Protective effect of calcium folinate against methotrexate-induced endosalpinx damage in rats

The aim of this study was to evaluate the protective effect of calcium folinate (CF) applied in 10% of the methotrexate (MTX) dosage against morphologic and steroid-receptor damage induced by MTX in rat endosalpinx. The result indicated that endosalpingitis, the ultrastructural damage of endosalpinx, and a change in estrogen and progesterone receptor expression induced by low- and high-dose MTX in endosalpinx can be reversed completely and partly (B1, B2) by combined treatment with CF, suggesting that CF combined with MTX protects against the side effects induced by MTX. (Fertil Steril 2011;95:1526–30. ©2011 by American Society for Reproductive Medicine.)

Key Words: Methotrexate, calcium folinate, endosalpinx, morphology, immunohistochemistry, estrogen receptor, progesterone receptor

Methotrexate (MTX) is a classical folate antagonist that has been used in the treatment of ectopic pregnancy (EP) for many years (1–16). Patients with EP can be successfully treated with MTX in various protocols and approaches (1–3, 5–10). However, laboratory evidence suggests that MTX can induce toxicity in the endosalpinx (17–19). Although the regimen of MTX plus folic acid were applied according to the increasing dose of MTX for comparison between control and test groups; 8–19, 22). However, we designed a dynamic dose of CF applied in 10% of the MTX dose to evaluate its true capability to protect susceptible endosalpinx tissues.

Eighty female Sprague-Dawley rats (weighing 180–200 g) in the estrus stage obtained from our institute under specific pathogen-free conditions were randomly divided equally into groups A0-3 and B0-3. A0 and B0 received intraperitoneal (IP) injection of physiologic saline and 0.5 mg/kg body weight CF, respectively, as a control. A1-3 and B1-3 received MTX (1, 2, 5 mg/kg IP) accordingly, plus CF (0.1, 0.2, 0.5 mg/kg IP) for B1-3 24 hours after MTX injection. The range of MTX and CF (AnHui Pharmaceutical Factory, Hefei City, China) was chosen according to the literature (1, 2, 8–19, 22). However, we designed a dynamic dose of CF applied in 10% of the MTX dose to evaluate its true capability to protect the tubal ampullary region is the most common site for an ectopic pregnancy (23), and it shows stable expression of steroid receptors during the estrous cycles (24). Therefore, 10 days later, tissue samples of the ampullary portion were removed from all rats, which were killed by cervical dislocation, and prepared for hematoxylin and eosin staining (25), transmission electron microscopy (TEM) (26) and immunohistochemical analysis (27) by a pathologist blinded to the experiment design. Histopathology was assessed semiquantitatively for the presence of inflammatory cells (lymphocytes and plasma cells) (28). ER polyclonal antibody (Wuhan Boster Biological Technology, Wuhan City, China) and PR monoclonal antibody (Novocastra Laboratories, Newcastle upon Tyne, United Kingdom) immunostaining were also analyzed semiquantitatively by Image Quant software (Molecular Dynamics, Sunnyvale, CA). Data were expressed as mean ± SD and analyzed by ANOVA or Student’s t test, followed by Dunnett’s test for comparison between control and test groups; P < 0.05 was
considered statistically significant. The study design and methodology were approved by the Institutional Review Board of Wenzhou Medical College.

Histopathologic observation showed that inflammatory cell infiltration in the endosalpinx was more intensive in the high-dose MTX group. However, endosalpingitis seems to be prevented completely by CF in B1, B2, and B3 (data not shown).

Steroid receptor expression significantly decreased with increasing doses of MTX, but such damage was reversible and could be rescued by CF to near normal levels completely in all dosage groups (Fig. 1).

TEM analysis of cellular ultrastructures showed that MTX exposure induced mitochondrial swelling and vacuolization, and loss of extracellular microvilli in ciliated cells. Mitochondrial vacuolization and deformation, nuclei pyknosis, and compensatory increased secretory granules appeared in nonciliated cells. However, ultrastructural damage induced by low-dose MTX in the endosalpinx can be reversed completely (B1, B2), whereas the protective effect of CF may be limited in a high dose MTX (B3), in which multiple irreversible ultrastructural alterations occur (Figs. 2–4). Meanwhile, morphologic structures remain normal in control A0 and B0.

Follates are essential for embryonic development and growth (29). Antifolate substances, represented by MTX, continue to occupy a unique and important niche among modern pharmacopoeia for patients with EP (1–16). MTX can inhibit normal trophoblasts and decrease cytotrophoblast differentiation and proliferation (4, 30), and it can be used to treat EP effectively (1–3, 5–10). However, as a folate antagonist, systemic toxicity limits the therapeutic value of MTX, such as toxicity in hematologic tissue (31, 32), gastrointestinal mucosa cells (33, 34), and ovarian tissue (35, 36). Recently, Bayram et al. (17) and Cetin et al. (18) reported that...
MTX exposure can cause ultrastructural alterations in the endosalpinx. Furthermore, we reported preliminary results that MTX can cause long-term, irreversible steroid receptor damage in the rat endosalpinx, putting the tube at high risk for subsequent EP or infertility (19).

In 1964, literature showed that folic acid can help alleviate the systemic toxicity of MTX, and that the regimen of MTX plus folinic acid is safe and effective in patients with EP (20, 21). However, subsequent tubal patency and reproductive function are yet to be ascertained (21). More recently, Bayram et al. reported that folic acid (0.1 mg/kg) can rescue derangement of the tubo-ovarian ultrastructural architecture induced by MTX to some extent in the rat endosalpinx (22). Generally, the dose of folic acid for normal rescue therapy must be increased significantly in patients with elevated MTX concentrations (37). However, the total amount of folic acid usually cannot exceed a recommended dose of 10% of MTX (38, 39). Therefore, we designed a dynamic dose of CF applied in 10% of the MTX dose and obtained compelling evidence for a “rescue effect” of CF by protecting susceptible cells lining in the endosalpinx from MTX-induced morphologic and steroid receptor damage simultaneously. Furthermore, we demonstrated an increase in dose tolerance of MTX resulting from the combination with CF in 10% of the MTX dose.

A normal endosalpinx mainly consists of ciliated cells distributed on the surface of the epithelium with abundant microvilli and uniform height and movement. Nonciliated cells are situated sporadically and have a secretory function (17, 40, 41). Generally, the tubal microenvironment, which is essential for a number of reproductive processes, depends on the integrity of the epithelium (41). Interactions between sperm and the endosalpinx are highly important in reproductive processes (42), including improving sperm motility characteristics, inducing capacitation, and increasing sperm fertilizing ability (43–45). In addition, the peristaltic pump of fallopian tubes is under the endocrine control of the ovary. Estrogen contributes to muscle contraction toward fimbriae of the oviduct and induces isthmus shrinkage, whereas P acts against estrogen-induced contractions (19). A local, stable microenvironment is essential for the coordinated movement of ciliated cells, muscle layers, and other reproductive processes. Failure of this mechanism is responsible for tubal implantation or infertility (46–49).

In this study, MTX-induced endosalpingitis and ER and PR damage was consistent with our preliminary report (19). Furthermore, we demonstrated the first laboratory evidence that such damage was a transient and reversible event, which can be prevented completely by CF applied in 10% of the MTX dose, as observed by light microscopy. Meanwhile, ultrastructural damage also can be reversed completely in a low dose MTX (B1, B2), manifested as an increased dose tolerance of MTX, and exerts little effect on normal fertility.

On the contrary, the observed multiple irreversible ultrastructural alterations induced by high-dose MTX (B3) in the endosalpinx suggests an increased risk of developing dysfunction and mechanical occlusion or blockage of the tube (41). Compensatory increased secretion in nonciliated cells can lead to abnormal fluid secretion and absorption; therefore, it can cause the formation of hydrosalpinx fluid (Fig. 2) (41, 50). Cell nuclei chromatin pyknosis with endoplasmic reticulum distention and vacuolization may be the initiation of fibrosis in the endosalpinx (Fig. 3) (41). Loss of cilia will impair the movement of ciliated cells (Fig. 4), which is essential for the transfer of sperm, oocyte, or embryo, thereby affecting fertilization and pregnancy rates (41–45). In addition, these damaged epithelia may be the source of the release of cytokines, abnormal proteins, and other bioactive substances, including cytokines such as tumor necrosis factor α, which are associated with toxicity to germ cells and less embryo development (41, 50). Consequently, a disturbance in the microenvironment in the endosalpinx will lead to tubal implantation or infertility (17, 23, 40, 41, 46, 48).

To our knowledge, this laboratory study is the first to evaluate the rescue effect of CF against morphologic and steroid receptor (ER, PR) damage induced by MTX in the rat endosalpinx. In addition, this study provides insight into the potential pharmacologic effect...
Nevertheless, MTX can induce oxidative stress on proteins, lipids, and DNA through a wide range of cellular, biochemical, and molecular approaches is needed to expand knowledge of protective mechanisms of folate against MTX-induced free radical damage.

REFERENCES