statistically significant treatment differences in favor of memantine were agitation/aggression, irritability/latency, and appetite/eating.

**Conclusion:** Memantine treatment in patients receiving stable treatment with donepezil is associated with less functional and behavioral deterioration in AD than with donepezil treatment alone.

**P4.029 A comparison of wildtype and APP transgenic mice on titrating delayed non-match to position (DNMT) and differential reinforcement of low rates (DRL) performance**


The use of transgenic mice to study disease processes has produced a need for behavioral endpoints that lend themselves to drug discovery. For example, many of the procedures used to characterize APP mice, an animal model of Alzheimer’s Disease, do not allow for longitudinal studies. This limits the usefulness of these procedures to assess the effects of aging or drug treatments. Delayed non-match to position (DNMT) paradigms or similar procedures have been used to study memory in rate and primates, and differential reinforcement of low rates (DRL) schedules have been used to quantify the deficits associated with damage to various regions of the hippocampus in rats. Therefore, the purpose of these experiments was to determine if either of these behavioral tasks could be used to assess behavioral deficits in APP transgenic mice.

**Experiment 1:** Wildtype (n=18) and APP (n=16) mice were trained to perform a titrating DNMT paradigm. Training began when mice were approximately 2-months old. Testing continued until 10 months of age. At the beginning of each session, a response on the sample lever resulted in a 2 s delay. Across each session, delays were increased or decreased by 2 s based on the performance on the previous 5 trials; 5/5 trials correct resulted in an increase of 2 s, 4/5 trials produced no change in the delay, 3/5 or less correct resulted in a 2 s decrease. This procedure produced a 75–80% accuracy level across all subjects. Repeated measures ANOVA was used to determine the effects of genotype on DNMT behavior. No effects of genotype were observed on maximum delay, average delay, or percentage correct.

**Experiment 2:** Wildtype (n=7) and APP (n=7) mice were trained on a DRL-15 s schedule of reinforcement. For the DRL-15 baseline, only responses that occurred after an inter-response time of at least 15 s were reinforced. Mice were approximately 4 months of age at the beginning of training. Once behavior was stable, the DRL component was increased to 20 s. After 23 sessions, the DRL component was reset to 15 s. Testing continued until mice were approximately 12 months old. Repeated measures ANOVA indicated that APP mice had more short responses than wildtype controls. This effect was dependent on the DRL component. The difference between wildtype and APP mice was most pronounced during the second DRL-15 s sessions.

**Discussion:** APP mice showed deficits on a DRL procedure but not on a DNMT paradigm. Changes in DRL performance may be indicative of behavioral inhibition deficits that are observed during early stages of Alzheimer’s Disease, but non-specific effects of the mutation cannot be ruled out. However, it could be argued that any general deficits associated with the mutation should have been observable in both behavioral procedures. Further experimentation is required to assess the association between age and/or plaque development and behavioral deficits. These experiments suggest that DRL performance may be a useful endpoint in screening novel Alzheimer’s treatments and that operant methodologies may be useful in studying transgenic mice.
The effects of scopolamine in elderly volunteers using the Cogtest battery

1University of California, Department of Psychiatry, Los Angeles, U.S.A.; 2Clinical Neuroscience Research Centre, Department of Psychiatry, Dartford, United Kingdom; 3Moorgreen Hospital, Memory Assessment and Research Centre, Southampton, United Kingdom; 4St Martins Hospital, Research Institute for Care of Elderly, Bath, United Kingdom; 5Cambridge Psychometric Company, Department of Psychiatry, Cambridge, United Kingdom

Background: Cogtest (Cogtest plc, London) is a computerized neurocognitive test battery of 16 subtests currently being used in over 300 organizations across 16 countries. It is designed for use with a variety of clinical populations and in clinical trials. The platform allows for accurate recording of reaction time data, enhanced standardization relative to examiner administered tests and is easily adapted for implementation in functional neuroimaging environments. Its internet data capture and web reporting facilities makes it unique amongst current cognitive test providers. Additionally, it's multiple parallel forms make it amenable to repeated testing sessions across time making it an excellent tool for clinical trials.

Methods: In order to verify the sensitivity of the Cogtest system to pharmacological interventions, we administered a single 0.3 mg subcutaneous dose of scopolamine to N=8 elderly study participants. Scopolamine has been routinely used to induce cognitive dysfunction in a bid to mimic the loss of acetylcholine transmission seen in patients with Alzheimer's disease. All participants were tested on a battery of three Cogtest assessments, a test of continuous performance, one of strategic rule learning and a word-learning task. Participants were assessed 1-hour prior to drug administration and then 0:45, 1:45, 2:45 and 7:5 hours after drug.

Results: Consistent with the known effects of scopolamine, a decline in performance was seen on each task 1.45 hours after drug administration. Also consistent with known effects, cognitive decline was most marked on the word memory task, with performance falling from a mean total trials score of 10.1 (SE 1.16) to 9.9 (SE 1.2). This effect was found to be statistically significant when analyzed by ANOVA (F=3.75, P=0.01).

Conclusion: The results of this study reaffirm our understanding of the dementia-mimetic properties of scopolamine. The study also confirms the capacity of the Cogtest battery to the detect scopolamine induced memory impairments in small groups of normal volunteers and its application in Alzheimer's Disease.

Funding provided by Cogtest plc.

The amnesic effects induced by β-amyloid fragment 1–42 involve cannabinoid neurotransmission in the brain

C. Mazzola1, V. Micale1, D. Consoli1, T. Incognito1, G.M. Leggio1, V. Di Marzo2, F. Drago1. 1Medical School, University of Catania, Exp. and Clinical Pharmacology, Catania, Italy; 2CNR of Foggia, Napoli, Biochemistry Institute, Endocannabinoid research group, Foggia, Italy

There is evidence that i.c.v. infusion of the β-amyloid (A β) fragment (BAP 1–42) may cause brain dysfunction as evidenced...