatin compared with atorvastatin therapy alone for reaching JNC VI therapeutic goals.

Continuous data were summarized using descriptive statistics, and the treatment groups were compared using a 2×2 factorial analysis of covariance. Categoric data were analyzed using a Cochran-Mantel-Haenszel chi-square test. Tests were two-sided, with a significance level of $\alpha=0.05$.

RESULTS
Study Population
Of the 1505 patients screened, 848 met the inclusion criteria and were randomized to double-blind treatment, and 847 took at least one dose of the study medication to which they were assigned (Figure 1). The treatment groups were balanced at baseline with respect to gender, race, age, CV risk, BP, and lipid levels (Table II). There were no statistically significant differences among the four treatment groups in LDL-C levels, BP, or global risk scores at baseline. The majority of study participants (94%) had at least one CV risk factor, diabetes mellitus, or CHD in addition to HTN and DYS (i.e., CV risk groups II or III). Most patients were in CV risk group II (76%) and very few patients (6%) were classified into CV risk group I (i.e., no CV risk factors in addition to HTN and DYS). Because of the high proportion of patients assigned to CV risk group II, all analyses were performed on the overall study population. There was no significant difference between the numbers of patients from each of the CV risk groups assigned to the different treatment groups ($p=0.224$). A total of 782 patients progressed into the single-blind and open-label phases of the study.

Prior Medications
Prior to study initiation, 37% of patients were receiving treatment with antihypertensive or lipid-lowering therapy (Table II). Of these, 26% were receiving antihypertensive treatment only; 2% were receiving lipid-lowering therapy only; and 9% were receiving both antihypertensive and lipid-lowering therapy.

Patient Compliance With Study Medication
Only seven patients (two on amlodipine plus atorvastatin; two on amlodipine, two on atorvastatin, one on placebo) were reported to be noncompliant during the double-blind phase. During the single-blind and open-label phases, 27 patients were noncompliant (3.5%) and therefore discontinued from the study.

Administration of Study Drug During the Open-Label Phase
At Week 17, the start of the open-label phase, the majority of patients were treated with amlodipine 5 mg (60.0%) and atorvastatin 10 mg (96.2%). At the end of Week 28, the mean doses of study treatment were 7.6 mg and 28.4 mg, respectively. Similar numbers of patients were treated with 5 mg or 10 mg of amlodipine (50.2% and 49.8%, respectively). With respect to atorvastatin, the majority of patients were treated with atorvastatin 10 mg (32.1%) or 20 mg (32.0%). Only 12.7% of patients received the highest dose of atorvastatin (80 mg), while 23.2% had been titrated to receive atorvastatin 40 mg.

Goal Attainment
At the end of 8 weeks of double-blind treatment, 45.5% of patients coadministered amlodipine 5 mg and atorvastatin 10 mg had attained both...
their BP and LDL-C therapeutic targets (Figure 2, left panel), which was significantly greater than those treated solely with either atorvastatin or amlodipine \((p<0.001) \). At the end of 8 weeks, as expected, a significantly greater percentage of patients coadministered amlodipine 5 mg and atorvastatin 10 mg attained their JNC VI goal BP, compared with patients who had received atorvastatin 10 mg alone \((p<0.001) \) (Figure 3, left panel).

Similarly, as expected, significantly more patients who had received the two medications reached their NCEP ATP III goal LDL-C, compared with patients who had received amlodipine 5 mg alone \((p<0.001) \) (Figure 4, left panel).

At the end of the single-blind phase (Week 16), when all patients had been treated with coadministered amlodipine 5 mg and atorvastatin 10 mg for 8 weeks, 48.5% of all patients achieved both BP and

<table>
<thead>
<tr>
<th>Table II. Baseline Characteristics of Study Population Prior to Randomization to Double-Blind Treatment Groups (Week 0) and Prior to Entry Into Single-Blind Phase (at the End of Week 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTIC</td>
</tr>
<tr>
<td>(n=207)</td>
</tr>
<tr>
<td>Gender ((n \ [%]))</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Age (yr) ((M \ [SD]))</td>
</tr>
<tr>
<td>Race ((n \ [%]))</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Weight (kg) ((M \ [SD]))</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Duration of primary diagnoses (yr) ((M \ [range]))</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CV risk group ((n \ [%]))*</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Eligibility parameters ((M \ [SD]))*</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Drug therapy before enrollment ((n \ [%]))</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

AML=amlodipine; ATV=atorvastatin; M=mean; CV=cardiovascular; LDL-C=low-density lipoprotein cholesterol; BP=blood pressure; CHD=coronary heart disease; *no statistically significant differences among treatment groups for these parameters
LDL-C therapeutic goals, while 55.3% of patients achieved BP goals and 81.0% achieved LDL-C goals. At the end of the open-label phase (Week 28), coadministered amlodipine and atorvastatin (dosage titrated to achieve BP and LDL-C goals) resulted in 70.4% of patients achieving BP, LDL-C (92.6%), or both (67.1%) therapeutic goals. There were no significant differences in goal attainment at Week 16 or 28 when patients were stratified by their original double-blind randomization treatment groups (Figure 2–4).

Effect on BP

At Week 8, patients coadministered amlodipine 5 mg and atorvastatin 10 mg, as expected, experienced a significantly greater reduction in BP (−12.7/−8.2 mm Hg) when compared with patients treated with atorvastatin alone (−5.9/−4.2 mm Hg) or placebo (−5.4/−3.3 mm Hg) \(p<0.001 \). The mean treatment effect (after accounting for the placebo treatment effect) was −7.3/−4.9 mm Hg for coadministered amlodipine 5 mg and atorvastatin 10 mg, compared with −8.9/−5.6 mm Hg for amlodipine alone. Thus, mean reductions in BP were similar among patients treated with coadministered amlodipine and atorvastatin therapy and those treated with amlodipine alone (amlodipine alone, −14.3/−8.9 mm Hg).

At the end of the single-blind phase (Week 16), treatment with amlodipine 5 mg and atorvastatin...
10 mg was associated with a mean change in BP of –13.1/–8.1 mm Hg from baseline in all patients (n=760). From baseline to the end of the open-label phase (Week 28), the mean change in BP was –16.3/–10.6 mm Hg. From Week 17 to Week 28, titrating the dosages of coadministered amlodipine and atorvastatin led to an additional reduction in mean BP of –3.0/–2.2 mm Hg. The mean decrease in BP at Week 28 was similar in all groups when patients were stratified by their original double-blind treatment groups (Figure 5).

Effects on Blood Lipid Levels
At Week 8, as expected, coadministered amlodipine 5 mg and atorvastatin 10 mg treatment had significantly greater effects on all lipid parameters compared with treatment with amlodipine alone or placebo (p<0.001) (Table III). In comparison with atorvastatin alone, coadministered amlodipine 5 mg and atorvastatin 10 mg led to significantly greater reductions in LDL-C (p=0.007), total cholesterol (p<0.001), and apolipoprotein B (p=0.013). Patients treated with atorvastatin therapy alone showed significantly greater changes in all lipid parameters compared with placebo-treated patients (p<0.001). For LDL-C reductions, the mean treatment differences, after accounting for the placebo treatment effect, were –61.1 mg/dL for coadministered amlodipine and atorvastatin, –56.5 mg/dL for atorvastatin alone, and –3.4 mg/dL for amlodipine alone.

At Week 28, coadministered amlodipine and atorvastatin led to incremental improvements in all lipid parameters from baseline (Table III). Changes in lipid parameters were generally similar in all groups when stratified by their original double-blind, randomized treatment group.
Reduction in Estimated Framingham 10-Year CHD Risk

At Week 8, coadministered amlodipine 5 mg and atorvastatin 10 mg treatment resulted in a significant \(p<0.0001 \) reduction in the mean Framingham estimated 10-year CHD risk, from 15.9% at baseline to 8.6% (an absolute reduction of 7.3%) in those patients categorized into CV risk groups I and II \((n=178) \). Furthermore, the reduction in Framingham score was significantly greater \(p<0.0001 \) than treatment with either drug alone. At the end of Week 28, the mean Framingham risk score was reduced to 6.9% in patients from CV risk groups I and II \((n=629) \) from baseline levels of 15.1%.

Safety and Tolerability

During the double-blind phase, the rate of discontinuations for any reason was similar following treatment with the coadministration of the two medications \((7.7\%) \), amlodipine 5 mg alone \((7.0\%) \), and atorvastatin 10 mg alone \((7.5\%) \). Treatment with placebo led to a slightly higher rate of discontinuations \((9.6\%) \). Only 26 patients discontinued treatment due to an AE during double-blind treatment (six coadministered amlodipine 5 mg and atorvastatin 10 mg, four amlodipine alone, five atorvastatin alone, and 11 placebo). During the single-blind and open-label phases, 97 \((12.4\%) \) patients discontinued treatment for any reason and 47 \((6\%) \) patients discontinued from the study due to at least one AE. The majority of these discontinuations due to AEs were because of peripheral edema \((2\%) \) or myalgia \((0.5\%) \).

During the double-blind phase, a total of 435 \((51.4\%) \) patients reported at least one incidence of an AE, which was similar across all treatment groups (amlodipine and atorvastatin treatment, 50.2%; amlodipine treatment alone, 50.7%; atorvastatin treatment alone, 52.0%; placebo, 52.3%). The proportion of patients who had at least one treatment-emergent AE was similar across the four treatment groups (Table IV). The most common AEs reported among patients coadministered amlodipine 5 mg and atorvastatin 10 mg vs. placebo-treated patients during the double-blind phase were peripheral edema \((5.3\%\) vs. 2.1\%)\), myalgia \((4.8\%\) vs. 2.1\%)\), and sinusitis \((2.9\%\) vs. 0.8\%) (Table IV). During the single-blind and open-label phases, the most frequently reported AEs were peripheral edema \((17.0\%) \), respiratory tract infection \((13.7\%) \), arthralgia \((7.4\%) \), and headache \((6.8\%) \) (Table IV).

Serious AEs were experienced by 12 patients during the double-blind phase and 18 patients during the single-blind or open-label phases. None of these serious AEs were considered by the investigator to be related to the study medications.

DISCUSSION

The AVALON trial demonstrates that the coadministration of amlodipine with atorvastatin over a short term of 7 months is a safe and effective treatment for patients with various levels of CV risk. The majority of study participants had, in addition to HTN and DYS, at least one other CV risk factor and were, therefore, considered at higher risk of CVD, and classified into CV risk groups II and III. The high frequency of concomitant CV risk factors observed in this study population is not surprising, given the tendency of CV risk factors to cluster in patients with HTN.\(^{41}\)
Patients who received coadministered amlo-
dipine and atorvastatin therapy were signifi-
cantly more likely to attain recommended therapeutic
goals for both BP and LDL-C compared with
treatment groups. At the end of Week 8, nearly half of all patients who
received combined amlodipine 5 mg and atorva-
tatin 10 mg achieved their BP and LDL-C goals,
and at the end of Week 28 (when the mean dos-
ages were amlodipine 7.6 mg and atorvastatin 28.4
mg), over two thirds of all patients achieved both
BP and LDL-C therapeutic goals. The present study
confirms the results of a previously reported trial in
which amlodipine and atorvastatin were coadmin-
istered as a single pill, resulting in a treatment approach that may
improve the goal achievement rates currently
presented in the Framingham risk equations.

In the current study, coadministration with
atorvastatin did not affect the BP-lowering effi-
cacy of amlodipine. However, coadministration of
amlodipine 5 mg and atorvastatin 10 mg led to a significantly greater effect on LDL-C, total
cholesterol, and apolipoprotein B levels at Week 8,
compared with atorvastatin treatment alone. This
finding was unexpected, and further studies would
be needed to explore this observation.

Significant reductions in Framingham risk score
were observed. Framingham 10-year risk estimates
have been included in recent treatment guidelines,
and have been used to assess the benefits of multi-
factorial interventions on a patient’s CV risk factor
profile. The coadministration of a CCB and a
statin in this study resulted in a reduction in the 10-year CHD risk among patients without existing
CHD or risk equivalent (i.e., CV risk groups
I and II). These results were comparable to risk
score reductions observed in the Respond trial, which found a mean decrease in 10-year CHD risk of
almost 9 percentage points following 8 weeks of
combined amlodipine 5 mg and atorvastatin
10 mg treatment, and a mean decrease of 11% when the doses of amlodipine and atorvastatin were
increased to 10 and 80 mg, respectively.

It should be noted that reductions in estimated
CHD risk predicted from the present study are
theoretic and may not necessarily translate into
real reductions in CV events, since this apparent
risk reversal is based on short-term therapy. These
CHD risk-reduction predictions could be validated
only in prospective randomized trials, rather than
assessing risk estimates from epidemiologic data.
It is possible that the drug combination utilized in
this study may influence other factors that are not
included in the Framingham risk equations.

Combination treatment with amlodipine and
atorvastatin for up to 28 weeks was safe and well
tolerated. The reported incidences of peripheral
edema and myalgia in the patients coadministered
treatment groups were of similar or lower
frequency to those reported for amlodipine and
atorvastatin individually.

Over the past 5 years, several trials have dem-
strated that amlodipine and atorvastatin are effective in significantly reducing CV events, in
addition to improving BP and lipids to target levels,
respectively. The coadministration of one or more
medications is of similar or lower frequency to those reported for amlodipine and atorvastatin
individually.

Our results appear to confirm that concurrent treatment of multiple risk factors can improve a patient’s CV risk factor
profile and reduce the Framingham risk score. This
approach, if adopted by physicians, is likely to
improve the management of patients at risk for
CVD. Initiating statin treatment with antihyper-
tensive therapy has been suggested as a positive
step toward treating a patient’s overall CV risk.
The results from the AVALON study, with those from the Respon
d trial,48,53 reinforce the efficacy and safety of coadministering amlo
dipine and atorvastatin for simultaneous treatment of HTN and DYS, and highlight the suitability of combining these two agents into a single pill for the effective management of CVD risk. Whether the results of the AVALON study apply to other combinations of dihydropyridine CCBs and statins can be determined only with additional trials.

Acknowledgments and disclosure: The authors wish to acknowl-
dge the support of the individual principal investigators at each site (see Appendix) and Pia Bruschi, MS (Pfizer Inc., New
c York, NY), Colleen Gorman, BS (Pfizer Inc., New York, NY),
Caridad Casteneda, BA (Pfizer Inc., New York, NY), David
Smith, MD (Integrium, Tustin, CA), Marisa Cesari, RN (Pfizer
Canada), and Suzanne Ranger, PhD (Pfizer Canada). The authors
also wish to thank Sarah Shearng, PhD for her editorial
support during the development of the manuscript. This study
was supported by Pfizer Inc.

APPENDIX

Principal investigators in the AVALON study: D.C. Abella, MD; J.D. Aldrich, MD; M.-C. Anquet, MD; G.L. Bakris, MD; L.
Breger, MD; M.E. Brewer, MD, PhD; C.D. Brown, MD; M.
Luchhuber, MD; M. Budoff, MD; E. Burgess, MD; R.J.
Butcher, MD; D.K. Buth, MD; A.A. Carr, MD; J.E. Carter Jr., MD; N.F. Carulli, MD; R.S. Castaldo, MD; D. Cheung, MD; J.
N. Cohn, MD; F.N. Cole, MD; G.E. Cooke, MD; R.W. Craft
Sr., MD; E.E. Cummins, MD; V.B. Dave, MD; M.H. Davidson,
MD; M.I. DeBruin, DO; J.M. DeCara, MD; A. DeFranco, MD;
J.J. DeGiorno, MD; D. Dion, MD; E.M. Dodin, MD; H.J.
Downey, MD; W. Drummond, MD; S.E. ElHafi, MD; F. Eli
jovich, MD; S.K. Elliott, MD; D.L. England, MD; D. Errin,
Thrumin, MD; K.W. Faisel, MD; C. Ferrazios, MD; R.D.
Ferrera, MD; J.A. Fialkow, MD; J.J. Fidelholtz, MD; J.M.
Flack, MD, MPH; H. Fleming, MD; J.G. Fodor, MD; C. Fortin,
MD; N.J. Fraser, MD; G. Gagne, MD; D. Gaudet, MD; G.
Girard, MD; S. Glasser, MD; D. Gossard, MD; G.M. Gottschlich,
MD; R. Grimm, MD, PhD; J.-M. Guise, MD, MPH; J.S.
Hagedorn, MD; J.U. Hauge, MD; B.J. Harrison, MD; G.P.
Heyrich, MD; J.F. Holcomb, MD; J.J. Holland, MD; J.C.
Holler, MD; J. Holtzman, MD, PhD; M.C. Houston, MD; M.L.
Issacson, MD; B.K. Jackson, MD; R.A. Kaplan, MD; H.L.
Katzeff, MD; E.M. Kerwin, MD; M.A. Khan, MD; R. Khand, MD; N.
Kopyt, MD; M.J. Koren, MD; D.J. Korn, MD; M.E. Kutner, MD; Y.
Lacourciere, MD; A. Lade, MD; B. Lasko, MD; T.R. Lee, MD;
L. Leiter, MD; T.W. Littlejohn III, MD; I.K. Loh, MD; H.
Luque, DO; R.D. Maddier, DO; F.P. Maggiacomo, DO; M.J.
McCartney, MD; D.C. McCluskey, MD; J.F. Meeker, MD; E.H.
Messerli, MD; S.V. Michael, MD; A.B. Miller, MD; J.L.
Miller, MD; B.E. Mills, MD; K.M. Minnag, MD; A.M.
Mitchell, MD; M.L. Mulford, MD; P. Narayan, MD; J.
Neutel, MD; J.G. Nuckolls, MD; E.O. Oibili, MD; M.P.
Spari, MD; J.P. Ouellet, MD; J.A. Peacock, MD; G.E.
Peterson, DO; R.J. Petrella, MD; R.W. Powell, MD; H.A.
Punzi, MD, FCP; A. Puopolo, MD; S. Qadir, MD; D.M.
Quillen, MD, PhD; R. Ramirez, MD; B.G. Rankin, DO; R.A.
Reines, MD; T.L. Richardson, MD; K.W. Rictor, MD; L.D.
Riffel, MD; S. Rockson, MD; L.S. Sadler, MD; E. Saunders,
MD; M.R. Seidner, MD; I. Pendrak, DO; A.M.M. Shepherd,
MD, PhD; L.D. Sher, MD; K.D. Sherif, MD; D. Shu, MD; J.
Sinclair, MD; W.B. Smith, MD; B.D. Snyder, MD; D.
Spence, MD; R.L. Stolz, MD; K.A. Stone, MD; J.A. Strom, MD;
D.H. Sugimoto, MD; A.A. Taylor, MD; PhD; G. Tellier, MD;
J.C. Thomas, MD; S. Tobe, MD; D.K.H. Tweek, MD; J.
Vassali, MD; J.B. Vazquez-Tounas, MD; R.M. Vicari, MD; N.K.
Vijay, MD; L. Warrick, MD; M.H. Weinberger, MD; R.J.
Weiss, MD; P.F. Whitsitt, MD; W. Wickenenmeyer, MD; M.R.
Wolford, MD, MPH; N. Wright, MD; F. Yemofio, MD; H.
Zaharowitz, MD; J.H. Zavoral, MD; J.J. Zerbe, MD

REFERENCES

CME Questions

Todd C. Kerwin, MD, Section Editor
Winthrop Cardiology Associates, Mineola, NY

INSTRUCTIONS FOR COMPLETING THIS FORM: Read the selected paper and answer all the questions that follow. After each question there is a series of possible correct answers. Please select the one best answer for each and place your selection on the answer grid. YOU MUST ALSO COMPLETE THE CME EVALUATION SECTION and return the form within 6 months of the paper’s publication to receive credit. Letters of credit will be mailed to participants bimannually.

ACCREDITATION STATEMENT: Winthrop-University Hospital (WUH) is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing medical education for physicians. WUH designates this Continuing Medical Education activity for a maximum of (1) credit hour in Category 1 credit towards the AMA Physicians’ Recognition Award. Each physician should claim only those hours of credit that he/she actually spent on the educational activity. WUH relies upon faculty participants in its CME programs to provide educational information that is objective and as free of bias as possible. In this spirit, and in accordance with the guidelines of the program sponsor, faculty participants are expected to indicate any commercial relationship that might be perceived as a real or apparent conflict of interest.

EDITOR DISCLOSURES: Todd C. Kerwin, MD: Aventis, Takeda Pharmaceuticals—Speakers’ Bureau.

AUTHOR DISCLOSURES: This paper is supported by a grant from Pfizer. Franz H. Messerli, MD: GlaxoSmithKline, Pfizer, Sanofi-Aventis, Novartis, Bayer, Boehringer-Ingelheim—Speakers’ Bureau; GlaxoSmithKline, Pfizer, Novartis—research contracts. George L. Bakris, MD: AstraZeneca, Abbott Labs, Boehringer-Ingelheim, Bristol-Myers Squibb/Sanoﬁ-Aventis, Kos, GlaxoSmithKline, Merck, Novartis, Lilly, Walgreens (formulary committee)-consultant/Speakers’ Bureau; NIH (NIDDK/NHLBI), Abbott Labs, Boehringer-Ingelheim, GlaxoSmithKline, Novartis, ATLAS Foundation—grants. R. David Ferrera, MD: none. Mark C. Houston, MD: Pfizer—consultant and speaker. Robert J. Petrella, MD, PhD: none. John M. Flack, MD, MPH: Merck, Novartis, Pfizer, GlaxoSmithKline, AstraZeneca, Solvay, CDC, NIH—grants/research support; Merck, GlaxoSmithKline, Bristol-Myers Squibb, Novartis, CVRx, Genzyme, Myogen, CDC, NIH—consultant; Merck, Solvay, Genzyme, Ortho Biotech—Speakers’ Bureau. William Sun, PhD: Pfizer—former employee. EunMee Lee, PharmD: Pfizer—employee. Joel M. Neutel, MD: Pfizer, Novartis, Bristol-Myers Squibb/Sanoﬁ-Aventis, Sankyo, Boehringer-Ingelheim, Biovail, Reliant—Speakers’ Bureau; Pfizer—grants/research support.

OBJECTIVE AND TARGET AUDIENCE: All clinicians are eligible to receive credit. At the conclusion of this activity, participants should be able to: 1) summarize the important points discussed in the paper reviewed; 2) identify patients to whom the paper is relevant; 3) modify management practices as new information is learned; and 4) identify deficiencies in their knowledge base.

Please Select the One Best Answer for Each and Place Your Selection on the Answer Grid.

1. Which of the following statements regarding the rationale for combining an antihypertensive agent with a statin drug is true?
 A ___ To simultaneously target multiple cardiovascular (CV) risk factors
 B ___ To possibly improve adherence to therapy
 C ___ To reduce overall risk of CV disease
 D ___ All of the above

2. Which of the following was not an exclusion criterion for the AVALON trial?
 A ___ Congestive heart failure
 B ___ Established stable coronary artery disease
 C ___ Impaired renal function
 D ___ Recent (<3 months) history of stroke

3. When coadministeredamlodipine and atorvastatin as separate agents were titrated to achieve blood pressure and low-density lipoprotein cholesterol (LDL-C) goals, what percentage of patients were able to achieve both of the goals?
 A ___ 34%
 B ___ 52%
 C ___ 67%
 D ___ 89%

4. Treatment with a coadministered calcium channel blocker and a statin resulted in significant reductions in which of the following lipid parameters?
 A ___ LDL-C
 B ___ Total cholesterol
 C ___ Apolipoprotein B
 D ___ All of the above

5. Which of the following statements regarding treatment with coadministeredamlodipine and atorvastatin is false?
 A ___ Treatment resulted in significant reduction in systolic blood pressure.
 B ___ Treatment resulted in a significant reduction in 10-year Framingham coronary heart disease risk estimates.
 C ___ Treatment resulted in a significant reduction in LDL-C.
 D ___ Treatment was poorly tolerated relative to placebo.

CME Answers are available from The Journal of Clinical Hypertension page at www.lejacq.com
CME Answer Grid

Answer the questions from the previous page by selecting the best choice of A, B, C, or D.

Questions: 1.__ 2.__ 3.__ 4.__ 5.__

CME Evaluation

<table>
<thead>
<tr>
<th>Questions</th>
<th>Agree</th>
<th>Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. My knowledge was enhanced by this activity.</td>
<td>1.__</td>
<td>2.__ 3.__ 4.__ 5.__</td>
</tr>
<tr>
<td>2. The activity helped to clarify issues specific to hypertensive patients.</td>
<td>1.__</td>
<td>2.__ 3.__ 4.__ 5.__</td>
</tr>
<tr>
<td>3. The information obtained from this exercise will have an impact on my care of patients.</td>
<td>1.__</td>
<td>2.__ 3.__ 4.__ 5.__</td>
</tr>
<tr>
<td>4. The format of the exercise was useful.</td>
<td>1.__</td>
<td>2.__ 3.__ 4.__ 5.__</td>
</tr>
</tbody>
</table>

5. Suggestions for future topics:

Where to Send the Completed CME Form

Please print all information.
Please submit a $5 administrative fee in the form of a check made out to the Office of Academic Affairs-WUH.

SEND TO:
Office of Academic Affairs
Winthrop-University Hospital
259 First Street
Mineola, NY 11501

Name: ___
Address: ___
__
__

WINTHROP University Hospital