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ABSTRACT: A stochastic model was developed that was
used to describe the formation and breakdown of all sac-
charides involved during a-amylolytic starch hydrolysis in
time. This model is based on the subsite maps found in
literature for Bacillus amyloliquefaciens a-amylase (BAA)
and Bacillus licheniformis a-amylase (BLA). Carbohydrate
substrates were modeled in a relatively simple two-dimen-
sional matrix. The predicted weight fractions of carbohy-
drates ranging from glucose to heptasaccharides and the
predicted dextrose equivalent showed the same trend and
order of magnitude as the corresponding experimental
values. However, the absolute values were not the same.
In case a well-defined substrate such as maltohexaose was
used, comparable differences between the experimental and
simulated data were observed indicating that the substrate
model for starch does not cause these deviations. After
changing the subsite map of BLA and the ratio between
the time required for a productive and a non-productive
attack for BAA, a better agreement between the model data
and the experimental data was observed. Although the
model input should be improved for more accurate predic-
tions, the model can already be used to gain knowledge
about the concentrations of all carbohydrates during hydro-
lysis with an a-amylase. In addition, this model also seems to
be applicable to other depolymerase-based systems.
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Introduction

The hydrolysis of starch by amylolytic enzymes is one of the
most important enzymatic processes on industrial scale.
Starch can be completely hydrolyzed to produce glucose
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syrups or, alternatively, it can be partly hydrolyzed to yield
maltodextrins. Many models have been developed to predict
the concentrations of the different hydrolysis products and
to optimize the hydrolysis process. These models can be
roughly divided into two groups.

The first group of models is based on continuous
(differential) equations (Brandam et al., 2003; Komolprasert
and Ofoly, 1991; Kusunoki et al., 1982; Park and Rollings,
1994; Rodrı́guez et al., 2006a; Rollings and Thompson,
1984) or empirical relations (Paolucci-Jeanjean et al., 2000)
for the description of the enzymatic starch hydrolysis. Most
of these models only predict the breakdown and/or
formation of a limited number of carbohydrates, because
each prediction requires a differential equation or empirical
relation. The number of predictions that can be made is
therefore limited to computational power. In addition, the
parameters in the equations have to be obtained by fitting
model output to the experimental data. This type of kinetic
modeling is therefore also limited to data that can be
obtained with measurements and it is only valid for specific
experimental conditions.

The other group of models simulates the hydrolysis
process by translating each hydrolysis reaction into a
discrete event (Marchal et al., 2003; Nakatani, 1996;
Wojciechowski et al., 2001). During each event, a
carbohydrate is chosen randomly to form a complex with
the enzyme. Whether a bond in the carbohydrate is
hydrolyzed, depends on enzyme characteristics. It is
important that the substrate and the enzyme specificities
are clearly defined in order to make accurate predictions of
product profiles. This stochastic method can be used to
describe the formation and breakdown of all carbohydrates
without determination of numerous parameters and
evaluation of large numbers of (dependent) equations.
Contrary to the output of the first group of kinetic models,
the output of the second group can vary even though
the input parameters are kept the same, which resembles
real-life hydrolysis.
� 2008 Wiley Periodicals, Inc.



An example of the models belonging to the second group
is the stochastic model developed by Wojciechowski et al.
(2001). They used the Monte Carlo method to describe the
products formed during multi-enzymatic starch hydrolysis
in time. They proposed that each enzyme has a certain
reaction time and specificity for hydrolysis (e.g., hydrolysis
near a branch point is not possible). Differences in substrate
affinities were not taken into account. Furthermore, the
authors did not focus on the amylopectin and amylose
model structure (e.g., percentage of branched glucose units
and chain length distribution). The validity of their model
was evaluated by comparing the reducing power of the
reaction mixture predicted by the model with the
experimental values at various points in time.

Another model belonging to the second group was
developed by Marchal et al. (2001, 2003). These authors
proposed a method to model amylopectin and the
subsequent a-amylolysis by Bacillus amyloliquefaciens a-
amylase (BAA). They used stochastic Monte Carlo simula-
tion in combination with the subsite theory (Allen and
Thoma, 1976a,b; MacGregor and MacGregor, 1985) to
describe the carbohydrate composition as a function of the
dextrose equivalent (DE). The data obtained with the model
simulations were compared to experimental data for the
formation and breakdown of carbohydrates up to a degree of
polymerization (DP) of 10. With the model of Marchal et al.
(2003), it is possible to predict the carbohydrate composi-
tion at a certain DE. However, it was not possible to predict
the concentration of hydrolysis products in time.

Although several models have thus been developed to
describe enzymatic starch hydrolysis, a kinetic model that
takes the structure and composition of starch into account
and that predicts the concentration of all carbohydrates in
time has not been developed yet.

The aim of this article was to develop a stochastic model
to predict the formation and breakdown of all carbohydrates
involved in the amylolytic hydrolysis of amylopectin and
amylose in time with a minimum number of experiments.
Figure 1. Example of amylopectin model structure and matrix. The carbohydrate is d

circles indicate a-1,6-linked glucose units. The arrows with Roman numbers I, II, and III ind

nomenclature and inhibition.
The subsite maps of Bacillus licheniformis a-amylase (BLA)
from Kandra et al. (2002) and of BAA from Allen and
Thoma (1976b) were used as input for this model. In
addition, a method to model the structure of starch was
developed. This starch model was used as input for the
kinetic model. Since the subsite maps used for our model
were experimentally determined using small linear carbo-
hydrates [DP up to 12 for BAA, Allen and Thoma (1976b);
and up to 10 for BLA, Kandra et al. (2002)], we also wanted
to investigate whether these subsite maps could be used to
describe the breakdown of large carbohydrates in time.
The data calculated with the model are compared with
experimental data for wheat starch hydrolysis by both BAA
and BLA.
Modeling

Modeling of Starch

Marchal et al. (2001) proposed that the structure of starch
can be captured using a two-dimensional array in which
letters were used to describe the glucose units in
amylopectin. Wojciechowski et al. (2001) used two numbers
to describe each glucose unit, which makes the data set for
the description of amylopectin larger than necessary.

In our model, we have used numbers to distinguish five
different types of glucose units in amylopectin and amylose.
A reducing end is given the number 1, the number 3 is used
for the non-reducing end. The number 2 stands for a glucose
unit in a linear a-1,4-linked chain. A branched monomer is
denoted with a negative number. The same number but
positive points to the row in which the branch is located.
This branch starts with the number 4 to distinguish it from a
reducing end. An example of the amylopectin model
structure and the representative matrix is given in Figure 1.

The model described in this article takes into account
several structural aspects of starch. First, the model includes
rawn with the reducing end to the left and the non-reducing ends to the right. Filled

icate the type of inhibition from a-1,6-linked glucose units. See text for more details on
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the fact that starch consists of approximately 25 w/w%
amylose and 75 w/w% amylopectin. Second, amylose is an
almost linear polymer with an average molecular weight
of 105–106 g mol�1 built up from a-1,4-linked glucose units.
Third, the much larger amylopectin (molecular weight
of 107–109 g mol�1) has a highly branched structure, because
about 5% of the glucose units in amylopectin are a-1,6-
linked (Ellis et al., 1998). Finally, the modeled amylopectin
has to comply with four constraints with respect to
glycosidic a-1,6-linkages, as stated by Thompson (2000):
amylopectin does not contain linear a-1,6-linked regions;
a-1,4-linkages are more abundant than a-1,6-linkages;
glucose units cannot have more than one side chain; and
branch points are always at least one glucose unit apart. An
additional assumption was that branching can only occur
when the glucose unit is at least 1 glucose unit apart from a
reducing or non-reducing end.

To model starch, we started with a model for amylopectin.
At the start, the largest chain in amylopectin is placed on the
first row of the substrate array. A random number generator
was used to generate a number between 0 and 1 for the first
glucose unit capable of branching. If the number was smaller
than the chance of branching, a side chain was attached to
this glucose unit. If branching did not occur, the program
proceeded to the next glucose unit. The restrictions stated by
Thompson (2000) were taken into account during this
procedure. It was assumed that the probability that a branch
chain of a certain length is implemented in the molecule is
proportional to its molar fraction in amylopectin.

If a branch chain was attached to the glucose unit, a new
row was added to the bottom of the array. The number
representing the glucose unit changed into a negative
number that directed to index of the row in the matrix that
contained the description of the newly implemented chain.
This procedure was continued until the desired size of
amylopectin was reached. It was possible that no more
branch points were created, even though the desired size was
not yet reached. In that case, the last row in the array was
forced to branch. As a result, the actual fraction of branched
glucose units could be slightly higher than desired.

Subsequently, amylose chains were added to the substrate
matrix until the desired fraction of amylose was obtained.
This fraction could vary depending on the size of the chains
implemented. The starch model described here was used as
input for the modeling of enzymatic starch hydrolysis.
Modeling of Enzymatic Starch Hydrolysis

The subsite theory for depolymerizing enzymes (Allen
and Thoma, 1976a,b; MacGregor and MacGregor, 1985;
Torgerson et al., 1979a,b) was used as the basis for the
hydrolysis model. According to this theory, the enzyme is
composed of several subsites to which the monomers (in this
case glucose units) can bind. Each subsite can increase or
decrease the free energy of the enzyme–substrate complex.
The following reaction scheme is used to describe the
hydrolysis of substrate Sn with DP n by the enzyme E into
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products Pn�m and Pm (the use of water is not shown):

E þ Sn
kþ1;r;n

k�1;r;n

ESr;n ��!
kþ2;r;n

E þ Pn�m þ Pm (1)

where r refers to the position of the reducing end of the
saccharide in the subsite map. The subsite theory assumes
that kþ2,r,n� k�1,r,n, which implies that Kr,n (the association
constant for the enzyme–substrate complex) is equal to
kþ1,r,n/k�1,r,n. Kr,n can be calculated from the binding
energies of the occupied subsites (Allen and Thoma, 1976a;
MacGregor and MacGregor, 1985; Marchal et al., 2003;
Torgerson et al., 1979) with the following equation:

� RT lnðKr;nÞ ¼
Xr

i¼r�nþ1

DGi þ DGmix (2)

where R is the gas constant, T the absolute temperature in
Kelvin, DGi the binding energy of subsite i and DGmix ¼
8.4Tln(55.5) kcal mol�1 for bimolecular processes (Gurney,
1953 by Marchal et al., 2003). Note that subsite r might be a
virtual subsite with zero binding energy, because it is located
outside the subsite map.

If a substrate forms a complex with the enzyme, the complex
is only productive when the substrate occupies the subsites to
the left and right of the location of hydrolysis (subsites �1 and
þ1 according to the nomenclature defined by Davies et al.,
1997). If all enzymes in the reaction mixture are saturated with
substrate, the rate of hydrolysis is limited by kþ2,r,n. The value
of kþ2,r,n may be assumed constant for all substrate sizes and
binding modes, or it may be varied. To enhance the agreement
between model data and experimental data, some subsite maps
use an acceleration factor proportional to the number of
subsites occupied (x) using the following relation:

kþ2;r;n ¼ kþ2exp
xDGa

RT

� �
(3)

where DGa is the acceleration factor of the subsite map
(Allen and Thoma, 1976a; Torgerson et al., 1979). For more
details on the subsite theory, we refer to literature (Allen
and Thoma, 1976a,b; MacGregor and MacGregor, 1985;
Torgerson et al., 1979).

To simulate the hydrolysis process, a random number was
generated to select an element in the substrate array. If the
element did not represent a glucose unit, a new element was
chosen randomly until a glucose unit was selected. We
assumed that this glucose unit was bound to the subsite at
the right of the location of hydrolysis. In other words, the
bond toward the non-reducing end might be hydrolyzed. If
there was no bond, because the glucose unit selected is a
non-reducing end, this attack was called non-productive. If
the bond was situated next to an a-1,6-linked glucose unit,
we assumed that it could not be hydrolyzed (French et al.,
1972) and was therefore also non-productive. The bonds in
maltose and maltotriose could also not be hydrolyzed
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(Kandra et al., 2002; Marchal et al., 1999; Saito, 1973). It was
assumed that the substrate binding mode with the highest
value for kþ2,r,nKr,n had a chance of hydrolysis of 1 (Marchal
et al., 2003). If this binding mode was achieved with
substrate size o and with the reducing end located at position
p, the chance of hydrolysis was defined as follows:

pr;n ¼ kþ2;r;nKr;n

kþ2;p;oKp;o
(4)

Note that the denominator is constant, while the numerator
varies depending on substrate size and binding mode.

Besides a difference in affinity and hydrolysis rate, the
influence of branch points (a-1,6-linkages) was also taken
into account as described by Marchal et al. (2003). They
distinguished three types of inhibition due to a-1,6-linkages.
Inhibition type I is assumed to affect the enzyme during
hydrolysis of a-1,4-linkages near a branch-starting glucose
unit. In Figure 1, inhibition type I takes place in chains 2 and
3 close to glucose units labeled with index 4. In the vicinity of
side branches, enzyme inhibition also takes place either
toward the reducing end (type II) or toward the non-
reducing end (type III; see Fig. 1). Inhibition was taken into
account when an a-1,6-linkage is less than 5 glucose units
apart from the location of hydrolysis (Marchal et al., 2003).
For the amylopectin molecule shown in Figure 1, at least one
type of inhibition holds for each glucose unit. Each type of
inhibition is described using an inhibition factor, kbr_in,
which is defined as follows:

kbr in ¼ 2 � expðbTyÞ (5)

where bT is the inhibition constant for the type of inhibition
and y the number of glucose units between the location of
hydrolysis and the a-1,6-linked glucose unit. When kbr_in

was smaller than 0, it was considered to be 0. The chance on
hydrolysis pr,n was multiplied by (1� kbr_in) for each type of
inhibition. For more details on the inhibition by a-1,6-
linked glucose units, we refer to Marchal et al. (2003).

To determine whether hydrolysis would take place, a
random number between 0 and 1 was generated; if it was
smaller than the chance of hydrolysis, the attack was
productive and the bond was hydrolyzed. This involved
changing the glucose unit at subsite position þ1 of the
subsite map into a non-reducing end (unless a single glucose
was split off) and converting the unit at subsite position �1
to a reducing end. The time was increased with tp for a
productive attack and tnp for a non-productive attack
(Wojciechowski et al., 2001).

The simulations were ended after a pre-defined model
time of hydrolysis. At set intervals (to save disk space and
calculation time), the content of the substrate matrix was
analyzed to determine the saccharide composition and DE.
The DE was calculated with

DE ¼ 180:16 	 nre

162:14 	 ngl þ 18:02 	 nre

	 100 (6)
where nre stands for the number of reducing ends and ngl

stands for the number of glucose units in the substrate
matrix (Marchal et al., 2003). Carbohydrates with a DP up
to 7 (both branched and linear) were counted each time
interval, because these carbohydrates could be measured
with our HPLC system. If desired, all carbohydrates could be
taken into account by the model, but this would require
much more calculation time and disk space and this was
therefore not attempted.

Although the effect of temperature was not considered in
this article, it can be taken into account by this model as all
equations that have been used to take into account the
affinity of the enzyme for different substrates are tempera-
ture dependent (Eqs. 2 and 3 and therefore also Eq. 4).
Enzyme deactivation, which is greatly affected by tempera-
ture, can be taken into account by increasing the time
required for productive and non-productive attack accord-
ing to the relevant deactivations mechanism. In the case of
first order enzyme deactivation, the enzyme activity can be
calculated as function of time if the deactivation constant k
is known and with this information, the duration of each
time step can be determined with the following equation:

Dtlþ1 ¼ Dtl
Al�1

Al
(7)

Where Dtlþ1 is the time required for a productive or non-
productive attack (it is either equal to tp or tnp) after the
previous time step Dtl, Al�1 is the enzyme activity at the start
of the previous time step and Al is the enzyme activity at the
end of Dtl. The use of Eq. (7) can be illustrated by
considering the first two time steps. Assuming that the first
time step was productive, the second time step Dtlþ1 is
equal to

Dt2 ¼ Dt1
A0

A1
¼ tp

A0

A0½expð�ktpÞ�
¼ tp

expð�ktpÞ
(8)

This procedure can be repeated for the following time steps
to take into account enzyme deactivation.
Materials and Methods

Materials

Wheat starch (S5127) was obtained from Sigma–Aldrich
(Steinheim, Germany) and it had a moisture content of
9.95� 0.43 w/w% (based on 22 measurements, 95%
confidence interval). The moisture content was determined
by drying the wheat starch in a hot air oven at 1058C or in
a vacuum oven at 808C until the mass of the samples
was constant in time. The water content of wheat starch
was taken into account during all experiments. Thermo-
stable a-amylase from B. licheniformis (EC 3.2.1.1,
Termamyl 120L, type XII-A) was obtained from Sigma–
Aldrich Chemie B.V. (Zwijndrecht, The Netherlands) and
Besselink et al.: Stochastic Model for Starch Hydrolysis 687
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a-amylase from B. amyloliquefaciens (BAN 480L) was
donated by Novozymes (Bagsværd, Denmark). The enzyme
concentration used during the experiments is expressed in
mass percent of this enzyme stock solution per equivalent
dry mass of substrate (w/w%). Fuming hydrochloric acid,
sodium hydroxide, sodium chloride, calcium chloride
dihydrate, calcium chloride, and trisodium phosphate were
bought from Merck (Darmstadt, Germany). Maleic acid
(disodium salt) was obtained from Acros Organics (Geel,
Belgium). Maltohexaose from Serva was obtained from
Brunschwig Chemie BV (Amsterdam, the Netherlands). All
chemicals were at least analytical grade. Milli-Q water was
used for all experiments.

Microcon YM-30 centrifuge filters (Millipore Corpora-
tion, Bedford, MA) were used to remove the enzyme from
the hydrolyzate. Before the actual filtration, these filters were
washed by centrifugation with 500 mL Milli-Q water during
40 min at 258C and 13,000g.
Methods

Experimental Set-up and Sampling

For the validation of the model, hydrolysis experiments were
carried out in a temperature-controlled batch reactor (liquid
volume 200 mL) equipped with an anchor stirrer. Prior to
enzymatic hydrolysis, the 10 w/w% wheat starch–water
mixture containing 5.0 mM CaCl2 was heated to approxi-
mately 908C and was kept at this temperature for 1 h to
ensure complete starch gelatinization. After the gelatiniza-
tion treatment, the reactor content was cooled to 508C.
When the temperature inside the reactor was 50� 18C,
enzyme was added to the reactor (starting point of the
hydrolysis reaction). The hydrolysis temperature in the
reactor was kept at 50� 18C during hydrolysis experiments.
The stirrer speed during gelatinization and hydrolysis was
equal to 300 rpm.

Hydrolysis of maltohexaose was carried out in a 1.5 mL
safe-lock tube (Eppendorf AG, Hamburg, Germany). First,
the reaction mixture excluding maltohexaose was heated to
508C. After this temperature was reached, maltohexaose was
added to obtain a 10 w/w% maltohexaose–water mixture
(starting point of the hydrolysis reaction). Hydrolyis was
carried out at 50� 18C.

Samples were taken during the course of the experiments
to determine the carbohydrate composition and the residual
a-amylase activity. Due to the small sample volumes used
during the maltohexaose hydrolysis experiment, the sample
was first diluted to obtain a carbohydrate concentration of
10 g L�1 and a NaOH concentration of 0.1 M (for analysis of
the carbohydrate composition) or to obtain an enzyme
concentration of 20 mg L�1 (for enzyme activity measure-
ments). All samples were frozen in liquid nitrogen to stop
the hydrolysis reaction. The sample was kept in liquid
nitrogen for at least 15 min and afterwards it was stored in a
�808C freezer.
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The samples that were taken during the experiment with
maltohexaose could be used for analysis directly after
defrosting. The samples taken during the other experiments
had to be diluted first. These frozen samples were grinded in
a mortar with a pestle while submerging the sample in liquid
nitrogen. The remainder of the sample preparation pro-
cedure used before analysis is reported elsewhere together
with the procedures followed to determine the carbohydrate
composition and the a-amylase activity (Baks et al., 2007).
The DE was calculated from the weight fractions of glucose
to maltohexaose using the method developed by Kiser and
Hagy (1979) and adapted by Baks et al. (2007).

The carbohydrate composition measurements were used
to determine the weight fraction of a specific carbohydrate
with the following equation:

Xw;i ¼
CDPi

Ctot þ Mw;w 
 ð
P7

j¼1 Cm;DPjÞ
(9)

where CDPi (g L�1) is the mass-based concentration of a
carbohydrate with DP i, Cm,DPj (mol L�1) the mole-based
concentration of a carbohydrate with DP j, Ctot is total
carbohydrate concentration (g L�1), and Mw,w the molar
mass of water (18 g mol�1). The total carbohydrate
concentration was corrected for the increase in dry matter
during the reaction caused by the formation of maltooli-
gosaccharides smaller than maltooctaose. In case maltohex-
aose was used as a substrate, all reaction products can be
quantified and Eq. (10) was used to calculate the
oligosaccharide weight fraction

Xw;i ¼
CDPi

ð
P6

j¼1 CDPjÞ
(10)

where CDPj (g L�1) is the mass-based concentration of a
carbohydrate with DP j.
Model Simulations

For each simulated starch hydrolysis process, a new starch
substrate was built up with approximately 100,000 glucose
units in total. For the modeling of amylopectin the chain
length distribution as reported in Table II of Hizukuri and
Maehara (1990) was used. For amylose, the distribution
shown in Figure 4 of Hanashiro and Takeda (1998) was
incorporated.

For the simulated hydrolysis of the substrate, the subsite
map for BLA determined by Kandra et al. (2002) and the
subsite map for BAA obtained by Allen and Thoma (1976b)
were used (see Table I). For both a-amylases, we used 0.1,
0.2, and 0.4 for respectively inhibition constants bI, bII, and
bIII (Marchal et al., 2003).

The results obtained with the simulations were compared
to the experimental data to obtain values for tp and tnp, by
comparing initial rates of hydrolysis. Model simulations
were performed three times and averaged (except for the



Table I. Subsite maps with the apparent binding energy per subsite (kJ mol�1) used for the model simulations from Kandra et al. (2002) for BLA, and from

Allen and Thoma (1976b) for BAA.

Subsite �6 �5 �4 �3 �2 �1 þ1 þ2 þ3 þ4

BLA 0 �11.1 �2.7 �5.1 �6.5 0 0 �5.1 �5.8b 8

BAAa �4.48 �10.21 �0.67 �4.23 �9.54 13.81 �14.39 �7.2 �4.02 5.27

The location of hydrolysis is in between subsites �1 and þ1, and the glucose unit with the reducing end must be located such that it is the outmost right
glucose unit.

aIncluding the acceleration factor, DGa.
bFor the modified subsite map of BLA, the binding energy of subsite þ3 was set to 0 kJ mol�1.
modified subsite map of BLA, which was performed only
once), neglecting small differences in the time intervals
between the different simulations. For each individual
simulation, the model time was then converted to actual
reaction time by non-linear fitting of the modeled DE (in
case the hydrolysis of starch was simulated) or maltohexaose
weight fraction (in case maltohexaose hydrolysis was
simulated) to the corresponding experimental values. The
modeled data in the linear part of the curve were fitted to
experimental data in the corresponding region. In case of
maltohexaose, the first 6 h of hydrolysis were used for the
fitting procedure. We used a ratio tp:tnp of 20:7, which was
also used by Wojciechowski et al. (2001).

Matlab 7.0.1 (The MathWorks, Inc., Nattick, MA) was
used to perform the model simulations. The Matlab
standard random number generator was changed to another
state for each simulation.
Results

The manner in which the subsite mapping theory was
applied in this article was similar to the approach of Marchal
et al. (2003). However, we used a simpler, more efficient
matrix representation of the substrate. Comparison of their
results with ours (on the saccharide composition as function
of the DE) showed that our model yielded comparable
results. Time (not considered in the model by Marchal et al.)
was incorporated in our model with use of the theory of
productive and non-productive attack developed by
Wojciechowski et al. (2001). In case enzyme deactivation
would take place, the times required for productive and
non-productive attack would increase. Enzyme activity
measurements in time showed that enzyme deactivation was
negligible at our reaction conditions (results not shown) and
therefore enzyme deactivation was not taken into account.

Linear and branched carbohydrates with the same
molecular weight cannot be separated with the HPLC
column that was used for carbohydrate analysis. However,
our stochastic model can discriminate between linear and
branched carbohydrates. For hexasaccharides and hepta-
saccharides, the predicted weight fractions of both the linear
carbohydrates and the total amount of carbohydrates
(branched and linear) are shown. In principle, branched
pentasaccharides are also formed, but their weight fractions
were so low that they are not shown.
Enzymatic Starch Hydrolysis by BLA

Figure 2 shows the predicted and experimental results of the
hydrolysis of wheat starch by BLA. Figure 2A shows that
both the simulated and the experimentally obtained DE
rapidly increased during the first stage of hydrolysis.
However, this linear stage took about 120 min for the
experimental data and 60 min for the simulated data. After
this stage a more gradual increase of the DE was observed.
The predicted DE was underestimated as compared to the
experimental data.

In case of carbohydrates ranging from glucose to
pentasaccharide, both the experimental and simulated
weight fractions increased over the complete time course.
Both the weight fractions of hexa- and heptasaccharide
reached a maximum before they gradually started to
decrease. Although the simulated data for BLA showed
the same trends and order of magnitude as the experimental
data, the absolute weight fractions of glucose, maltose
(Fig. 2B), maltotetraose, and pentasaccharide (Fig. 2C) were
underestimated by the model. The predicted weight fraction
of maltotriose was higher than the weight fraction that was
determined experimentally (Fig. 2B). The observed max-
imum in the weight fraction versus time curves of
hexasaccharide and heptasaccharide were correctly pre-
dicted by our model (Fig. 2D). In case of hexasaccharide,
however, a lower maximum value was predicted compared
to the value that was found experimentally. In addition, the
simulated weight fractions of hexasaccharide and hepta-
saccharide decreased less rapidly after the maximum had
been reached in comparison with the experimental data.
Based on the model, it seems that the contribution of
branched carbohydrates to the total amount of hexasac-
charide and heptasaccharide is significant.
Enzymatic Starch Hydrolysis by BAA

Figure 3 shows the DE and weight fractions of several small
carbohydrates based on experimental and simulated data for
the hydrolysis of wheat starch by BAA. Both the experiment
and the model predictions showed a DE that rapidly
increased during the first half hour followed by a more
gradual increase afterwards (Fig. 3A). In general, the
agreement between simulation and experiments is much
better than with BLA, although the predicted DE was
somewhat lower than the experimental DE when the time of
hydrolysis exceeded 1 h.
Besselink et al.: Stochastic Model for Starch Hydrolysis 689
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Figure 2. Experimental and predicted data obtained during enzymatic hydrolysis of 5 w/w % wheat starch with 0.01 w/w % BLA at 508C. A: contains the experimental (&)

versus simulated (solid line) dextrose equivalent; B: contains the experimental weight fractions of glucose (&), maltose ( ) and maltotriose ( ) versus simulated (respectively

black, red, and blue solid line) weight fractions; C: contains the experimental weight fractions of maltotetraose (&) and total pentasaccharide ( ) versus simulated weight fractions

(respectively black and blue solid line); D: contains the experimental weight fractions of hexasaccharide (&) and heptasaccharide ( ) versus simulated linear and total

hexasaccharide (respectively black dashed and solid line) and linear and total heptasaccharide (respectively red dashed and solid line) weight fractions.
In Figure 3B–D, the simulated results show that the
same trend and order of magnitude are found as observed
during the experiment. However, the weight fractions of
glucose, maltose (Fig. 3B), and maltotetraose (Fig. 3C) were
underestimated by the model, while the maltotriose
and pentasaccharide weight fractions were overestimated.
The predicted weight fraction of hexa- and heptasaccharide,
however, agreed well with the experimental values.
Similar as observed during the simulations with BLA, we
found that the contribution of branched carbohydrates
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to the total amount of hexasaccharide and heptasaccharide
is significant.
Enzymatic Maltohexaose Hydrolysis by BAA

Enzymatic hydrolysis of maltohexaose with BAA resulted in
a continuous increase in the weight fractions of all smaller
carbohydrates during the complete time course of the
experiment (Fig. 4). The model predictions showed the



Figure 3. Experimental and predicted data obtained during enzymatic hydrolysis of 5 w/w % wheat starch with 0.01 w/w % BAA at 508C. Legend: see Figure 2.
same trend and the correct order of magnitude of the
predicted weight fraction. However, the weight fraction of
maltotriose was overestimated while the weight fraction of
maltose and maltotetraose were underestimated. The
predictions of the glucose, maltopentaose, and maltohex-
aose weight fractions were comparable to the corresponding
experimental values.
Effect of BLA Subsite Map on Enzymatic Starch
Hydrolysis

According to the experimental data in Figure 2B, maltose
and maltotriose were formed in approximately the same
amounts when wheat starch is hydrolyzed by BLA. As a
result, one expects a negligible difference between the energy
of binding of two or three glucose units at the left or right of
the location of hydrolysis in the subsite map. The BLA
subsite map obtained by Kandra et al. (2002) (Table I)
showed a clear preference for splitting off maltotriose from
the reducing end as compared to maltose and other
saccharides, because occupation of subsite þ3 with binding
energy �5.8 kJ mol�1 results in a much lower total energy of
binding. We therefore evaluated whether a better fit for
maltose and maltotriose would be obtained when the
binding energy of subsite þ3 in the subsite map for BLA is
set to 0 kJ mol�1. After modification of the subsite map, the
DE agreed better with the experimental values (Fig. 2A vs.
Fig. 5A) due to the increased glucose and maltose weight
fraction (Fig. 2B vs. Fig. 5B). The simulated weight fractions
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Figure 4. Experimental and predicted data obtained during enzymatic hydrolysis of 10 w/w % maltohexaose with 0.01 w/w % BAA at 508C. A: contains the experimental

weight fractions of glucose (&), maltose ( ) and maltotriose ( ) versus simulated (respectively black, red, and blue solid line) weight fractions; B: contains the experimental

weight fractions of maltotetraose (&), maltopentaose ( ), and maltohexaose ( ) versus simulated weight fractions (respectively black, red, and blue solid line).
glucose, maltose, maltotriose (Fig. 5B), and pentasaccharide
(Fig. 5C) showed a reasonable agreement with experimental
data after changing the subsite map. However, the modified
subsite map did not lead to an improvement for malto-
tetraose (Fig. 5C) and hexasaccharide and heptasaccharide
(Fig. 5D). These results were confirmed by the squared sum
of differences between experimental and simulated data for
the two subsite maps as shown in Table II. Note that the
differences for maltotetraose, total hexasaccharide and total
heptasaccharide were larger with the modified subsite map
than with the original subsite map.
Effect of tp:tnp Ratio on Enzymatic Starch
Hydrolysis by BAA

The predictions shown in the previous figures were obtained
with a fixed tp:tnp ratio of 20:7 based on the article of
Wojciechowski et al. (2001). Figure 6 shows the results of a
fit in which the tp:tnp ratio was changed to 66:1. Changing
the tp:tnp ratio improved the fit between the experimental
and modeled DE (Fig. 6A). The predicted weight fractions
of glucose, maltose (Fig. 6B), and maltotetraose (Fig. 6C)
agreed better with the experimental data as compared to
the predictions shown in Figure 3. However, the weight
fractions of maltotriose (Fig. 6B), pentasaccharide (Fig. 6C),
hexasaccharide and heptasaccharide (Fig. 6D) deviated
more from the experimental data compared to the predicted
values obtained with the old tp:tnp ratio. The squared sums
of differences between the experimental and simulated data
for both fits are shown in Table II. Based upon these values,
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it is difficult to decide which tp:tnp ratio leads to the best
predictions.
Discussion

Although the predicted weight fractions of carbohydrates
with a DP up to 7 were of the same order of magnitude as the
experimentally determined weight fractions and they also
showed the same trend, the absolute values were not
predicted correctly. The same holds for the DE as function of
time. Wojciechowski et al. (2001) compared the model
output with the experimental values based on the reducing
power of the reaction mixture, which is comparable to the
DE. The differences between the model and experimental
data of Wojciechowski et al. are smaller than the differences
that we have observed. However, reducing power or DE
measurements are not suitable for the purpose of defining
the product, because the same DE can be found for products
with a different carbohydrate composition. One should
therefore also compare the model output and the experi-
mental values based upon the concentrations of the
carbohydrates. The model output of Marchal et al. (2003)
is comparable to our model output. However, with our
model it is possible to describe the formation and break
down of all carbohydrates during enzymatic hydrolysis in
time. Deviations of the model data from the experimental
data can be a result of several factors. The main factors that
might cause these deviations are the substrate model, the
subsite map, the hydrolysis behaviour of the a-amylase and
the time scale.



Figure 5. Experimental and predicted data (based on 1 simulation) obtained during enzymatic hydrolysis of 5 w/w % wheat starch with 0.01 w/w % BLA at 508C. For the

simulated data, subsite þ3 of the subsite map determined by Kandra et al. (2002) was set to 0 (see Table 1). Legend: see Figure 2.

Table II. Squared sum of differences between experimental data points and corresponding model data (Figs. 2–6) before and after changing the subsite map

(BLA1 vs. BLA2; see Table I), before and after changing tp:tnp (BAA1¼ 20:7 and BAA2¼ 66:1), and for hydrolysis of maltohexaose (BAA3, standard

conditions).

DEa DP1b DP2b DP3b DP4b DP5b DP6b DP7b

BLA1 666.9 131.7 787.1 339.4 310.0 382.5 96.4 34.2

BLA2 174.1 33.5 24.7 28.2 358.8 144.2 218.1 116.2

BAA1 119.1 63.0 272.7 459.5 149.3 63.3 76.5 14.5

BAA2 70.5 46.6 192.4 589.8 127.6 252.2 107.4 68.4

BAA3 — 3.0 207.0 1,371.3 287.0 593.5 1,769.6 —

aDextrose equivalent.
bDP1, . . ., DP7 stand for glucose, maltose, maltriose, maltotetraose, pentasaccharide, hexasaccharide, and heptasaccharide.

Besselink et al.: Stochastic Model for Starch Hydrolysis 693

Biotechnology and Bioengineering



Figure 6. Experimental and predicted data obtained during enzymatic hydrolysis of 5 w/w % wheat starch with 0.01 w/w % BAA at 508C. The tp:tnp ratio was changed from 20:7

to 66:1. Legend: see Figure 2.
Substrate Model

The input for our amylopectin model was based on the
chain length distribution of amylopectin in wheat starch
and the model randomly inserted branch points. The model
of Marchal et al. (2001) used a more structured distribution
of branch points, which agrees better with the real structure
of amylopectin. Use of our substrate model or use of
the substrate model developed by Marchal et al. (2001) in
our hydrolysis model resulted in approximately the same
differences between the experiments and the model predic-
tions. In case maltohexaose was used as a substrate, which is
well defined and easy to model, the predicted values were
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still not comparable with the experimental values for all
carbohydrates that were considered. Consequently, it seems
that the substrate model did not cause the deviations
between experimental and predicted weight fractions.
Subsite Map

Another reason for the deviation between the predicted
results and the experimental results can be caused by the
subsite map that was used as these subsite maps might be
affected by the type of substrate used to determine them.
Torgerson et al. (1979) and Allen and Thoma (1976b) used



radioactive oligosaccharides to determine the subsite maps
of BAA. These radioactive oligosaccharides were assumed to
be chemically similar to normal saccharides. Kandra et al.
(2002) used 2-chloro-4-nitrophenyl (CNP) b-glycosides
ranging from maltotetraose to maltodecaose to determine
the subsite map of BLA. They mentioned that the CNP
group can also interact with subsites þ2 and þ3, which
might lead to deviations for the subsite map obtained using
radioactive or normal oligosaccharides. Unfortunately, it
has not been investigated whether different types of sub-
strates would result in different subsite maps and different
model predictions. In addition, the subsite maps were used
in our model to predict the hydrolysis of a wide range of
carbohydrates including large carbohydrates, while only
small carbohydrates were used to determine these subsite
maps.

The experimental results (Figs. 2–6) indicate that maltose
and maltotriose are formed in comparable amounts.
Paolucci-Jeanjean et al. (2000) found similar results when
cassava starch is hydrolyzed by BLA at a higher temperature.
However, the subsite map for BLA (Kandra et al., 2002)
clearly indicates the enzyme’s preference to split off
maltotriose from the reducing end; the lowest energy of
binding at the right side of the location of hydrolysis can be
obtained when subsites þ1, þ2, and þ3 are filled. By setting
the subsite energy of subsite þ3 to 0, the influence of
this subsite was illustrated. After this modification, the
predicted weight fractions of maltose and maltotriose were
comparable (Fig. 5), leading to a better description of the
experimental data for maltose and maltotriose (see Table II).
To better fit the model data to the experimental data, a
new subsite map could be obtained by fitting the model
predictions to the experimental hydrolysis results. However,
the validity of this approach is questionable given the large
number of fit parameters that would be involved, and since our
aim was to compose a model with a limited amount of
independent experimental input, we did not consider this route.
Hydrolysis Behaviour of a-Amylase

Besides the hydrolysis behavior of a-amylase incorporated
in the subsite map, other specific hydrolysis phenomena
may take place that were not taken into account in our
model. For example, it is known that some a-amylases
exhibit a repetitive-attack mechanism, which could give rise
to higher amounts of maltose and glucose (MacGregor and
MacGregor, 1985). This would also result in a higher DE.
Furthermore, it is possible that carbohydrates form a non-
productive complex with the enzyme without blocking the
catalytic site and the subsites surrounding it. This resulting
enzyme–carbohydrate complex might still be active, because
in some cases it can still hydrolyze another substrate even at
higher hydrolysis rates (Baks et al., 2006). Once more, the
predicted DE might increase leading to a better agreement
between predicted and experimental values.
Finally, by having a purely random selection of an a-1,4-
linkage for hydrolysis, it was assumed that the chance that an
enzyme will attack an oligosaccharide is proportional to
the number of glucose monomers it contains, and that all
parts of the molecule are equally accessible to the enzyme.
However, it might be possible that the volume occupied by
branched and linear carbohydrates with the same degree of
polymerization differs, which might affect the chance that
a-amylase encounters such a substrate. It should therefore
be determined whether it is fair to assume that the chance of
enzymatic hydrolysis of an oligosaccharide is proportional
to the degree of polymerization. It is unclear how such
changes will affect the outcome of the model.
Time Scale

For the model presented in this article, the tp:tnp ratio of 20:7
was used that was proposed by Wojciechowski et al. (2001),
but they did not mention how they determined this ratio.
Since the BAA subsite map seemed to be more reliable than
the BLA subsite map, it was decided to illustrate the effect of
a different tp:tnp ratio for the hydrolysis predictions with
BAA. Changing this ratio indeed affected the outcome of the
simulations and it should therefore be investigated whether
the tp:tnp ratio can be determined independently instead of
using a fit procedure to obtain this ratio. Molecular
modeling might be used to determine the theoretical tp:tnp

ratio that is expected for various substrates with a-amylase.
In addition, this ratio might also differ for different
carbohydrates, because of variations in intra- and inter-
molecular mobility into and out of the enzyme’s active site.

During wheat starch hydrolysis experiments, enzyme
activity measurements indicated that the enzyme was stable
at our reaction conditions. However, it is possible to include
changes in the enzyme activity during hydrolysis. In case
enzyme deactivation would take place, the actual values of tp

and tnp can be increased in time. The activity of BLA was
studied quite extensively (De Cordt et al., 1992, 1994;
DeClerck et al., 1997; Dobreva et al., 1994; Fitter et al., 2001;
Ivanova et al., 1993; Rodrı́guez et al., 2006b; Tomazic and
Klibanov, 1988; Violet and Meunier, 1989) and these articles
can be used as a starting point. Various conditions, such as
temperature, calcium concentration, pH, enzyme concen-
tration and substrate concentration, determine the initial
enzyme activity as well as the decrease of this activity in time.
Obtaining a general equation for the activity based on all the
factors described in literature is not a trivial task. It is simpler
and more accurate to determine the enzyme activity at the
specific reaction conditions and subsequently implement
this information in the tp:tnp ratio used in the model.
Conclusions

The stochastic model presented in this article shows that it is
possible to use the subsite theory to predict the saccharide
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composition and DE in time for wheat starch hydrolysis
with a-amylase. The relatively simple substrate model that
was developed can be used as effective and efficient input for
the hydrolysis model.

For both BAA and BLA, the predicted weight fractions
and DEs showed the same trend as the corresponding
experimental values. Although the order of magnitude of the
predictions was comparable with the experimentally
determined values, the absolute values calculated with the
model differed from the experimental results. The model can
therefore be used to gain insight in the dynamic formation
and breakdown of all carbohydrates during enzymatic starch
hydrolysis, but it is not yet suitable for absolute predictions
of the oligosaccharide concentrations and DE. To improve
the model predictions, it seems to be necessary to obtain a
subsite map that can be used for longer hydrolysis times and
larger carbohydrates. Such a subsite map may be obtained by
fitting the model data to the experimental data. In addition,
it may be useful to include the experimentally observed
repetitive-attack mechanism for a-amylases in the model.
Furthermore, a procedure should be developed to obtain a
reliable ratio between the time required for the formation
and break down of non-productive enzyme–substrate
complexes and the time required for the formation of
productive enzyme–substrate complexes and the subsequent
release of the hydrolysis products. Research is also required
to determine whether these reaction times depend on the
carbohydrate chain length.

The model presented here was developed to describe the
enzymatic hydrolysis of wheat starch by BAA and BLA, but it
may well be converted to other depolymerase systems for
which the subsite map is available. It is also be possible to
include more than one enzyme in the model by the
generation of an additional random number to select the
enzyme that is going to interact with the substrate.

Nomenclature
Ai
696
enzyme activity at the end of time step i
BAA
 a-amylase from Bacillus amyloliquefaciens
BLA
 a-amylase from Bacillus licheniformis
bT
 inhibition constant
CDPi
 mass-based concentration of a carbohydrate with degree of

polymerization i (g L�1)
Cm,DPj
 Cm,DPj is the mole-based concentration of a carbohydrate with

degree of polymerization j (mol L�1)
Ctot
 total carbohydrate concentration (g L�1)
DE
 dextrose equivalent
DP
 degree of polymerization
E
 enzyme
k
 first order enzyme deactivation constant (s�1)
kþi
 pre-exponential factor for rate constant of reaction i
kbr_in
 inhibition factor for hydrolysis near branching points in

amylopectin
ki,p,o
 reaction rate constant of reaction i for carbohydrate with degree of

polymerization p with the reducing end in position o leading to

highest value of kþ2,r,nKr,n (s�1 for first order reactions

and m3 mol�1 s�1 for second order reactions)
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ki,r,n
 reaction rate constant of reaction i for carbohydrate with degree of

polymerization n when the reducing end is in position r (s�1 for

first order reactions and m3 mol�1 s�1 for second order reactions)
Kp,o
 association constant for carbohydrate with degree of polymeriza-

tion p with the reducing end in position o leading to highest value

of kþ2,r,nKr,n
Kr,n
 association constant for enzyme with carbohydrate with degree of

polymerization equal to n with the reducing end in position r
Mw,w
 molar mass of water (18 g mol�1)
ngl
 number of glucose units
nre
 number of reducing ends
Pm
 hydrolysis product with degree of polymerization m
Pn�m
 hydrolysis product with degree of polymerization n�m
pr,n
 chance of hydrolysis when the reducing end of carbohydrate with

degree of polymerization n is in position r
R
 gas constant (J mol�1 K�1)
Sn
 substrate with degree of polymerization n
T
 absolute temperature (K)
tp
 time required for a productive attack of the enzyme (s)
tnp
 time required for non-productive attack of the enzyme (s)
x
 number of occupied subsites
xw,i
 weight fraction of a carbohydrate with degree of polymerization i
y
 number of glucose units between the location of hydrolysis and the

a-1,6-linked glucose unit
DGa
 acceleration factor of the subsite map (J mol�1)
DGmix
 entropic energy contribution for binding of two molecules (J mol�1)
DGi
 binding energy of subsite i (J mol�1)
Dtl
 Duration of time step in model for step l (s)
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