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ABSTRACT Optically pure (S)-betaxolol and (S)-metoprolol were prepared with an
extremely facile and practical method using kinetic resolution of b-amino alcohols
employing HCS as chiral auxiliary. High enantiomeric purity (ee > 99%) was achieved
and the synthetic strategy is amenable to industrial scale-up. Chirality 21:745–750,
2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

The first trials of b-adrenergic receptor blockers (beta-
blockers) were performed involving relatively small popula-
tions of adults with heart failure in the 1980s1–4 and early
1990s.5,6 b-Adrenergic receptor blockers7,8 now play an im-
portant role in the management of cardiovascular disease,
including hypertension, cardiac arrhythmia, and angina pec-
toris.9–12 Most b-blocking drugs are aryloxypropanolamine
derivatives containing chiral centers. The S-enantiomers are
generally 50–500 times more effective compared to the R-
enantiomers.13 Only a few of them (for example timolol and
moprolol) are administered in optically pure form; however,
the others are used as racemates. The b-blockers show ste-
reoselectivity in absorption, interaction with proteins or
receptors and metabolism. The biological activity of racemic
b-blocking drugs resides in the S-enantiomer, while the
other isomer may be responsible for side effects.14 There-
fore, the synthesis of b-blockers in their enantiomerically
pure form becomes very important.

Metoprolol (1) and betaxolol (2) (Fig. 1), widely used
for the treatment of angina, hypertension,15,16 and open
angle glaucoma,17 are very important drugs in this series.
Although both of them possess one stereogenic carbon
center, they are generally administered as racemates. It is
extremely important for the pharmaceutical industry18,19

to produce drugs in optically pure form to meet the
increased demand for more effective, safe single isomers.
Many procedures have been reported in the literatures for
the asymmetric synthesis of (S)-metoprolol20–26 and (S)-
betaxolol.27–30 However, most of these methods require ei-
ther lengthy reaction sequences or give product in low
yield and enantioselectivity. Therefore, synthetic efforts
now need to be directed at short, practical routes that are
amenable to scale-up for drug preparation.

In our previous work, we have reported the NKR (non-
enzymatic kinetic resolution) of b-amino alcohols using
nonmetallic C-12 higher carbon sugar (HCS)(Fig. 2) as
chiral auxiliary (Scheme 1).31 In continuation of these
efforts, it was considered of interest to investigate the

application of the kinetic resolution for the chiral prepara-
tion of optically pure b-blockers. Herein, we report the fac-
ile and practical synthetic methodology of (S)-metoprolol
and (S)-betaxolol in the large scale.

EXPERIMENTAL SECTION
General Methods

All chemicals were used as received unless otherwise
noted. Reagent grade solvents were distilled prior to use.
All reported NMR spectra were collected on a Bruker
DPX 400 NMR spectrometer with TMS as internal refer-
ence. Infrared spectra were recorded on Nicolet IR200
instrument using KBr disks in the 400–4000 cm21 regions.
High resolution mass spectra (HRMS) were obtained on a
Waters Micromass Q-Tof MicroTM instrument using the
ESI technique. Melting points were determined using a
XT5A apparatus and were uncorrected. Optical rotations
were determined on a Perkin Elmer 341 polarimeter. Sin-
gle crystal structure was determined with Rigaku R-AXIS-
IV area detector. Enantiomeric excess was determined by
chiral HPLC at room temperature using Syltech 500 pump
equipped with a UV 500 version 4.1 ultra-violet detector
and a Chiralcel OD-H (4.6 mm 3 250 mm) column (see
Supporting Information).

C12 Higher Carbon Sugar

C12 higher carbon sugar (HCS) was synthesized as
described in the literature32 and identified by 1H-NMR and
13C-NMR spectroscopy (Scheme 1).
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General Procedure for the Synthesis of Racemic
Epoxypropane 4

To a stirred solution of 3 (4.00 mol) and K2CO3 (828 g,
6.00 mol) in anhydrous acetone (2.00 l), (6)-epichlorohy-
drin was added (0.620 l, 8.00 mol), and the reaction mix-
ture was stirred under reflux until all of the 3 had been
consumed (8 h; TLC). The reaction mixture was filtered,
solvent was removed under vacuum, and the residue was
purified by recrystallization from petroleum ether to yield
4a and 4b as a white solid.

1-[4-(2-hydroxyethyl)phenoxy]-2,3-epoxypropane
(racemic) (4a). Yield: 760 g (98.0%). White solid. m.p.
56–578C. IR (KBr): 3396, 2928, 2876, 1612, 1514, 1244,
1047, 1023, 908, 831 cm21; 1H NMR (400 MHz, CDCl3): d
7.12(d, J 5 8.4 Hz, 2H, H-3 and H-5, Ph), 6.84 (d, J 5 8.5
Hz, 2H, H-2 and H-6, Ph), 4.17–4.21(dd, J 5 11.0 and 3.0
Hz, 1H, CHaHbO-Ph), 3.87–3.92 (dd, J 5 11.0 and 5.7 Hz,
1H, CHaHbO-Ph), 3.74–3.78 (m, 2H, HOCH2CH2Ph), 3.33–
3.35 (m, 1H, CHCH2O-Ph), 2.88–2.90 (m, 1H, CHaHbCH-
CH2O-Ph), 2.74 (dd, J 5 13.2 and 6.6 Hz, 2H, CH2Ph),
2.73–2.75 (m, 1H, CHaHbCHCH2O-Ph); l3C NMR (CDCl3):
d 156.9(C-1 Ph), 131.0(C-4 Ph), 129.8(C-3,5 Ph), 114.5(C-
2,6 Ph), 68.6(CH2O-Ph), 63.5(HOCH2CH2Ph), 50.1(CH
CH2O-Ph), 44.5(CH2CHCH2O-Ph), 38.1(CH2Ph); HRMS:
Calcd for C11H14O3: 194.0943, Found: 195.1042 [M1H]1.

1-[4-(2-methoxyethyl)phenoxy]-2,3-epoxypropane
(racemic) (4b). Yield: 807 g (97.0%). White solid. m.p.
67–688C. IR (KBr): 3396, 2928, 2875, 1612, 1515, 1251,
1114,1035, 914, 836 cm21; 1H NMR (400 MHz, CDCl3): d
7.16 (d, J 5 8.3 Hz, 2H, H-3, and H-5, Ph), 6.87 (d, J 5 8.4
Hz, 2H, H-2, and H-6, Ph), 4.18–4.22 (dd, 1H, J 5 11.0 and
2.3 Hz, CHaHbO-Ph), 3.88–3.93 (dd, 1H, J 5 11.0 and 5.6

Hz, CHaHbO-Ph), 3.56–3.60 (t, 2H, J 5 7.0 Hz, CH2

CH2Ph), 3.36 (s, 3H, CH3OCH2CH2Ph), 3.34 (m, 1H,
CHCH2O-Ph), 2.82–2.88 (m, 3H, CH2Ph and CHaHbCH-
CH2O-Ph), 2.74 (m, 1H, CHaHbCHCH2O-Ph); l3C NMR
(CDCl3): d156.7(C-1 Ph), 131.3(C-4 Ph), 129.5(C-3,5 Ph),
114.2(C-2,6 Ph), 73.5(CH2CH2Ph), 68.5(CH2O-Ph), 58.3
(CH3OCH2CH2Ph), 49.8(CHCH2O-Ph), 44.3(CH2CHCH2

O-Ph), 35.0(CH2Ph); HRMS: Calcd for C12H16O3: 208.
1099, Found: 209.1183 [M1H]1.

General Procedure for the Synthesis of
Racemic b-Amino Alcohols 5

Racemic epoxypropane 4a and 4b (3.92 mol) were
mixed with excess 25–28% NH3 aq. and stirred for 15 h at
0–108C. Then water and excess NH3 were removed under
vacuum. The residue was dissolved with ethanol to which
water was added giving white deposit. The mixture was fil-
tered and pure racemic amino alcohols were obtained by
recrystallization from ethanol to afford white solids 5a
and 5b.

1-amino-3-(4-(2-hydroxyethyl)phenoxy)propan-2-ol
(racemic) (5a). Yield: 794 g (96.0%). White solid. m.p.
102–1038C IR (KBr): 3325, 3041, 2938, 2881, 1610, 1512,
1425, 1046 cm21; 1H NMR(400 MHz, D2O): d 7.18(d, 2H, J
5 8.6 Hz, H-3 and H-5, Ph), d6.92(d, 2H, J 5 8.6 Hz, H-2
and H-6, Ph), 4.21(m, 1H, NH2CH2CHCH2), 4.08(dd, 1H, J
5 3.9, 10.3 Hz, CHaHbO-Ph), 4.03(dd, 1H, J 5 5.5, 10.2 Hz,
CHaHbO-Ph), 3.73(t, 2H, J 5 6.6 Hz, HOCH2CH2Ph),
3.23(dd, 1H, J 5 3.8, 13.2 Hz, NH2CHaHbCH), 3.11(dd,
1H, J 5 8.3, 13.2 Hz, NH2CHaHbCH), 2.74(t, J 5 6.6 Hz,
HOCH2CH2Ph)

13C NMR(100.6 MHz, D2O): d 156.8(C-1
Ph), 132.6(C-4 Ph), 130.6(C-3,5 Ph), 115.2(C-2,6 Ph),
70.1(CH2O-Ph), 66.6(NH2CH2CHCH2), 63.0(HOCH2CH2

Ph), 42.2(CHCH2NH), 37.3(HOCH2CH2Ph); HRMS: Calcd
for C11H17NO3 : 211.1208, Found: 212.1265 [M1H]1.

1-amino-3-(4-(2-methoxyethyl)phenoxy)propan-2-
ol (racemic) (5b). Yield: 821 g (94.0%). White solid.
m.p. 98–998C. IR (KBr): 3355, 2926, 2871, 1582, 1513, 1119
cm21; 1H NMR(400 MHz, DMSO-d6): d 7.12(d, 2H, J 5

8.3 Hz, H-3 and H-5, Ph), d6.84(d, 2H, J 5 8.4 Hz, H-2 and
H-6, Ph), 3.91(dd, 1H, J 5 3.9, 10.3 Hz, CHaHbO-Ph),
3.84(dd, 1H, J 5 5.5, 10.2 Hz, CHaHbO-Ph), 3.73(m, 1H,
NH2CH2CHCH2), 3.47(t, 2H, J 5 6.9 Hz, HOCH2CH2Ph),
3.23(s, 1H, CH2OCH3), 3.17(m 2H, NH2CH2CH), 2.72(t, J
5 6.8 Hz, HOCH2CH2Ph)

13CNMR(100.6 MHz, DMSO-
d6): d 158.0(C-1 Ph), 131.7(C-4 Ph), 130.5(C-3,5 Ph),
115.1(C-2,6 Ph), 73.9(CH2O-Ph), 71.2(NH2CH2CHCH2),

Fig. 1. Chemical structure of (S)-metoprolol and (S)-betaxolol.

Fig. 2. Chemical structure of synthetic C12 higher carbon sugar.

Scheme 1. Synthesis of C12 higher carbon sugar (HCS).
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71.1(HOCH2CH2Ph), 58.6(CH3OCH2), 45.6(CHCH2NH),
35.3(HOCH2CH2Ph); HRMS: Calcd for C12H19NO3: 225.
1365, Found: 226.2942 [M1H]1.

Synthesis of S-5a,S-5b, 6a and 6b

To a solution of HCS (294 g, 1.02 mol) in methanol
(2.00 l), racemic 5a and 5b (2.00 mol) was added (a cata-
lytic amount of p-TsOH was added). The mixture was
stirred at 58C for 20 h, followed by concentration and puri-
fication by crystallization from ethyl acetate, giving 6a and
6b as white solids. Then, the filtrate was concentrated to
dryness and recrystallized from methanol to afford S-5a
and S-5b.

(S)-1-amino-3-(4-(2-hydroxyethyl)phenoxy)propan-
2-ol(S-5a). Yield: 202 g (47.8%, determined based on ra-
cemic 5a) m.p. 102–1038C, [a]25D 5 24.0 (c 1.00, CH3OH);
ee >99%; [chiral HPLC analysis; Daicel Chiralcel OD-H
(4.6 mm 3 250 mm) column; eluent:hexane:isopropanol:
diethylamine 5 60: 40: 0.05; flow rate: 0.5 ml/min; detec-
tor: 254 nm(tS 5 19.13 min)].

(S)-1-amino-3-(4-(2-methoxyethyl)phenoxy)propan-
2-ol(S-5b). Yield 212 g (47.1%, determined based on ra-
cemic 5b). m.p. 98–998C, [a]25D 5 26.8 (c 1.00, CH3OH);
ee >99%; [chiral HPLC analysis; Daicel Chiralcel OD-H
(4.6 mm 3250 mm) column; eluent: hexane:isopropanol:-
diethylamine 5 60: 40: 0.05; flow rate: 0.5 ml/min; detec-
tor: 254 nm(tS 5 16.59 min)].

(2R,3R,3aS,6R,6aR,30R,30aS,60R,60aR,5@R)-Spiro-
[6,30,60-trihydroxyoctahydro [2,30]bi[furo[3,2-b]furan]-
3,2@-[5@-[4000-[20000-hydroxyethyl]]phenoxymethyl-1@,3@-ox-
azolidine] (6a). Yield: 481 g (98.0%). white solid. m.p.
156–1578C, [a]20D 5 167.3 (c 1.00, CH3OH); IR(KBr):
3469, 3408, 3287, 2934, 2874, 1614, 1512, 1421, 1235, 1083,
1043 cm21; 1H NMR(400 MHz, D2O):d 7.13(d, 2H, J 5 8.5
Hz, H-3 and H-5, Ph), 6.83(d, 2H, J 5 8.5 Hz, H-2 and H-6,
Ph), 4.60(d, 1H, J 5 5.4 Hz, H-9), 4.54 (t, 1H, J 5 4.5 Hz,
H-4), 4.35(m, 1H, HNCH2CHCH2), 4.26(m, 2H, H-3, H-10),
4.25(dd, 1H, H-5, J 5 5.2, 9.3 Hz), 4.11(m, 1H, H-11),
3.99(dd, 1H, J 5 3.4, 10.2 Hz, CHaHbO-Ph), 3.97(s, 1H, H-
7), 3.90(dd, 1H, J 5 3.4, 10.2 Hz, CHaHbO-Ph), 3.89(d, 1H,
J 5 8.5 Hz, H-1b), 3.87(m, 1H, H-6b) 3.84(d, 1H, J 5 8.5
Hz, H-1a), 3.81(dd, 1H, J 5 6.0, 8.5 Hz, H-12b), 3.65(t, 2H,
J 5 6.6 Hz, HOCH2CH2Ph), 3.42(dd, 1H, J 5 6.0, 8.5 Hz,
H-12b), 3.41(m, 1H, H-6a), 3.09(dd, 1H, J 5 7.4, 12.4 Hz,
HNCHaHbCH), 3.03(dd, 1H, J 5 4.2, 12.4 Hz,
HNCHaHbCH), 2.66(t, J 5 6.6 Hz, HOCH2CH2Ph);

13C
NMR(100 MHz, D2O): d 156.3(C-1 Ph), 131.9(C-4 Ph),
130.1(C-3,5 Ph), 114.7(C-2,6 Ph), 104.6(C-8), 85.5(C-9),
83.6(C-10), 81.0(C-3), 80.8(C-2), 80.7(C-7), 80.6(C-4),
75.3(CHCH2OPh), 74.6(C-1), 72.0(C-5), 71.2(C-6), 70.8(C-
12), 70.5(C-11), 69.2(CH2OPh), 62.5(HOCH2CH2Ph),
45.6(CHCH2NH), 36.8(HOCH2CH2Ph); HRMS: Calcd for
C23H31NO10: 481.1948, Found: 482.2026 [M1H]1.

(2R,3R,3aS,6R,6aR,30R,30aS,60R,60aR,5@R)-Spiro-
[6,30,60-trihydroxyoctahydro [2,30]bi[furo[3,2-b]furan]-
3,2@-[5@-[4000-[20000-methoxyethyl]]phenoxymethyl-1@,3@-
oxazolidine] (6b). Yield white solid. Mp 135–1368C, [a]D

20

5 125.6 (c 0.8, CH3OH); IR(KBr): 3417, 2932, 2878,
1611, 1512, 1243, 1114, 1050 cm21; 1H NMR(400 MHz,
D2O):d 7.15(d, 2H, J 5 8.4 Hz, H-3, and H-5, Ph), 6.88(d,
2H, J 5 8.5 Hz, H-2, and H-6, Ph), 4.65(d, 1H, J 5 4.2 Hz,
H-9), 4.59 (t, 1H, J 5 4.5 Hz, H-4), 4.35(m, 1H,
HNCH2CHCH2), 4.30(m, 2H, H-3, H-10), 4.29(m, 1H, H-5),
4.15(m, 1H, H-11), 4.00(s, 1H, H-7), 3.99(m, 1H, CHaHbO-
Ph), 3.96(d, 1H, J 5 8.5 Hz, H-1b), 3.95(m, 1H, H-6b),
3.93(dd, 1H, J 5 4.3, 6.9 Hz, CHaHbO-Ph), 3.91(d, 1H, J 5
8.5 Hz, H-1a), 3.85(dd, 1H, J 5 6.6, 8.4 Hz, H-12b), 3.59(t,
2H, J 5 6.6 Hz, HOCH2CH2Ph), 3.50 (dd, 1H, J 5 6.6, 8.4
Hz, H-12b), 3.49(m, 1H, H-6a), 3.23(s, 3H, CH2OCH3),
3.13(dd, 1H, J 5 7.3, 12.3 Hz, HNCHaHbCH), 3.08(dd, 1H,
J 5 4.2, 12.3 Hz, HNCHaHbCH), 2.74(t, J 5 6.5 Hz,
HOCH2CH2Ph);

13C NMR(100 MHz, D2O): d 156.9(C-1
Ph), 132.3(C-4 Ph), 130.4(C-3,5 Ph), 115.2(C-2,6 Ph),
105.0(C-8), 86.0(C-9), 84.1(C-10), 81.6(C-3), 81.5(C-2),
81.3(C-7), 81.1(C-4), 75.7(CHCH2OPh), 75.2(C-1), 73.5
(CH2OCH3), 72.4(C-5), 71.7(C-6), 71.3(C-12), 71.0(C-11),
69.6(-CH2OPh), 58.1(HOCH2CH2Ph), 46.2(CHCH2 NH),
34.4(HOCH2CH2Ph); HRMS: Calcd for C24H33NO10:
495.2104, Found: 518.2002 [M1Na]1.

Synthesis of (S)-1-(4-(2-hydroxyethyl)phenoxy)-3-
(isopropylamino)propan-2-ol(S-7)

A solution of (S)-5a (200 g, 0.948 mol) in acetone, iso-
propyl bromide (232 g, 1.90 mol), and K2CO3 (262 g,
1.90 mol) was stirred at 508C until TLC showed the reac-
tion had gone to completion (6 h). Filtration and removal
of the solvent yielded S-7 as a white solid (235 g, 98.0%).
m.p. 858C, [a]25D 5 21.1(c 1.00, CH3OH); ee >99% [chiral
HPLC analysis; Daicel Chiralcel OD-H(0.46 3 25 cm)col-
umn; eluent: hexane/isopropanol/diethylamine 5 60/40/
0.05; flow rate: 0.5 ml/min; detector: 254 nm (tS 5 9.27
min)]; IR(KBr): 3448, 3279, 2964, 2923, 2866, 1609, 1512,
1239, 1110, 1046, 1023, 898, 866, 815 cm21; 1H NMR (400
MHz, D2O): d 7.12 (d, 2H, J 5 8.5 Hz, H-3 and H-5, Ph),
6.86 (d, 2H, J 5 8.5 Hz, H-2 and H-6, Ph), 3.93–3.96(m,
2H, CHaHbOPh, CHCH2OPh), 3.82–3.85(dd, 1H, J 5 7.1
Hz, CHaHbOPh), 3.65(t, 2H, J 5 6.6 Hz, HOCH2CH2Ph),
2.64–2.73(m, 4H, CH2Ph, HOCHaHbCHCH2OPh, NHCH
CH3CH3), 2.55–2.64(dd, 1H, J 5 8.3 Hz, HOCHaHb CH
CH2OPh), 0.91–0.93(m, 6H, NHCHCH3CH3);

13C NMR
(100.6 MHz, D2O): d 156.57(C-1 Ph), 131.82(C-4 Ph),
130.08(C-3,5 Ph), 114.75(C-2,6 Ph), 70.45(CH2OPh), 68.48
(CHCH2OPh), 62.54(CH2CH2Ph), 48.14(CH2NH), 48.01
(CHNH), 36.76(CH2Ph), 20.97(CH3), 20.87(CH3); HRMS:
Calcd for C14H23NO3: 253.1678, Found: 254.1756 [M1H]1.

Synthesis of (S)-Betaxolol (2)

To a solution of (S)-1-(4-(2-hydroxyethyl)phenoxy)-3-
(isopropylamino)propan-2-ol S-7 (200 g, 0.791 mol) in tolu-
ene (0.650 l) were added successively benzaldehyde (100
g, 0.949 mol) and catalytic amount of p-TsOH. The reac-
tion mixture was heated and stirred at refluxing tempera-
ture under N2 atmosphere for 6–10 h followed by concen-
tration under vacuumed pressure to dryness to yield pale
yellow oil. Then, To an ice-cooled solution of the oil in dry
DMF (0.800 l), cyclopropylmethyl bromide (212 g, 1.58
mol) was added dropwise to the reaction mixture stirring
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for 6 h at 2108C. Subsequently, the mixture was filtered
and the filtrate was concentrated under reduced pressure.
The residue was acided with 10% HCl and extracted with
EtOAc(100 ml 33), then the water layer was treated with
10% NaOH(0.380 l) at room temperature for 0.5 h and then
extracted with toluene (100 ml 33). The organic layer was
washed with water, dried over Na2SO4 and evaporated to
yield crude (S)-betaxolol 1 as a free base, which was puri-
fied by recrystallization (231 g, 95.0%), white solid; mp 71–
728C [a]25D 5 27.40 (c 5 1.0, CHCl3) {lit.

26 [a]D 5 27.13
(c 5 1, CHCl3)}; ee >99% [chiral HPLC analysis; Daicel
Chiralcel OD-H (4.6 mm 3250 mm) column; eluent: hex-
ane/isopropanol/diethylamine 5 60/40/0.05; flow rate:
0.5 ml/min; detector: 254 nm (tS 5 9.19 min)]; IR (neat):
3297, 3040, 2929, 2864, 1612, 1511, 1466, 1379, 1246, 1174,
1099, 913, 874, 820 cm21; 1H NMR (400 MHz, D2O): d
0.02 (dd, 2H, J 5 4.6, 10.2 Hz), 0.35 (dd, 2H, J 5 3.7, 5.7
Hz), 0.81 (m, 1H), 1.20 (m, 6H), 2.64 (t, 3H, J 5 6.8 Hz),
3.03–3.15 (m, 4H), 3.31–3.34 (m, 1H), 3.51 (t, 2H, J 5 5.6),
3.89–3.93 (m, 2H), 4.13–4.68(m, 1H), 6.80 (d, 2H J 5 8.5
Hz,), 7.05 (d, 2H, J 5 8.5 Hz); l3C NMR (D2O): d 156.4,
131.9, 130.1, 114.7, 75.4, 70.9, 69.5, 65.5, 51.0, 46.6, 34.0,
18.2, 17.8, 9.5, 2.4; HRMS: Calcd for C18H29NO3: 307.2147,
Found: 308.2236 [M1H]1.

(S)-Metoprolol (1)

A solution of (S)-5b (200 g, 0.890 mol) in acetone, iso-
propyl bromide (217 g, 1.78 mol) and K2CO3 (246 g, 1.78
mol) was stired at 508C until TLC showed the reaction had
gone to completion (6 h). Filteration and removal of the
solvent yielded crude (S)-metoprolol. The crude (S)-meto-
prolol 1 free base was purified by recrystallization (227 g;
96.0%), white solid; [a]25D 5 28.80 (c 10.0, CHCl3)
{lit.23[a]D 5 28.70 (c 10.0, CHCl3)}; ee >99% [chiral
HPLC analysis; Daicel Chiralcel OD-H (0.46 3 25 cm) col-

umn; eluent: hexane/ethylalcohol/diethylamine 5 70/30/
0.05; flow rate: 0.5 ml/min; detector: 254 nm (tS 5 12.70
min)]; IR (neat): 3327, 3045, 2981, 2866, 1611, 1585, 1512,
1472, 1383, 1298, 1243, 1216, 1178, 1092, 930, 828, 756
cm21; 1H NMR (400 MHz, CDCl3): d 1.08 (d, J 5 6 Hz,
6H), 2.68(m, 2H), 2.72–2.88 (m, 4H), 3.35 (s, 3H), 3.55 (t, J
5 8 Hz, 2H), 3.91–3.95 (m, 2H), 3.99–4.03 (m, 1H), 6.84
(d, J 5 8.0 Hz, 2H), 7.12 (d, J 5 8.0 Hz, 2H); l3C NMR
(CDCl3): d 157.1, 131.2, 129.7, 114.4, 73.8, 68.4, 58.6, 49.4,
48.8, 35.2, 22.9; HRMS: Calcd for C15H25NO3: 267.1834,
Found: 268.1927 [M1H]1.

Recovery and Reuse of Resolving Agent (HCS)

General procedure: 1 mol of the crystals of oxazolidine
derivatives obtained was dissolved in 2.0 l of methanol af-
ter which 2.0 mol c. HCl aq. was added. After the evapora-
tion of methanol, 1.0 l of water was added and the mixture
was stirred for 30 min, then HCS was recovered by extrac-
tion using toluene or ethyl acetate and reused in the reso-
lution of the amino alcohols (5a, 5b).

RESULTS AND DISCUSSION

As part of our broader program to explore the applica-
tion of C-12 higher carbon sugar, we describe here, a
novel practical synthetic route for (S)-betaxolol and (S)-
metoprolol. According to the retrosynthetic disconnection
(Scheme 2), we considered that (S)-1-amino-3-(4-(2-
hydroxyethyl)phenoxy)propan-2-ol (S-5a) and (S)-1-amino-
3-(4-(2-methoxyethyl)phenoxy) propan-2-ol (S-5b) were
substrates of special interest because they serve as the
intermediates for (S)-metoprolol and (S)-betaxolol and can
be easily converted to compounds 1 and 2 by a simple
reaction sequence in high enantiopurity and good yield
(Scheme 3 and Scheme 4).

The racemic epoxides 2-(4-(oxiran-2-ylmethoxy)phenyl)
ethanol (4a) and 2-((4-(2-methoxyethyl)phenoxy)methyl)
oxirane (4b) were obtained from alkylation of 4-(2-hydrox-
yethyl)phenol (3a) and 4-(2-methoxyethyl)phenol (3b)
with (6)-epichlorohydrin in anhydrous acetone in the
presence of K2CO3 under reflux temperature for 8 h in
98.0% and 97.0% yields, respectively (Schemes 3). Subse-
quently, the epoxides 4a and 4b were, respectively,
treated with excess ammonia for 12–15 h at 0–108C to
yield racemic amino alcohols 5a (96.0%) and 5b (94.0%).
After that, the NKR of racemic amino alcohols 5a and 5b
was performed with HCS (0.51 equiv) in methanol at 58C

Scheme 2. Retrosynthetic route for Metoprolol and Betaxolol.

Scheme 3. Synthesis of S-5a and S-5b. Reagents and conditions: (a) (6)-epichlorohydrin, K2CO3, acetone (b) ammonia (25–28%); 0–108C (c) HCS,
methanol, TsOH. 58C.
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for 30 h and the reactions were monitored by TLC. The
mixtures were concentrated and purified by crystallization
from ethyl acetate, giving compound 6a (98.0%) and 6b
(97.8%) as white solids. The filtrate was concentrated to
obtain the S-isomers of amino alcohols S-5a (47.8% yield
and ee >99%) and S-5b (47.1% yield and ee >99%).

Subsequently, S-5a and S-5b were treated, respectively
with an excess amount of isopropyl bromide at 508C for 6–
8 h in the presence of K2CO3 to afford (S)-metoprolol free
base (1) and the amino alcohol S-7 (Scheme 4). After pro-
tection of amino group of (S)-7 using benzaldehyde, O-al-
kylation of the hydroxyl group was carried out with bromo-
methylcyclopropane in the presence of NaH in DMF at
2108C for 8 h to provide pale yellow oil. Then, the oil was
treated with 10%HCl followed by extraction with ethyl ace-
tate to afford (S)-betaxolol as the hydrochloride salt. After
that, (S)-betaxolol hydrochloride was treated with
10%NaOH followed by extraction with toluene to yield (S)-
betaxolol free base. The crude (S)-metoprolol (1) and (S)-
betaxolol (2) were further purified by recrystallization
from ether to afford pure (S)-metoprolol in 96% yield with
excellent enantioselectivity (ee > 99%) [a]25D 5 28.80 (c
10, CHCl3) {lit.23 [a]D 5 28.70 (c 10, CHCl3)} and (S)-
betaxolol in 95.0% yield with excellent enantioselectivity
(ee >99%) [a]25D 5 27.35 (c 1.0, CHCl3) {lit.26 [a]D 5

27.13 (c 1.0, CHCl3)}.

CONCLUSION

In summary, a facile asymmetric synthesis of (S)-meto-
prolol and (S)-betaxolol with high enantioselectivity has

been achieved using kinetic resolution as the key step and
source of chirality. The main advantage of the procedure
is its high enantioselectivity and the recoverable nonmetal-
lic resolving reagent. More importantly, most of the inter-
mediates and products were obtained by recrystallization,
which makes possible the large scale production of (S)-
betaxolol and (S)-metoprolol.
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