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a Numerical Model for Electron ProbeIntriX :
Analysis at High Depth Resolution
Part IÈTheoretical Description

P.-F. Staub*
Laboratoire de Chimie PhysiqueÈMatière et Rayonnement, Universite� Paris VI, 11 rue P. et M. Curie, 75231 Paris cedex 05,
and CAMECA, 103 Bd St-Denis, 92403 Courbevoie cedex, France

The theoretical description of a quantitative electron probe model, IntriX, is presented. It consists of a numerical
reconstruction of the in-depth ionization distribution U(qz) through the use of basic physical macroscopic para-
meters describing the electron beam–matter interaction. With the aim of characterizing nanometer features in
samples, speciÐc attention is paid to the treatment of analysis performed on in-depth non-homogeneous samples
(Ðlms on substrates) and also at low beam energies keV) and near the ionization thresholdE
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INTRODUCTION

The quantitative analysis of solid materials by the so-
called electron probe (EP) method consists in bom-
barding a sample with monokinetic electrons (incident
energy in order to ionize the core levels (bindingE0)energy of atoms inside the target and to interpret,Ec)by means of an appropriate model, the measured inten-
sity of characteristic signal (x-rays or Auger electrons)
emitted by these atoms during their deexcitation. Since
the pioneering work by Castaing and Descamps,1 many
models have been proposed which basically intend to
reproduce the ionization depth distribution '(oz) inside
the analyzed sample. In cases of bulk homogeneous
samples, this has become a routine task and is now
fairly well completed by a number of programs,2h4
where '(oz) distributions are represented by easily com-
putable analytical functions ; these analytical models are
primarily parameterized by Ðtting experimental and
Monte Carlo '(oz) data concerning homogeneous stan-
dard samples.

As a result of the increasing technological interest in
layered materials, adapting the EP models to the quan-
titative study of non-uniform samples has become criti-
cal. Valuable methodological information for applying
'(oz) models to stratiÐed samples can be found in
works by Pouchou and Pichoir5 and Bastin et al.6 The
basic conÐguration of such systems is an emitting Ðlm F
deposited on a substrate S : one has to determine '(oz)
in F by taking into account the electron backscattering
properties of S. In fact, most analytical models are not
suited to a realistic description of '(oz), particularly
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when F and S have signiÐcantly di†erent atomic
numbers. In this case, 20È30% errors can arise in Ðlm
thickness determination.5 This failure is due to the fact
that analytical models treat FÈS systems as “averagedÏ
homogeneous samples, by means of most often physi-
cally meaningless weighting laws applied to their
parameters. In addition, expectations are based on
Monte Carlo simulations,7,8 with which any sample
conÐgurations can, in principle, be investigated.
However, other problems arise with Monte Carlo
methods due to their complexity, statistical character
and cost in terms of computing time, the latter exclud-
ing at present their use as routine analytical tools.

An intermediate relevant solution was proposed by
August and Wernisch,9 which takes the form of a semi-
empirical numerical model operating on macroscopic
and generally well known electronic scattering para-
meters such as electron transmission and backscattering
coefficients, the corresponding energy and angular dis-
tributions and the ionization cross-section. This method
combines non-statistical and quick computational
properties of semi-empirical models with the adapt-
ability and physical relevance allowed by numerical
(non-analytical) treatments. The reliability of such an
electron scattering model in the case of FÈS systems has
already beneÐted some applications,10 and is promising
for extended developments.

In its principle, the EP quantitation model described
in the present paper, and entitled IntriX, approaches the
treatment adopted by August and Wernisch.9 The most
important di†erence between the two models is that the
program developed by August and Wernisch is mainly
devoted to the interpretation of intensity measurements
performed in the Ðeld of “classicalÏ electron probe
analysis, i.e. for incident energies keV and over-E0P 6
voltages is the ionization thresh-U0\ E0/Ec [ 1.7 (Ecold for the considered X transition), whereas for IntriX
we paid an extra attention to analysis at low energies
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keV) and at low overvoltages(0.5OE0O 5 (1OU0O
2). Moreover, we have generalized our model to the case
of emitting materials buried under coating Ðlms. The
interest in performing EP analysis in these last ranges of
conditions, and the usefulness of a new quantitation
model adapted to them (IntriX), are now considered.

There is an increasing need for characterizing com-
positionally, dimensionally and chemically thinner and
thinner structures, from 1 nm to hundreds of nm, such
as superÐcial segregations or interfacial regions in
layered materials. This involves performing EP analysis
with better and better depth resolution, i.e. making the
emitting thickness inside the sample coincide best with
the thin zone of interest. This is achieved by lowering
the incident energy so that the primary electronsE0reach the zone to be excited with energies exceeding the
threshold by a small quantity dE ranging from tensEcto a few hundred eV, the energy dE then being entirely
dissipated during the short crossing of the investigated
zone. To balance the subsequent narrowness of the
emitting thickness, it is important to maximize the
counting rate through the use of overvoltages asU0large as possible. This last condition is achieved by
taking values as small as possible. Consequently, softEcx-ray lines keV) are preferred to harder ones(Ec O 4È5
and this explains why high depth resolution EP analysis
require incident energies typically lowerE0\ Ec ] dE
than 5 keV. Furthermore, for a given emitting thickness,
low-energy EP investigations beneÐt from strong peak-
to-background ratios (usually one or two orders of
magnitude greater than when using classical incident
energies), and generally su†er from much less x-ray self-
absorption, owing to shallower excitation depths.

Another advantage of the EP technique performed at
low energies is the possibility of obtaining information
about the chemical state of emitting species inside the
target. Indeed, if detected by a spectrometer of sufficient
spectral resolution (typically better than 10~3), the
shape of soft x-ray lines can be interpreted in terms of
valence band occupancy, and then related to the emit-
ting atoms chemical bonds. This method, performed at
very low overvoltages has been successfully(U0 O 1.5),
applied to the characterization of nanometer interfacial
regions in various layered structures,11 and can be
associated advantageously with an adapted quantitative
EP model such as IntriX.

Developing accurate low-energy EP techniques is
also advantageous for determining very light elements
(Be, B, C, N, O). Indeed, owing to the strong absorption
of their x-ray lines inside the sample, optimizing inten-
sity acquisition for these elements requires shallow exci-
tations, which is best achieved at low energies (typically
5È15 keV for bulk samples, often less for layered
structures).

Finally, restricting the electron penetration to small
depths is of strong interest for obtaining high-resolution
x-ray images in EP microanalysis techniques,12 pro-
vided a good electron optical column is used to ensure a
small lateral size of the incident beam. These images can
become very powerful analytical tools if reliably quanti-
Ðed.

All quantitative EP models that have been developed
to date have to overcome increased uncertainty when
applied to low-energy and low-overvoltage analysis.

The various reasons for this can be summarized as
follows :

(1) Concerning low energies keV), only very(E0O 5
few measured '(oz) curves exist (eight at E0\ 5
keV,13,14 three at 4 keV13 and none below), thus limit-
ing seriously the database upon which analytical models
are established. Moreover, it is often difficult to com-
pensate this lack of data by means of Ðtting the trends
indicated by Monte Carlo calculations since, at low
energies, the latter require particularly complex pro-
grams and long computing times to provide sufficiently
accurate results.15,16 These theoretical difficulties orig-
inate from the failure of the Born approximation in the
treatment of the interaction between primary and
atomic electrons having similar energies. Consequently,
this prohibits the direct use of easy to handle formal-
isms such as the Rutherford approach for angular scat-
tering and the Bethe approach for energy losses when it
is intended to extend the reliability of classical EP
models from the high-energy towards the low-energy
region. However, more sophisticated models using have
been developed recently,17h19 considering single scat-
tering events and using the Mott cross-section for
elastic scattering or the modiÐed Grizinski cross-section
for inelastic collisions ; these models extend the applica-
bility of Monte Carlo technique to the incident energy
range 2È5 keV.

Finally, it is worth noting that some assumptions are
often made in the classical models with regard to the
constancy of certain parameters versus (as for theE0backscattering coefficient) that fail for low energies,
owing to the drastic changes in scattering cross-sections
that occur in this region.20

(2) Concerning low overvoltages the(1\U0\ 2),
main problems are related to the ionization cross-
section Q. First, near the ionization threshold, Q values
are not well determined either theoretically (again
because BornÏs approximation fails) or experimentally
and the simple empirical equations usually encountered
in EP models are not reliable.21 Second, because Q
exhibits a strong growth with overvoltage upU \E/Ecto U B 2, the ionizing capabilities of primary electrons
traveling in the sample with nearly identical energies E

may be very di†erent. As a result, the more(E\ 2Ec)electrons having energies close to i.e. the smaller isEc ,
the more approximations ruling the energy depen-U0 ,

dence of electronic parameters are expected to lose their
relevance. This important fact a†ects some fundamental
approximations used in all classical analytical EP
models, such as the “average energy loss approximation.Ï
In latter, the penetrating electron beam is considered as
monoenergetic all along its path, its energy being set
equal to the mean energy of the actually energyEmspread electron beam. This approximation clearly fails
for near-threshold interactions : owing to the strong
variation of Q, the simple computation of is notQ(Em)
sufficient to account for the whole beam ionization
probability ; in fact, as noted by Murata and Sugiyama7
for their Monte Carlo simulations, one should always
include the energy straggling of primary electrons when
computations are made for low overvoltages. Other
approximations usually encountered in classical analyti-
cal EP models are also expected to produce low over-
voltage aberrations, such as those used to represent
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more or less crudely the energy distribution of back-
scattered electrons. Finally, as explained in the follow-
ing, enhancements of the beam angular scattering
associated with low energy loss electronÈatom collisions
have to be taken into account speciÐcally when near-
threshold analyses are performed.

All these difficulties, added to those concerning the
treatment of non-homogeneous samples, strongly ques-
tion the setting up of a high depth resolution EP
routine technique via the use of classical analytical or
Monte Carlo means. The proposed numerical model
IntriX has been built up in order to avoid these diffi-
culties. IntriX is structured on electronic parameters
which have been adjusted to reliable experimental data
collected at incident energies as low as 0.5 keV; this
should guarantee good performance in the low-energy
region. The numerical procedure adopted allows us to
take into account the energy dispersion of primary elec-
trons, a necessary step to cope with the case of low
overvoltage analysis. Finally, IntriX beneÐts from a
computational celerity similar to August and Wer-
nischÏs model9 as regards the treatment of layered
samples.

In the present paper, except for indicated cases, all
energies are given in keV, angles in degrees and mass
depths in lg cm~2.

PHYSICAL RECONSTRUCTION OF THE
IONIZATION DEPTH DISTRIBUTION:
THE IntriX MODEL

The proposed model accounts for the core ionizations
caused by primary electrons when passing through an
elementary layer dz situated at depth z inside the target.
The situation is pictured in Fig. 1. Ionization by the
electrons that are transmitted through the depth z and
which are crossing dz for the Ðrst time is labeled i\ 1.
Order i \ 2 is associated with electrons backscattered
beyond depth z, then crossing dz for the second time,

Figure 1. IntriX’s schematic representation of the beam scattering
inside the sample : contributions to ionization of the layerf

i
(rz)

drz are labeled with respect to the number of times i that the ion-
izing electrons have passed through it. and denote, respec-E

i
h

i
tively, the energy and the deflection from the surface normal of
i-order electrons at mass depth rz .

and so on. In the present work, we shall neglect orders
i[ 3, assuming that the electrons concerned are not
numerous or energetic enough to produce a signiÐcant
contribution to the ionization.

The total ionization depth distribution function ' is
conventionally given in units of mass depth (oz, where o
is the sample density) and normalized to the number of
ionizations (per mass depth unit) produced in an/10isolated layer doz in which the e†ects of electron scat-
tering can be ignored :

'(oz) \ /(oz)
/10

\ 1
/10

;
i/1

3
/
i
(oz) \ ;

i/1

3
'

i
(oz) (1)

with

/10\ c
A

N0 Q(U0) [mol cm2 g~1] (2)

where c and A are, respectively, the weight fraction and
the atomic mass of emitting atoms in the sample, isN0the number of incident electrons, Q(U) is the electro-
ionization cross-section of the core level involved in the
detected emission and is the overvoltage andU \E/Ecis deÐned as the ratio between the energy E of the ion-
izing electron and The and functionsEc . '

i
(oz) /

i
(oz)

are, respectively, the normalized and non-normalized
contributions to ionization of the i-order electrons at
mass depth oz inside the target ; the following three sec-
tions are dedicated to their determination.

Calculation of the Ðrst-order contribution U
1
(qz)

(transmitted electrons)

The contribution of the electrons which are transmitted
with energies between and through theE1 E1] dE1layer oz, oz] doz can be written as

d/1(oz) \
T 1

cos h
U

1

E1wEc c
A

N0 gt(E0 , E1, oz) dE1Q(U1)

(3)

with U1\ E1/Ec .
oz) denotes the energy distribution of thegt(E0 , E1,electron beam when transmitted through a mass thick-

ness oz. Details concerning the computation of can begtfound in Appendix 1. (1/cos is a factor (P1)h)1E1wEc
which accounts for the angular distribution of all the
efficient electrons transmitted in mass depth(E1P Ec)oz, i.e. after penetration of doz (see Fig. 1). It reÑects the
mean increase of the electron travel for an oblique
crossing of doz compared with a straight crossing and
will be called the “elongation factor.Ï See Appendix 1 for
a detailed computation of this factor.

Once integrated over the efficient energy spectrum,
the Ðrst-order contribution can be written as follows :

'1(oz)\ 1
/10

P
Ec

E0 d/1(oz)
dE1

dE1 (4)

\ 1
Q(U0)

T 1
cos h

(E0 , oz)
U

1

E1wEc

]
P
Ec

E0
gt(E0 , E1, oz)Q(U1) dE1 (5)
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Calculation of the second-order contribution U
2
(qz)

(backscattered electrons)

Using the basic relationships (1) and (2), the second-
order surface contribution can be written as follows :

/2(0)\ /10'2(0)\ c
A

N0Q(U0)['(0)[ '1(0)[ '3(0)]

Considering besides that, by deÐnition, we have
and we obtain'1(0)\ 1 '3(0)\ 0,

/2(0)\ c
A

N0Q(U0)['(0)[ 1] (6)

Let us deÐne the parameter R as follows :

R\ '(0)[ 1 \ '2(0) (7)

This quantity reÑects the contribution of backwards
electrons to surface ionization ; it has been shown by
di†erent workers22h25 that '(0), and hence R, could be
satisfactorily expressed as a function of the sample
backscattering coefficient g and the incident overvoltage
U0 :

R\ R(g, U0)
A new analytical expression for R adapted in cases of
low overvoltages is proposed in Appendix 2.

By analogy with Eqn (6), if we now consider the
second-order contribution produced at mass depth
oz[ 0 inside the target (see Fig. 1), due to the dNt\electrons transmitted through the massN0 gt(E1) dE1thickness oz with an energy we can writeE1, E1] dE1,

d/2(oz) \ c
A

N0 gt(E0 , E1, oz) dE1Q(U1)R(gh1, U1)

(8)

where denotes the backscattering coefficient of anghelectron beam impinging on a sample with an incidence
angle h ; we have already proposed a quantitation for
this parameter.26 We introduce it in order to account
for the increase of the backscattering at mass depth oz
as the Ðrst-order angular scattering is growing. The
e†ective incident angle is taken so thath1

1
cos h1

\
T 1

cos h
(oz)
U

1

E1wEc
(9)

In view of Eqn (3), Eqn (8) can be rewritten as

d/2(oz)
dE1

\ d/1(oz)
dE1

R(gh1, U1)
NT 1

cos h
U

1

E1wEc
(10)

and then

'2(oz) \ 1
/10

1
S1/cos hT1E1wEc

]
P
Ec

E0 d/1(oz)
dE1

R(gh1, U1) dE1 (11)

Calculation of the third-order contribution (i = 3)

The elementary third-order contribution can be
deduced from the second-order contribution in the

same way as we deduced the second-order from the
Ðrst-order contribution, i.e. using at one upper i-order
the analogue of Eqn (10) :

d2/3(oz)
dE1 dE2

\ d2/2(oz)
dE1 dE2

R[gh2(oz), U2]
NT 1

cos h
U

2

E2wEc

(12)

where is the backscattering coefficient of thegh2(oz)
layer of mass thickness oz from which third-order elec-
trons are returning (cf. Fig. 1). In IntriX, this quantity is
estimated following the method proposed by Sogard,27
but modiÐed in order to match the low-energy data
given by Vyatskin et al.28 Details about these modiÐ-
cations can be found in a thesis by Staub.29

S1/cos is the elongation factor that reÑectshT2E2wEc
the mean angular scattering through the surface layer of
those second order electrons having an energy E2P Ec .
See Appendix 2 for a detailed computation of this
factor.

From Eqn (12), the exact evaluation of the /3(oz)
would involve a double integration over energy, at the
cost of a signiÐcant loss ot time through computations.
However, as in most cases the third-order electrons con-
tribute to less than 15% of the total ionization (if U0O
10), simplifying statements can be assumed to estimate
it without producing any important errors in the total
predicted signal. Along this line, we consider the
second-order electrons as a monoenergetic beam, e†ec-
tive energy impinging back on the layer oz,E2eff,oz] doz with an e†ective incidence angle Thus, theh2eff.second-order derivative in Eqn (12) is suppressed and
we meet an integration analogous to Eqn (11) :

'3(oz)\ 1
/10

1
S1/cos hT2E2wEc

]
P
Ec

E0 d/2(oz)
dE1

R[gh2eff(oz), U2eff] dE1 (13)

with Introducing Eqn (10), we obtainU2eff \ E2eff/Ec .

'3(oz)\ 1
/10

1
S1/cos hT2E2wEcS1/cos hT1E1wEc

]
P
Ec

E0 d/1(oz)
dE1

R(gh1, U1)R[gh2eff(oz), U2eff] dE1

(14)

Consistent with the method used at Ðrst order [cf. Eqn
(9)], the e†ective angle is chosen so thath2eff

1
cos h2eff

\
T 1

cos h
U

2

E2wEc
(15)

To a Ðrst approximation, the e†ective energy canE2effbe taken as equal to the mean energy of the second-E2order electrons. can be expressed as an empiricalE2function of the incident energy and backscatteringE1coefficient in the following way :30gh1

E2eff\ E2B E1
1 ] gh1

2
(16)

As explained in Appendix 2, the approximation
which is identical with that used byE2eff \ E2 ,
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Cazaux,24 deÐnitely fails as the applied overvoltage is
decreasing Nevertheless, as the third-order(U1\ 3).
contribution is at the same time becoming negligible,
the error produced is not critical. Otherwise, a more
exact treatment of the estimate, not detailed hereE2effbut including the e†ect of threshold proximity, can be
found elsewhere.29

General expression for the total ionization depth
distribution U(qz)

Summing the three orders of contribution to ionization
given by Eqns (4), (11) and (14), we Ðnally obtain

'(oz) \ ;
i/1

3 '
i
(oz)

\ 1
(c/A)N0Q(U0)

]
P
Ec

E0 d/1(oz)
dE1

G
1 ] R(gh1, U1)

S1/cos hT1E1wEc

]
C
1 ] R[gh2eff(oz), U2eff]

S1/cos hT2E2wEc

DH
dE1 (17)

where is given by Eqn (3). As can be seen,d/1(oz)
although it accounts for the three Ðrst i orders, Eqn (17)
requires only one numerical integration to be com-
puted.

Figure 2 displays an example of a '(oz) distribution
computed with Eqn (17), showing the di†erent i order
contributions to ionization of the Si K level in a silver
matrix at keV. This type of graph allows anE0\ 10
interesting physical insight into what actually occurs
during the beamÈmatter interaction. For instance, in
that particular case, one can note the importance of
high-order electrons (i\ 2 and 3), related to the strong
backscattering probability in such a high-Z matrix. In
particular, the third-order contribution increases
sharply after the surface, thus inÑuencing signiÐcantly
the mass depth at which the '(oz) curve exhibits its
maximum.

Figure 2. Comprehensive diagram showing the contributions of
the three interaction orders (i ¼1, 2, 3) to the K level ionization
function F(rz) of an Si tracer embedded in Ag matrix, as com-
puted by IntriX keV).(E

0
¼10

Accounting for the e†ect of the Ñuorescence from the
continuum

Core ionization is not only caused by beam electrons
but also by bremsstrahlung photons generated(hl[ Ec)in the sample (continuum Ñuorescence). As explained in
Appendix 2, the Ñuorescence contribution to ion-/F(0)
izations occurring in an elementary surface layer doz
can be linked, as a Ðrst approach, to the corresponding
second-order contribution by means of the follow-/2(0)
ing relation :

/F(0)\ /2(0)F(g, U0) (18)

where the function F can be approximated by the ana-
lytical expression (A23).

Analogous to Eqn (18), the Ñuorescence contribution
to a layer doz situated at mass depth oz[ 0 due to
bremsstrahlung photons generated in the target by elec-
trons impinging on doz with energy willE1, E1] dE1be estimated as follows :

d/F(oz) \ d/2(oz)F(g, U1) (19)

The total Ñuorescence contribution is then com-'F(oz)
puted by integrating Eqn (19) between andEc E0 .

This treatment is approximate and accounts only
partly for the bremsstrahlung Ñuorescence at mass
depth oz. Indeed, the F factor, originally a surface
parameter, is deÐned from experiments in which only
backwards photons (i.e. those returning to the surface
layer) are contributing to intensity. This is no longer the
case when the emitting layer is signiÐcantly buried,
since ionizing photons can be generated above this
layer. For ionization threshold energies lower than 5
keV, which are the interesting cases for performing high
depth resolution electron probe microanalysis (EPMA),
the continuum Ñuorescence never exceeds a few per cent
of the total emitted intensity,31h33 so that the induced
error is not expected to be critical. However, for higher
energy EPMA, it has been shown that continuum Ñuo-
rescence can become important, especially for high
atomic number matrices.32 In these cases, an improve-
ment to IntriX would consist in applying a rigorous cal-
culation of the Ñuorescence, similar to that proposed by
Pfei†er et al.,32 which is also based on an electron scat-
tering model.

Photoionization induced by characteristic lines
(characteristic Ñuorescence) is not considered here,
although it could become important, at least in particu-
lar cases, especially for a stratiÐed specimen.33 As for
continuum Ñuorescence, the probability of secondary
characteristic Ñuorescence is expected to decrease
strongly when considering low excitation energies.33,34

Studying di†erent types of conÐgurations for the
beam–sample interactions

Non-coated emitting samples. The general scheme for this
type of sample corresponds to the case of either an
emitting Ðlm on a substrate or a semi-inÐnite homogen-
eous sample (a Ðlm whose mass thickness exceedsozfthe maximum electron penetrating depth).

A ÐlmÈsubstrate (FÈS) system can be considered as
composed of an emitting Ðlm of mass thickness oD\

( 1998 John Wiley & Sons, Ltd. X-RAY SPECTROMETRY, VOL. 27, 43È57 (1998)
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covering the substrate ; it is illustrated in Fig. 3.ozf[ oz
In this case, Ðrst-order electrons impinge on a di†erent
stratiÐed system at each mass depth oz. As a conse-
quence, the presence of a substrate of a di†erent nature
than the emitting Ðlm primarily a†ects the second-order
contribution through a change in the backscattering
coefficient according to oz. The ionization depthgh1function is computed using Eqn (17), but replacing the
bulk coefficient g by a ÐlmÈsubstrate coefficient gFhS for
which various equations have been proposed.35h37 In
the frame of the present work, we use the following
expression proposed by De Nee :38

gFhS \ gS ] (1 [ gS/gF)gF(oD) (20)

Coated emitting materials. Let us suppose that the emit-
ting part of the sample is now covered by a coating
material Z@ of mass thickness o@z@. Electrons transmitted
at the interface are spread both energetically [energy
distribution o@z@ )] and spatially (e†ective inci-g

t
@(E0 , E1@ ,dent angle Owing to this non-normal incidence ath1@ ).the interface z\ 0, electrons transmitted at depth z

have crossed statistically a longer path than they would
if they had been issued from a normal incidence beam.
In Fig. 4, this longer path is illustrated by a curved tra-
jectory, whose length is expressed by the curvilinear
coordinate f(z). We evaluate this e†ective length f(z) by
dividing the emitting thickness into two separate zones,
as follows :

Èa transient zone, where electrons gradually lose the
memory of their incident (interface) angle until they
reach a complete di†usion depth, denoted The e†ec-zDh1.tive length f(z) of the transmitted electrons path in this
region has to satisfy the following boundary condition :

ALf
Lz
B
z/0

\ 1
cos h1@

(21)

In this transient zone, the and S1/cos func-gt hT1E1wEc
tions are computed by introducing the backscattering
coefficient (instead of g for normal incidence).gh1{As the di†usion angle never exceeds 45¡ (seeh1@Appendix 1), the electron projected path to reach com-
plete di†usion depth is simply approximated to zDh1{/cos

by analogy with the case of normal incidence, thish1@ ;
path is computed by setting it equal to (see Appen-X

Ecdix 1).
Èa complete di†usion zone, for in whichzP zDh1{,e†ects of the interface incidence angle are neglected : the

Figure 3. General case of an emitting film on a substrate. Illustra-
tion of the fact that the distance D from interface has an effect on
the backscattering coefficient inside the film.i

1

Figure 4. Transmission of electrons in an emitting substrate
covered by a coating film of depth z ¾. The curved trajectory illus-
trates the effective path length z crossed by transmitted electrons
at depth z under the interface, after having been deflected with a
mean angle The complete diffusion depth separates theh

1
@ . z

D
h1{

transient zone from the complete diffusion zone (z ¿(0 Oz Oz
D
h1{)

z
D
h1{).

situation becomes equivalent to normal incidence (see
above), i.e. additional path lengths are projected along
the z axis. This can be written as

ALf
Lz
B
zwzDh1{

\ 1

Consistently, the and S1/cos functions aregt hT1E1wEc
computed using the normal incidence backscattering
coefficient g.

Gathering these hypotheses, we propose the following
expression for f(z), which meets the preceding condi-
tions and produces physically consistent results :39

f\ z
cos h1@

[1[ fh1{(z)]

with

fh1{(z) \
1 [ cos h1@

2
z

zDh1{
in the transient zone and

f\ f(zDh1{) ] z[ zDh1{
in the complete di†usion zone.

Because f is greater than z, more inelastic events are
involved in the case of non-normal incidence, thus
widening the energy distribution at depth z as com-gth1{pared with the distribution issuing from a normalgtincidence beam. To account for this e†ect, at depthgth1{z is taken equal to at depth f(z) ; this is written asgt

gth1{(E1@ , E1, oz) \ gt(E1@ , E1, of)
Once integrated over the interface energy spectrum
the Ðrst-order contribution, as derived from Eqn (3),gt@ ,Ðnally becomes

d/1(oz) \ c
A

N0 Q(U1) dE1

]
P
Ec

E0 T 1
cos h

(E1@ , of] ozeq.)
U

1

E1wEc

] gt@(E0 , E1@ , o@z@)gt(E1@ , E1, of) dE1@ (22)
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where is the thickness of the emitting material thatozeq.would have produced the same state of Ðrst-order
angular di†usion as the coating Ðlm (see Appendix 1).
Contributions of superior interaction orders (i \ 2 and
3) are obtained from the Ðrst-order interaction follow-
ing the same procedure as described above for homo-
geneous samples.

CONCLUSION

Classical EPMA models are all founded on an analyti-
cal formulation of '(oz). With the increase in computer
speed, the need for such formal calculations has become
less crucial and more physical meaning can be incorpor-
ated into models, with the aim of analyzing more
complex samples with better accuracy. Along this line,
IntriX involves numerical integration to generate '(oz)
functions. It operates on empirically pre-settled macro-

scopic parameters that keep good physical consistency
for incident energies ranging from tens of keV down as
low as 0.5 keV. The computing time is considerably
reduced compared with Monte Carlo codes [typically a
few seconds to compute a '(oz) function with a regular
workstation], thus making possible its use as a routine
analysis tool.

The ability of IntriX to match existing measurements
over a very wide range of physical conditions, and con-
sequently the relevance of using it as a reliable high
depth resolution electron probe model, are described
elsewhere.39
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APPENDIX 1: QUANTIFYING THE PHYSICAL PARAMETERS TO COMPUTE THE FIRST ORDER
CONTRIBUTION TO IONIZATION (i = 1)

The energetic distribution of transmitted electrons g
t

An analytical expression has already been proposedA1
for the energetic distribution of transmitted electrons gt ,which depends only on two basic parameters, as

follows :
Èthe electron projected range, which correspondsX0 ,

to the mean sample thickness for which the number of
transmitted electrons is attenuated with a factor 1/e. In
the frame of the present work, the following estimate of
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will be used, which is very close to one proposedX0previously :A1

oX0
lg cm~2 \ 5.9

n
A E0
keV
Bn

(A1)

where the energy-range exponent n depends on asE0proposed by Kanaya and Kawakatsu.A2
As evidenced in a paper by Staub et al.,39 the preci-

sion with which the parameter is known directlyX0a†ects the determination of the emitting thickness in
stratiÐed samples with the model IntriX.

Èthe bulk backscattering coefficient, g, giving the
number of incident electrons that are returning inNbthe half-space of incidence after having interacted with
the specimen : g \Nb/N0 .

It should be noted that the analytical expressions
used in the IntriX program to quantify and g haveX0been chosen because they are Ðtted on data acquired at
energies as low as 0.5 keV;26,A1 this is necessary to
ensure the reliability of IntriX in the low-energy region

keV).(E0\ 5

The elongation factor of transmitted electrons
S1/cos hT

1
E1wEc

As no theoretical formulation or empirical Ðt exists to
describe the elongation factor with conÐdence, most
workers generally make the implicit approximation that
the angular scattering does not depend on electron
energy this can be summarized as follows :E1 ;

T 1
cos h

U
1

E1wEc \
T 1

cos h
U

1

E1w0
(A2)

Although approximation (A2) produces acceptable
results in the general case, it fails when the applied over-
voltages are weak as illustrated by Staub et(E1\ 2Ec),al.39 The following is devoted to the setting up of a
more realistic estimate of the elongation factor.

The total elongation factor already demon-(E
1
P 0). As

strated by Reuter,22 the total elongation factor can be
obtained from the angular distribution oz) ofGtE1w0(h,
an electron beam transmitted through a Ðlm of mass
thickness oz :

T 1
cos h

(oz)
U

1

E1w0\

P
0

n@2
GtE1w0(h, oz)2n sin h dh/cos h

P
0

n@2
GtE1w0(h, oz)2n sin h dh

(A3)

A number of experimental studies have addressed the
determination of functionsA3hA6 for various ranges ofGtmass thickness oz, incident energy and atomicE0number Z. From experimental data at high energies

keV), Soum et al.A6 derived a simple law that(E0[ 50
synthesizes all their results concerning the functions,Gtin the form of a Gaussian distribution :

GtE1w0(h)/GtE1w0(0)\ exp[[V 2(oz)] (A4)

with

V 2\ h2
2hpE1w0(oz) tan hpE1w0(oz)

where called the most probable di†usion angle,hpE1w0 ,
is the value of h that maximizes the function sin h.Gt(h)
Equation (A4) is illustrated in Fig. A1 (thick curves),
where ratios are reproduced for di†erentGt(h)/Gt(0)
values of Soum et al.A6 observed that, for ahpE1w0(oz).
given increases with mass thickness oz, until itE0 , hpreaches a saturation value at a critical masshp B 37¡
thickness called the complete di†usion mass depth.ozD ,
Beyond the function undergoes no furtherozD , Gt(h)
change.

The disadvantage of the Gaussian form in Eqn (A4) is
that it is not realistic for high di†usion angles ; indeed, it
gives then producing an inÐnite value forGt(n/2) D 0,
the elongation factor when the numerator integral of
Eqn (A3) is calculated. With the aim of Ðnding a more
realistic description of over the whole angularGt(h)
range 0 O h O n/2, we propose the following simple rep-
resentation :

GtE1w0(h)/GtE1w0(0)\ (cos h)q(hpE1w0) (A5)

with

q\ 0.283
(1 [ cos hpE1w0)1.125 (A6)

The good agreement between this description and
those proposed by Soum et al.A6 is illustrated in Fig.
A1. In addition to the fact that the physical condition

is actually achieved, the functions pro-Gt(n/2) \ 0 Gt(h)
posed here allow an analytical calculation of Eqn (A3),
leading to the simple equation

T 1
cos h

U
1

E1w0 \ 1 ] 1
q(hpE1w0) (A7)

Reaching the complete di†usion region, i.e. for hp \
Eqn (A6) gives qB 2, thus leading to anhpmaxB 37¡,

angular distribution in cos2 h. This behavior was pre-
dicted theoretically by Bothe,A7 and has also been con-
Ðrmed experimentally for lower energies (5O E0O 20
keV) by Cosslett and Thomas.A4 For the lowest energies
to be considered here keV), slight devi-(0.5O E0\ 5
ations from the Bothe law have been experimentally evi-
denced by di†erent workers,A3hA6 the saturation
distribution tends toward a cosine distribution (i.e.
q\ 1), which is associated with Neverthe-hpmax\ 45¡.
less, one can note that Eqns (A5) and (A6) keep their
validity in the complete di†usion region even for these
low energies since actually we have q(45¡) B 1. In this
respect, we shall assume that the representation in Eqn
(A5) remains valid for energies as low as 0.5 keV.

Experimental values of oz) for extendedhpE1w0 (E0 ,
ranges of incident energy keV) and atomic(5 O E0\ 20
number (13O Z\ 79) have been published by Cosslett
and Thomas.A4 They found that the dependence of hpon Z decreases as is lowered from 20 to 5 keV; at 5E0keV this dependence almost completely vanishes.

With the aim of Ðnding universal law giving hpE1w0,
we have represented the data of Cosslett and Thomas as
function of the “reduced di†usion mass depthÏ

rather than as functions of the two indepen-oz/ozD(E0)
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Figure A1. Normalized angular distributions of transmitted electrons for different values of the most probable diffusion angle Compari-h
p
.

son of the semi-empirical Gaussian fit in Eqn (A4) by Soum et al .A6 with the proposed cosine power function (A5). Theoretical complete
diffusion distributions in cos h and cos2 h, associated with low and high incident energies, respectively, are also represented.

dent quantities and oz. We estimate using theE0 zD(E0)deÐnition already adopted by Kanaya and Kawa-
katsu,A2 according to which the complete di†usion
depth is reached when the transmission fraction is 1/e.
This is then simply written as

zD \ X0F
oz
ozD

\ oz
oX0

A good general agreement with the data of Cosslett and
ThomasA4 is reached using the following interpolation
law (see Fig. A2) :

hpE1w0(E0 , oz)4 hpE1w0
A oz
oX0

B

B hpmax
G
1 [ exp

C
[
A
2.24] 6.05] 10~3

]
A E0
ln g
B2B oz

oX0

DH
(A8)

We noticed that the data collected by Cosslett and
Thomas did not allow one to reproduce satisfactorily
the experimental '(oz) curves in A1 matrices : the vari-
ation of measured with depth always seemed toohpE1w0
slow. August and Wernisch9 came to the same con-
clusion when trying to apply these measurements for
building their own model. The adjustment we made to
correct these discrepancies explains why, in Fig. A2, a
stronger deviation of our Eqn (A8) to the experimental
data can be observed for A1 at 20 keV as compared
with other elements.

Below 5 keV, as the term in Eqn (A8)E0-dependent
becomes negligible, functions are nearlyhpE1w0(oz/oX0)identical with those displayed in Fig. A2 for 5 keV, and
they coincide for all Z.

The partial path elongation factor a given(E
1
P E

c
). For

we now exclusively consider the efficient elec-Ec P 0,
trons, i.e. those which are transmitted with an energy

It was shown experimentally by Vyatskin andE1P Ec .
KhramovA8 that the relative number of theseN1/N0electrons which are transmitted through a thin Ðlm
(mass depth oz) can be represented by the law

N1(oz)
N0

\ exp
C
[
A oz
oX

Ec

Bp(g, Ec)D
(A9)

where is a projected range analogous toX
Ec

X0\
but restricted to efficient electrons, and p is aX

Ec
\ 0,

parameter which reÑects the efficiency ratio of elastic to
inelastic processes inside the material.

From Eqn (A9), at a given and for theE0 Ec \ 0,
beam transmission behavior is completely determined
by and g ; this is consistent with the fact that both ofX0these parameters are sufficient to describe the value of

as given by Eqn (A8). More generally, the factshpE1w0
that both the parameterization and the functional shape
of Eqn (A9) are maintained whatever the value of Ec P

indicates that the transmission behavior of a part of0
the beam having an energy can be treated ana-E1PEclogously to the previous singular case but as ifEc \ 0,
occurring in a Ðctitious material characterized by the
parameters and p(g, Using the approximationX

Ec
Ec).p(g, 0), which has already been discussed in aEc) \ p(g,

previous paper,A1 the most probable scattering angle
associated with energies can be predictedE1P Ecsimply by applying this analogy to Eqn (A8), as follows :

hpE1wEc(E0 , oz)4 hpE1wEc
A oz
oX

Ec

B

B hpmax
G
1 [ exp

C
[
A
2.24] 6.05] 10~3

]
A E0
ln g
B2B oz

oX
Ec

DH
(A10)
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Figure A2. Comparison between experimental data from Cosslett and ThomasA4 Eqn (A9) for the most probable diffusion angle as ah
p

function of the reduced thickness for various atomic numbers (Z ¼13, 29, 47 and 79) and incident energies and 20 keV).rz /rX
0
, (E

0
¼5

For a given in a given matrix, because theE0 X
Ec

O X0 ,
behavior of as described by Eqn (A10) consists inh0E1wEc
a shallower angular di†usion as is increased, i.e. asEcthe overvoltage is reduced. Statistically, this is easily
understandable considering that lowering the overvol-
tage is equivalent to restricting the accounted electrons
to a more and more elastically scattered part of the
transmitted beam and that, in fact, these electrons are
those which contribute the most severely to the angular
widening of the whole beam.

The projected range is evaluated using the clas-X
Ecsical continuous slowing down approximation for the

beam energy, in which the range of electrons is theE0range to reach the energy complemented by that ofEcelectrons having an initial energy this is written asEc ;
X0(E0) \ X

Ec
(E0) ] X0(Ec)

thus giving rise to

X
Ec

(E0) \ X0(E0) [ X0(Ec) (A11)

and, in view of Eqn (A1) :

oX
Ec

(E0)\ oX0(E0)
C
1 [

AEc
E0

BnD\ 5.9
n

(E0n [ Ecn)

(A12)

Along the same line, the partial path elongation
factor is calculated analogously to the total one [see
Eqn (A7)], i.e.

T 1
cos h

U
1

E1wEc \ 1 ] 1
q(hpE1wEc)

(A13)

APPENDIX 2: QUANTIFYING THE PHYSICAL PARAMETERS TO COMPUTE THE SECOND
ORDER CONTRIBUTION TO IONIZATION (i = 2)

The elongation factor of backwards electrons
S1/cos hT

2
E2wEc

As for the case of Ðrst-order electrons (see Appendix 1),
the elongation factor of second-order electrons S1/cos

is not conveniently available from theory orhT2E2wEc
experiments, so that one always applies for back-
scattered electrons the same non-energy dependent
approximation as Eqn (A2). Moreover, as it is known
from several experimentsA6,A9,A10 that the total angular
spectrum of backscattered electrons follows aGb(h)
cosine distribution (q\ 1), thus giving rise, by use of
Eqn (A9), to an elongation factor of 2, approximation

(A2) applied to second-order electrons becomes

T 1
cos h

U
2

E2wEc \
T 1

cos h
U

2

E2w0\ 2 (A14)

The fact that backscattered angular distributions are
actually energy dependent has been experimentally evi-
denced by Darlington,A11 who showed that there is a
shift of the measured spectra towards highergb(E2)energies as the detection is lowered near grazing angles
(see Fig. 4 in DarlingtonÏs paper). A simple physical
description for this phenomenon can be found in
Niedrig35 (see Fig. 16 in NiedrigÏs paper), where it is
shown how electrons being backscattered by single
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elastic processes (Rutherford scattering) exhibit much
Ñatter angular distributions than the cosine distribution
to be expected when all backscattered electrons are con-
sidered together, leading to a value of the elongation
factor of [2. This point is of importance since the
present study includes near-threshold analysis in which
only the most energetic electrons, i.e. those which have
been signiÐcantly scattered by single elastic processes,
are contributing to the signal intensity. In these latter
cases, approximation (A14) is consequently expected to
be irrelevant.

S1/cos can be linked to the surface second-hT2E2wEc
order contribution using an equation analogous'2(0)
to Eqn (5), but now applied to backscattered electrons :

'2(0)\ 1
Q(U0)

T 1
cos h

U
2

E2wEc

]
P
Ec

E0
gb(E0 , E2)Q(U2) dE2 (A15)

where is the energy spectrum of all the electrons thatgbare backscattered through the surface of the sample.
Introducing the e†ective backscattering coefficient

geff as follows :

geff \ 1
Q(U0)

P
Ec

E0
gb(E0 , E2)Q(U2) dE2 (A16)

we have, using Eqn (A15),

T 1
cos h

U
2

E2wEc \ '2(0)/geff

With consideration of Eqn (7), one can write

T 1
cos h

U
2

E2wEc \ ['(0)[ 1]/geff (A17)

After Eqn (A17), assuming that geff can be computed, an
empirical determination of the second-order elongation
factor can be performed, provided that a sufficient
number of values are given for '(0). In this respect,
many studies have addressed measurements of '(0) in
the energy range of classical EPMA investigations

keV), and a well documented database on this(E0[ 5
topic was provided by August and Wernisch.23 Such
experimental values of '(0) are based on x-ray intensity
measurements performed on thin emitting layers,
according to the “tracer methodÏ developed by Castaing
and Descamps.1 However, it must be noted that the
characteristic x-ray emission during electron irradiation
is not only caused by electron-induced ionization (or
primary ionizations), but also by secondary Ñuores-
cence, i.e. by bremsstrahlung photons generated inside
the sample also producing core ionizations (if the
photon energy Tracer experiments do nothl[ Ec).allow for the electron contribution '(0) to be distin-
guished from the Ñuorescence contribution thus'F(0),
resulting in the following equation :

'(0)exp.[ 1 \ '(0)[ 1 ] 'F(0)\ ['(0)[ 1](1]F )

(A18)

with the factor

F\ 'F(0)
['(0)[ 1]

\ 'F(0)
'2(0)

expressing the ratio between the secondary ionizations
induced by Ñuorescence and the primary ionizations by
backscattered electrons.

As shown recently by Pfei†er et al.,32 Ñuorescence
caused by the continuum can contribute to a large part
of the total characteristic signal emitted by the sample,
especially in cases of K lines in medium to high atomic
number emitters. Neglecting the absorption, Scott and
LoveA12 gave the following expression for the ratio
between the K line intensities induced by continuum
Ñuorescence and caused by primary ionizationsIF IP :

IF
IP

\ 4.3] 10~6 lKi
lK

rK [ 1
rK

A
i
Z1 Ec (A19)

where and respectively, denote the mass absorp-lKi lK ,
tion coefficients inside the pure element i and inside the
sample ; is the ratio between the values of the absorp-rKtion coefficient after and before the K absorption edge
and is the mean atomic number of the sample. Con-Z1
sidering that the atomic mass and the ionizationA

ienergy are roughly proportional to Z and Z2, respec-Ectively, one can expect a strong increase in withIF/IPincrease in atomic number By contrast, in(IF/IP P Z4).
view of Eqn (A19), no variation of this ratio is expected
when only changing the incident energy i.e. whenE0 ,
changing the incident overvoltage. Both of these trends
were conÐrmed by Pfei†er et al.32 using a more rigorous
model. For instance, they found no signiÐcant variation
of for the Mo Ka line keV) in pure Mo,IF/IP (Ec \ 20.0
using either keV orE0\ 25 (U0\ 1.25, IF/IP\ 23.9%)

keVE0\ 35 (U0\ 1.75, IF/IP \ 24.9%).
The total mass thickness in which primary ion-ozPmaxizations occur is proportional to the projected range of

efficient electrons In view of Eqn (A19), one canoX
Ec

.
see that, for a given line, tends towards zero asozPmaxthe overvoltage is decreased towards unity. In contrast,
in the case of Ñuorescence, the total ionization mass
thickness is Ðxed by the absorption of the ion-ozFmaxizing photons, typically those produced with the highest
energy Consequently, even athlmax\ E0 . U0\ 1,

is deÐnitely greater than zero.ozFmaxNeglecting the absorption of emitted x-rays, andIF IPcorrespond to the areas under the and/F(oz) /P(oz)
curves, respectively. Consequently, the fact that, when

tends towards 1, remains roughly constantU0 IF/IPwhile tends towards inÐnity, indicatesozFmax/ozPmaxthat, in the meantime, the ratio /F(0)//2(0)\
must tend inversely towards zero. For'F(0)/'2(0)\F

this reason F is expected to decrease as isU0decreased.
From Eqn (A18), expression (A17) becomes

T 1
cos h

U
2

E2wEc
(1 ]F ) \ ['(0)exp[ 1]/geff (A20)

With the aim of performing an empirical estimate of
the actual second-order elongation factor via Eqn (A20),
we extracted 69 values of '(0)exp. from August and Wer-
nischÏs database,23 corresponding to data collected at
overvoltages Owing to the relative sta-1 \ U0\ 10.
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tistical spread of these data, and in order to clarify the
display of the trends exhibited by these data as a func-
tion of the overvoltage, we gathered them into several
groups according to the overvoltage at which the mea-
surements were performed, whatever the atomic
number. The ranges over which the groups of data*U0are extended were chosen so that varies by noQ(U0)more than 10% within each of them.

We calculated numerically the e†ective backscatter-
ing coefficient geff using HutchinÏs expressionA13 for

and, for distributions, using an analyticalQ(U2) gbexpression we have already proposed in a previous
paper.26 It was also shown in that paper that the shape
of distributions can be satisfactorily represented asgb(E)
being governed by the single parameter g, so that, after
Eqn (A16), geff is under the numerical dependence of
parameters g and only. The results of these compu-U0tations are displayed in Fig. A3 (circles) ; the curves in
this plot represent the following analytical function,
designed to Ðt the data :

geff 4 geff(g, U0) \ gM1 [ exp[[a(U0[ 1)b]N (A21)

with a \ 0.19] 1.56g and b \ 1.22[ 0.97g.
The values of the product S1/cos wehT2E2wEc(1 ]F )

deduced for each group of data by application of Eqn
(A20) are displayed in Fig. A4, as a function of the mean
overvoltage attached to each group. One can stateU0man obvious growth of the elongation factor, clearly
exceeding the value 2 predicted by Eqn (A14), as the
overvoltage decreases towards unity ; this behavior
cannot be ascribed to Ñuorescence since F is expected
to decrease when decreases. Another phenomenonU0to be considered is the e†ect of the actually non-
negligible thickness of the emitting surface layer used to
measure '(0)exp. Indeed, when is decreased to itsU0lowest values, the excited volume can be reduced
enough to prevent some Ðrst-order electrons from

reaching the substrate with energies thusE1P Ec ,
diminishing mistakenly the backscattering contribution.
Nevertheless, this e†ect cannot explain the near-
threshold behavior observed in Fig. A4 because, if
present, it would on the contrary induce the combined
decrease of both '(0)exp values and of the elongation
factors associated with them. We also settled that the
particular choice we made to estimate geff was not
responsible for the observed growth by checking that a
similar behavior was occurring when using other
published analytical representations of andgb 23,A14
QA15,A16. This increase in the elongation factor at low

must then be ascribed to the energy dependence ofU0the electron angular scattering, as discussed at the
beginning of this Appendix. However, the fact that the
results exhibit a minimum at medium values of andU0then increase at larger overvoltages should be ascribed
to Ñuorescence e†ects.

We propose the following simple expressions that Ðt
adequately the results we obtained by application of
Eqn (A20) to the '(0)exp database provided by August
and Wernisch :23

T 1
cos h

U
2

E2wEc \ 2 ] g ] (1.8[ 4.7g)(U0[ 1)0.5
(U0[ 0.9)1.35

(A22)

and

F\ 0.11(U0[ 1)g (A23)

These expressions were obtained making the following
hypotheses, derived from the discussions here above :
(i) for high overvoltages, the angular elongation factor

must tends towards the limit value S1/cos
corresponding to a cosine angular dis-hT2E2wEc \ 2,

tribution.

Figure A3. Performance of the analytical fit (21) compared with the values of ieff computed with Eqn (A16) for various backscattering
coefficients i.
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Figure A4. Behavior of the elongation factor associated with backscattered electrons as a function of the applied overvoltage (logarithmic
scale for Also visible is the fluorescence effect at large overvoltages.U

0m
).

(ii) For high overvoltages according to the(U0 [ 3),
previous hypothesis, the deviation of S1/cos

from the value 2 is ascribed to Ñuo-hT2E2wEc(1 ]F )
rescence e†ect. Owing to the lack of quantitative
information about the factor F, the increases in F
with overvoltage and matrix backscattering coeffi-
cient are, to a Ðrst approximation, assumed to be
linear. Consistent with the discussion made above,
this linear behavior is extrapolated to the value
F\ 0 at It must be emphasized that suchU0\ 1.
an approximation method involves high uncer-
tainties with regard to the determination of F, espe-
cially at low overvoltages where Eqn (A23)(U0O 3)
consists only in an extrapolation. In this respect,
Eqn (A23) should not be used independently to
derive reliable quantitative information about the
Ñuorescence e†ect in a model. However, in the frame
of the present work, the probable large relative
errors in F produced by application of Eqn (A23)
are of little importance because F values are
expected to be small compared with S1/cos hT2E2wEc,
which is the interesting parameter for the computa-
tions following. For the values of F pre-U0O 3,
dicted by Eqn (A23) never exceed 5% of S1/cos
hT2E2wEc .

Although purely of empirical extraction, the varying
term in Eqn (A22) reÑects well the physical trends that
we could have expected using a backscattering model
such as those of Archard (see explanations to Fig. 21 in
NiedrigÏs paper35) : (i) at very low overvoltages (U0B 1),
i.e. when only the superÐcial zone is contributing, it is
proportional to g and then is more important for the
heavy materials, which reÑects the fact that single elastic
scattering amplitude is greater in collision with high-Z
atoms ; and (ii) when increases, i.e. as contributingU0thickness grows, it vanishes more quickly for heavy
than for light materials, which reÑects the fact that
multiple elastic scattering occurs much shallower in

heavy targets, making easier the randomization and the
setting up of a cosine angular distribution.

Quantifying the parameter R and the surface ionization
U(0)

From Eqns (A18) and (7), we obtain a simple analytical
form that describes the surface contribution (including
continuum Ñuorescence) as follows :

'(0)] 'F(0)\ 1 ] (1 ]F )R (A24)

with R as given by Eqn (A17), i.e.

R(g, U0) \
T 1

cos h
U

2

E2wEc
geff (A25)

The last two factors are computed by means of Eqns
(A22) and (A21), respectively.

The reliability of Eqn (A25) was tested by calculating
its mean deviation *R and the absolute value of its
mean deviation *Rabs from the August and Wernisch23
experimental data Rexp :

*R(U0m) \ 1
nd

;
1

nd (1 ]F )R[ Rexp
Rexp

*Rabs(U0m) \ 1
nd

;
1

nd o (1]F )R[ Rexp o

Rexp
with Rexp \ '(0)exp [ 1 ; is the number of data in thendgroup related to the mean overvoltage The corre-U0m .
sponding results are displayed in Figs A5(a) and (b),
together with those obtained by using other expressions
of R proposed in the literature.22h25 It must be noted
that some of these expressions22,25 are already a†ected
by continuum Ñuorescence e†ects since they have been
derived, at least partly, from tracer experiments (see the
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Figure A5. (a) Mean absolute deviation and (b) mean deviation of different empirical fits for R related to experimental data taken from
August and Wernisch.23

Ðrst section of this Appendix). To avoid accounting for
these e†ects twice, we have chosen to take F\ 0 in
these latter cases.

In view of Fig. A5(a) and (b), one can conÐrm the
good performance of our Ðt over all the considered
overvoltage range. This behavior di†ers from other rep-
resentations, which all give divergent results for the
lowest overvoltages (U0\ 1.75).

Expressions by Reuter22 and Pouchou and Pichoir25
were not established on a physical basis, but rather by
interpolations of experimental or Monte Carlo data col-
lected in the classical Ðeld of EPMA investigations

In this context, no particular e†orts were(U0[ 2).
made by those authors to describe speciÐcally the near-
threshold results and this might explain the signiÐcant
overestimation of R performed by these expressions for
U0\ 1.75.

The expression by Cazaux24 was derived from a
similar physical background to that used in the present
paper, but functions were approximated in Eqn (A15)gbby Dirac peaks situated at the mean energy of back-
scattered electron spectra. This approximation is applic-
able if the ionization cross-section varies onlyQ(U2)weakly over the energy spectrum of the efficient elec-
trons ; this is no longer the case when low overvoltages
are applied and this explains the strong deviation
observed for U0\ 3.

The expression given by August and Wernisch23 pro-
vides results which are very similar to ours for U0[
1.75. This is not surprising since a nearly identical
model was applied in both cases, based on complete
resolution of Eqn (A15). The critical di†erence lies in the
fact that August and Wernisch assumed approximation
(A14) to be valid over the whole range of overvoltages,
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which results in a slight underestimation of the elon-
gation factor for the lowest values of the e†ect ofU0 ;
this underestimation on R can be seen in Fig. A5(b).

Other measurements of '(0) in the near-threshold
range still have to be performed in order to increase the

reliability of the empirical correction we performed on
the elongation factor. Nevertheless, the newly proposed
expression (A24) appears to be an improvement in the
attempt to Ðnd an adequate description of surface ion-
ization.
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