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Design and Evaluation of a Practical Camphor-
Based Methyl Ketone Enolate for Highly
Stereoselective ªAcetateº Aldol Reactions**
Claudio Palomo,* Alberto GonzaÂ lez, JesuÂ s M. García,
Cristina Landa, Mikel Oiarbide, Santiago Rodríguez,
and Anthony Linden

Control of the configuration of newly forming stereogenic
carbon atoms in aldol condensation processes has focused
enormous efforts over the last two decades.[1] Special atten-
tion has been given to the use of chiral enolates derived from
carboxylic acids[2] because of the easy final removal of the
auxiliary to obtain either b-hydroxy carbonyl or 1,3-dihy-
droxylic compounds, which are frequently present in natural
products.[3] A conceptually different, but in practice equiv-
alent, strategy to access to these fragments lies in the use of
enolates derived from chiral a-hydroxy ketones.[4] In this
instance, the aldol products, upon oxidative cleavage of the a-
ketol moiety, give the desired b-hydroxy carbonyl system.[5]

The major drawbacks associated with this strategy are the
destruction of the covalently bounded chiral adjuvant at the
final stage, and the insufficient stereoselectivity generally

attained with a-unsubstituted enolates.[6] Although consider-
able advances have been made in recent years to overcome
this latter limitation by carrying out acetate aldol reactions
mediated by both metal enolates bearing chiral ligands and
external chiral catalysts,[7] the problem associated with
enolates of chiral acetates still remains not well resolved;[8] in
all but one case,[4j] the lack of stereoselection in aldol reactions
with methyl ketone enolates is specially dramatic.[4b,g,h,i]

We have recently reported on the reaction of N-acetyl
imide enolates 1 with aldehydes to give the corresponding
adducts with modest levels of diastereoselectivity
(Scheme 1).[9] In an attempt to take advantage of the stereo-
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Scheme 1. Design of the new chiral methyl ketone enolate 2 by moving the
acetyl moiety of 1 nearer to the camphor skeleton. Also shown is the
transition state accounting for the aldol reaction of 2.

differentiating power of the camphor skeleton more effec-
tively, we designed the new camphor-derived enolate 2. The
conception of 2 has been guided by two major goals: a) to
provoke the electrophilic aldehyde to follow a trajectory of
approach closer to the camphor skeleton, and b) to force a
facial discrimination between the rear side and the sterically
more demanding front side of the camphor skeleton, depicted
as the half-spaces defined by plane B in Scheme 1,[10] instead
of the more commonly used endo/exo discrimination across
opposite sides of plane A.[11] Accordingly, if one assumes that
a chelating metal ion like lithium engages in three-point
coordination, a very high diastereoselectivity should be
expected through a Zimmerman ± Traxler six-membered
transition state.[12] From this design the methyl ketone 5[13]

(Scheme 2) is a primary candidate to evaluate the above
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Scheme 2. Synthesis of the chiral methyl ketone reagents 5 and 6 : a)
HC�CLi, THF, ÿ78!room temperature (RT) (endo:exo 97:3); b) HgO,
H2SO4, Me2CO, reflux; c) TMSO, TfOH cat., RT.

the bond lengths of the molecule containing p electrons or its
fragment.
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hypothesis. The crystalline 5 was prepared by addition of
lithium acetylide to the commercially available (1R)-(�)-
camphor (3) according to the procedure of Midland.[14] The
addition proceeded in a 97:3 endo:exo ratio from which 4 was
isolated in 90 % yield after column chromatography. Standard
hydration provided 5 [m.p.: 94 ± 958C, [a]25

D �ÿ65.6 (c� 1.0 in
CH2Cl2)] in 85 % yield after crystallization from hexane.[15]

Concordant with our expectations, the corresponding aldol
products obtained from the reaction of representative alde-
hydes with the lithium enolate of 6, generated from 5 by
silylation with N-trimethylsilyl-2-oxazolidinone (TMSO)[16]

and subsequent treatment with lithium diisopropylamide
(LDA), were indeed formed with remarkably high diaster-
eoselectivity (Scheme 3). The diastereomeric ratio of the
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Scheme 3. Diastereoselective synthesis of a-unsubstituted b-hydroxy car-
boxylic acids and ketones: a) LDA (1.2 equiv), THF, ÿ788C, 0.5 h then
RCHO, 3 ± 7 h; b) 1m HCl, MeOH or TBAF (2 equiv), THF, RT, 5 min; c)
NaIO4, MeOH/H2O (2/1), RT or reflux, 12 ± 48 h; d) ClSiMe2tBu,
imidazole, DMF, RT, 3 days, 86%; e) R1MgBr, CeCl3, THF or Et2O, 08C,
2 h; f) Pb(OAc)4 (2 equiv), C6H6, 58C, 2 h.

product was unchanged after desilylation to afford the
adducts 7/8 (typically 95:5, Table 1). The stereochemical
assignments for the major products 7 from the reaction with
benzaldehyde, isobutyraldehyde, and pivalaldehyde were
made by cleavage of the acyloin moiety[5] to afford the

corresponding carboxylic acid 9 along with the recovery of the
starting camphor (85 ± 90 %). The observed optical rotations
of these b-hydroxy acids were then compared with published
values.[17] In addition, a single-crystal X-ray analysis of the
aldol 7g corroborated the assigned configuration for the
adducts. From the data in Table 1 it is evident that the reaction
diastereoselectivity is independent of the nature of the
aldehyde, showing generality for aromatic, a,b-unsaturated,
and linear as well as branched chain aliphatic aldehydes. The
excellent diastereoselectivity observed in these reactions is of
particular interest in that it provides, through carbonyl
addition and subsequent diol cleavage, the basis for an
enantioselective synthesis of a-unsubstituted b-hydroxy ke-
tones. For example, using organocerium reagents,[18] we could
prepare the carbinols 10 [R1�Me, 85 %; R1�Ph, 90 %; R1�
allyl, 80 %],[19] which upon exposure to lead tetraacetate in
benzene gave the a-unsubstituted b-silyoxy ketones 11 in
good overall yields and essentially in optically pure form.

A further example that illustrates the efficiency of the
present system is the reaction of the dianion of 5 with the a-
oxy aldehyde 12 (Scheme 4), a chiral aldehyde that shows
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Scheme 4. a) 5, LDA (2.4 equiv), LiCl (6 equiv), THF, ÿ788C, 4 h, 75%.
b) TBDMS-Cl, imidazole, DMF, RT, overnight, 90%. c) BH3 ´ THF, THF,
08C, 7 h then Pb(OAc)4 (2 equiv), C6H6, 58C, 2 h, 70%.

essentially no diastereoselection with either methyl acetate or
a-silyloxy methyl ketone enolates.[4b, 5b] When 12 was allowed
to react with the dianion of 5 in the presence of LiCl, a
mixture of diastereomeric aldols was obtained in the ratio
93:7. The major isomer 13 was isolated in 75 % yield after
column chromatography. A single crystal X-ray analysis of 13
confirmed the assigned configuration for the adduct.[20]

Finally, diborane reduction of the keto group in the TBS-
protected aldol 14 (TBS� tert-butyldimethylsilyl) followed by
oxidative workup provided the a-unsubstituted b-silyloxy
aldehyde 15 in 70 % yield along with the recovery of the
starting camphor.

The a-hydroxy methyl ketone enolate developed here helps
to fill the existing gap with regard to the usual behavior of a-
unsubstituted enolates in diastereoselective aldol reactions
and, in addition, enables for the first time the recovery of the
starting source of chiral information.
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Table 1. Aldol condensation of the lithium enolate of 6 with representative
aldehydes.[a]

Aldehyde t [h] 7 :8[b] Yield (7) [%][c]

C6H5CHO 6 96:4 80
4-CH3C6H4CHO 7 96:4 67
C6H5CH�CHCHO 6 92:8 80
C6H5CH2CH2CHO 2 95:5 81
i-C3H7CHO 3 97:3 67
(CH3)2CHCH2CHO 6 96:4 75
(CH3)3CCHO 6 > 98:2 70

[a] Reactions were carried out at ÿ788C on 0.5 mmol scale by adding a
precooled (ÿ788C) solution of the aldehyde in THF to the lithium enolate
of 6 in the same solvent at ÿ788C. [b] Ratios were determined by both 13C
NMR (area of CHOH signals of both diastereomers at d� 65 ± 75) and
HPLC analysis of the crude reaction mixture. Diastereomer 8 had the
shorter retention time in all HPLC experiments. [c] Yields of 7 after
purification of the crude product by column chromatography and
separation of diastereomers by HPLC on a Merck LiChrosorb Si 60
column (7 mm) with mixtures of ethyl acetate and hexane as eluent.
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[{Pt(CN)(C10H21N4)}6]: A Luminescent
Hexanuclear Platinum(iiii) Macrocycle
Containing Chelating Dicarbene and Bridging
Cyanide Ligands**
Siu-Wai Lai, Kung-Kai Cheung, Michael Chi-Wang
Chan, and Chi-Ming Che*

Transition metal mediated self-assembly reactions are a
versatile strategy for generating supermolecules with appeal-
ing structural and spectroscopic properties.[1±6] In this context
we are interested in luminescent molecular hosts[7] composed
of square-planar platinum(ii) complexes as building blocks,
since such materials could have applications in host ± guest
photochemistry and as novel luminescent sensors. Fujita
et al.[1] and Stang et al.[5a, b] reported the preparation of
tetranuclear platinum(ii) compounds with pyridine-based
ligands. Here we describe the crystal structure of a novel
luminescent hexanuclear platinum(ii) macrocycle bearing
cyclic dicarbene and bridging cyanide ligands.

Keywords: acetylene ´ aldol reactions ´ asymmetric syn-
thesis ´ camphor ´ methyl ketone
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