New Amino Acid Derivatives from Cyanamide and Cyanacetamide

By Joachim Gante and Günther Mohr[*]

Six to eight hours' refluxing of dimethyl cyanimidodithiocarbonate $(1a)^{[1]}$ and dimethyl (α -cyanocarbamoylmethylene)dithiocarbonate $(1b)^{[2]}$ with glycine ethyl ester or DL-methionine ethyl ester hydrochloride, respectively, and sodium ethoxide (molar ratio 1:1:1) in anhydrous ethanol afforded the hitherto unknown amino acid derivatives (2a)(yield 50%, m. p. 98—99°C) and (2b) (yield 91%, oil).

$$X = C$$

$$SCH_{3} \xrightarrow{H_{2}N^{-}CH^{-}CO_{2}C_{2}H_{5}} X = C$$

$$SCH_{3} \xrightarrow{H_{2}N^{-}CH^{-}CO_{2}C_{2}H_{5}} X = C$$

$$(1)$$

$$(a), X = N^{-}CN, R = H$$

$$(b), X = C$$

$$CO^{-}NH_{2}, R = CH_{2}^{-}CH_{2}^{-}SCH_{3}$$

$$(DL^{-}Form)$$

On refluxing for several hours with equimolar amounts of primary amines in ethanol or with an excess of concentrated ammonia/ethanol (2:1), (2a) and (2b) were converted into the respective hydantoin analogs (3) (see Table).

Novel Degradation Reactions of Halomethyl Derivatives of Bis(diacetyldioximato)cobalt[**]

By Gerhard N. Schrauzer, Anthony Ribeiro, Lian P. Lee, and Raymond K. Y. $Ho^{[*]}$

Unsubstituted alkylcobaloximes^[1] (1) with, e. g., $R = CH_3$, which are of interest as model compounds of organocobalt derivatives of vitamin B_{12} , generally exhibit a high resistance to attack by alkali. In contrast, studies on halomethyl-

$$\begin{array}{ccc}
R & H & O \\
N & N & N & R \\
N & N & N & N \\
N & N &$$

(1a), $R = CHX_2$ (X=Cl, Br, I)

(1b), $R = CH_2X$ (X=Cl, Br, I)

(1c), $R = CX_3$ (X=Cl, Br, I)

(1d), $R = CF_3$

(1e), $R = CH_2OCH_3$

(1f), R = COOCH₃

Cpd.	R	R'	X	Yield (%)	M. p. (°C)
$(3a_1)$	Н	CH,CH(CH ₃),	=N-CN	28	244-247
$(3a_2)$	Н	(CH ₂),—CH ₃	==NCN	32	168-170
$(3a_3)$	Н	СН,-СН,-ОН	=N-CN	38	195-196
$(3a_4)$	Н	CH ₂ —C ₆ H ₅	=N $-$ CN	47	239
$(3a_5)$	Н	CH ₂ -CH ₂ -C ₆ H ₅	=N-CN	40	243-245
$(3a_6)$	Н	cyclo-C ₆ H ₁ ,	=N-CN	20	229-230
$(3b_1)$	CH,-CH,-SCH,	Ĥ	=C(CN)CONH2	46	290
$(3b_2)$	CH,-CH,-SCH,	CH,	=C(CN)CONH,	71	171-172
$(4a_1)$	2 2	CH ₃	•	93	165-167
$(4a_2)$		$CH(CH_3)_2$		60	128-131
$(4a_3)$		(CH ₂) ₇ —CH ₃		31	155
$(4a_4)$		$CH_2 - C_6H_5$		82	210

Reaction of (2a) with a two- to four-fold excess of amine under otherwise identical conditions gave the urea analogs (4).

$$(2) \xrightarrow{H_2N-R^i} \begin{array}{c} X \xrightarrow{} NH \\ R^i - N \end{array} \qquad (3)$$

(2a)
$$\xrightarrow{2 \text{ H}_2\text{N-R}^i}$$
 $\xrightarrow{\text{NC-N}}$ $\xrightarrow{\text{R'-NH-C-NH-CH}_2\text{-CO-NH-R'}}$

$$(2a) \xrightarrow{\text{H}_2\text{N}-\text{NH}_3 \cdot \text{H}_3\text{O}} \xrightarrow{\text{H}_2\text{N}} \xrightarrow{\text{N}} \text{NH-CH}_2\text{-CO-NH-NH}_2$$

(2a) and hydrazine hydrate (molar ratio 1:1.8; 2 hours' refluxing in ethanol) furnished N-(5-amino-1,2,4-triazol-3-yl)glycine hydrazide (5) (yield 79%, m. p. 227—228°C).

Received: July 12, 1971 [Z 485 IE] German version: Angew. Chem. 83, 886 (1971) cobaloximes (1a)—(1c) revealed evidence for a surprisingly high alkali sensitivity. Nucleophilic attack of the cobalt-bonded halomethyl group by OH^{\ominus} ion causes initial Co—C bond cleavage to give halomethanols and cobaloxime(i). The interesting reactions that ensue are reported in the present communication.

In 0.1 N NaOH dihalomethylcobaloximes $(1a)^{[2]}$ undergo rapid, quantitative decomposition (no isolable intermediate) into carbonylcobaloxime(1), the carbon monoxide complex of cobaloxime(1), which is at equilibrium with free CO and cobaloxime(1) [eq. (1)].

$$\begin{array}{c} \text{CHX}_2 \\ (\stackrel{\bullet}{\text{Co}}) + 3 \text{ OH}^{\odot} \xrightarrow{-2 \text{ X}^{\odot}, -2 \text{ H}_2\text{O}} \\ \stackrel{\bullet}{\text{Py}} \\ (1a) \end{array} \xrightarrow{\text{Py}} \begin{array}{c} \stackrel{\bullet}{\text{Co}^{\text{I}}})^{\odot} + \text{CO} \\ \stackrel{\bullet}{\text{Py}} \\ \stackrel{\bullet}{\text{Py}} \\ \end{array} (1)$$

Revelle College La Jolla, Calif. 92037 (USA)

^[*] Priv.-Doz. Dr. J. Gante and Dr. G. Mohr Forschungslaboratorien der Firma E. Merck 61 Darmstadt, Frankfurter Strasse 250 (Germany)

^[1] R. J. Timmons and L. S. Wittenbrook, J. Org. Chem. 32, 1566 (1967).

^[2] R. Gompper and W. Töpfl, Chem. Ber. 95, 2861 (1962).

^[*] Prof. Dr. G. N. Schrauzer, Dr. A. Ribeiro, Dr. L. P. Lee, and Dr. R. K. Y. Ho Department of Chemistry, The University of California at San Diego,

^[**] This work was supported by the US Department of Health, Education and Welfare, Grant 1-RO 1 ES 00325-01.