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ABSTRACT
This paper deals with a two-warehouse inventory control problem for non-instantaneous 
deteriorating items in stochastic framework, wherein shortages are permissible and are mixture 
of partially backlog and lost sales. The paper tackles a situation in which the retailer procures 
more quantity than his/her own warehouse (OW) storage capacity. In such a situation, a rented 
warehouse (RW) is needed to keep the over purchasing. The stochastic framework captures the 
situation of random planning horizon of trading. The multifariousness of the random planning 
horizon is discussed by considering two special cases, namely, uniform and truncated normal 
distributions. Depending upon the consumption times to and tr of OW and RW inventories, 
respectively, and preserve time tp after that product starts to deteriorate, we formulate 
mathematical models for three cases: (i) tp ≤ tr ≤ to, (ii) tr ≤ tp ≤ to, and (iii) tr ≤ to ≤ tp. The discussion 
is further elongated by presenting some numerical illustrations with comprehensive sensitivity 
analysis for changes in the value of parameters.

1.  Introduction

In many marketplaces, like super market and municipal-
ity market, the space constraint is quite relevant because 
retail outlets have limited shelf space. A retailer ware-
house is usually situated near to a shop which is generally 
located in urban area. Despite it, market scenarios such 
as relatively high ordering cost that precludes the small 
ordering size, price discount, stock against supply dis-
ruptions, and location of market enforce a retailer to pro-
cure the product beyond his/her own warehouse (OW) 
capacity. In such situations, the retailer needs a rented 
warehouse (RW) to store the extra purchasing beyond 
his/her OW. Over purchasing also stimulates the deterio-
ration if item is of perishable type. In general, most of the 
goods such as food stuffs, vegetables, and fruits having a 
time span to maintain the quality of freshness or original 
condition, i.e. no deterioration occurs during that span 
[9]. This property of a good is called non-instantaneous 
deterioration. In the literature, the planning horizon of 
such type of seasonal products is generally assumed as 
finite constant, but, in reality, due to the environmen-
tal effects, planning horizon fluctuates over years [24]. 
Hence, it is better to take planning horizon of such type 
of seasonal product as a random variable. Intuitively, in 
this paper we develop a two-warehouse inventory model 
for non-instantaneous deteriorating items in stochastic 

framework, wherein shortages are allowed and are mix-
ture of partial backlog and lost sale. The brief review 
of literature related to the proposed work is presented 
below.

In the initial phase, [12] and [8] developed inventory 
models by considering deterioration. A comprehensive 
review of inventory models via deterioration is accom-
plished by [16]. We refer to that paper for exhaustive 
review. In recent years, many authors have developed 
deteriorating item inventory models for different types 
of business environments. [46] developed an EOQ model 
for deteriorating items, wherein time-varying demand 
and waiting time-dependent partial backlog have been 
considered. [30] developed an EOQ model for price- 
dependent demand rate and time-dependent deterio-
ration rate – shortage are allowed and are partially back-
logged. Inventory systems with deterioration of product 
via backlogging, partial backlogging, lost sale, inflation, 
delay in payments, and/ or varying demand are addressed 
by many authors such as [4,14,29,31,32,34–40].

We now briefly review the literature related to 
two-warehouse inventory modeling problem. [17] is 
the first who modeled inventory problem for limited 
storage capacity, and considered an additional storage 
facility with additional holding cost and called it as RW. 
[15] considered demand rate as a linear function of time 
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shortages. [23] and [22] extended the model of [26] by 
incorporating price- and time-dependent demand rate 
and partial backlogging of shortages. [44] developed an 
inventory model for non-instantaneous time depend-
ent deterioration and time-varying holding. Moreover, 
they assumed demand rate as a function of selling price 
and advertisement. Recently, [5] developed an inven-
tory model for non-instantaneous deteriorating items, 
wherein various trade credits policies are discussed.

There is a common assumption in the above-discussed 
models, that is, all are developed in deterministic envi-
ronment. However, some authors such as [7,10,19,21,25] 
have developed some models by considering stochas-
tic review period. But, they have not considered two- 
warehouse or non-instantaneous deterioration rate. In 
this study we try to bridge this research gap. In this pro-
cess we develop an inventory model, wherein a retailer 
has limited storage space and that is they use RW to keep 
the extra purchasing. Non-instantaneous deterioration 
that reflects the real world situation has been also incor-
porated. The model allows shortages which are partially 
backlogged and remaining are lost sales. In practice, it 
is rare that the planning horizon of the seasonal items 
is as constant. Thus, in this model we have considered 
the planning horizon as a random variable. To make the 
multifariousness in the model, we discuss two cases of 
distribution function of random time horizon, namely, 
uniform and truncated normal. The order-up-to-level 
(OU) replenishment system is the best when dealing 
with statistical uncertainty [10]. Hence, to ease in math-
ematical modeling of the proposed inventory problem, 
we follow the OU replenishment policy. To the best of 
our knowledge and as an evident of the above-discussed 
review of the literature as shown in Table 1, this prob-
lem is not deliberated by any one. Rest of the paper is 
organized as follows. Section 2 provides the list of nota-
tions and assumptions. Mathematical formulation of 

for a two-level storage model, and included the cases of 
with and without shortage. In the last two-three dec-
ades, incorporation of deterioration in two-warehouse 
inventory modeling problems has received the attention 
of researches as well as enterprises. Perhaps, [41] first 
developed a two-warehouse inventory model in which 
deterioration of items and shortages are considered. [28] 
developed a two-warehouse inventory model, wherein 
demand rate was considered as stock-dependent. [49] 
considered complete backlog of shortages in a two- 
warehouse inventory system for deteriorating items, 
wherein demand is constant throughout the time  
horizon. [50] extended [49] by considering partial back-
logging of the shortages. [20] extended two-warehouse 
deteriorating items inventory model by considering  
linear trend in demand rate, wherein shortages are 
allowed and are backlogged. [18] extended [20] by 
adding partial backlogging and inflation. [51] devel-
oped a production inventory model for deteriorating 
items, wherein production and demand rate are consid-
ered as time dependent. In recent years, many authors 
have developed two-warehouse inventory model 
for deteriorating items in different scenarios such as 
[1–3,27,33,42,43,45,47,52].

In the above discussion, we found that all the dis-
cussed models assumed a common characteristic, dete-
rioration starts instantaneously just after their arrival in 
the stock. But, this assumption is not very realistic for the 
products which are mentioned in the first paragraph of 
this section. However, in recent years, many research-
ers addressed non-instantaneous deterioration in their 
models. [48] and [26] are among the first who incorpo-
rated non-instantaneous deterioration in deterministic 
inventory modeling problems. [6] enhanced the model 
of [48] by considering the objective of profit maximiza-
tion, wherein shelf space is restricted. [11] extended [48] 
by considering time-dependent partial backlogging of 

Table 1. Contribution of different authors.

Author(s) Deterioration Shortage Random time period time period Two-warehouse
Sarma [41]  √  √  √
Goswami and Chaudhuri [15]  √  √
Kar et al. [20]  √  √  √
Ertogral and Rahim [10]  √  √
Wee et al. [47]  √  √  √
Yang [49,50]  √  √  √
Chiang [7]  √  √
Liu et al. [21]  √  √  √
Sana [29]  √  √
Jaggi et al. [18]  √  √  √
Sett et al. [42]  √  √
Panda et al. [27], and Agrawal et al. [1]  √  √
Cárdenas-Barrón et al. [4]  √  √
Karimi-Nasab and Konstantaras [19]  √  √
Sarkar and Sarkar [37]  √  √
Tan and Weng [46]  √  √
Taleizadeh and Nematollahi [45]  √  √
Yu et al. [52]  √  √
Bhunia et al. [2,3]  √
Shabani et al. [43]  √  √
Mohanty et al. [25]  √  √  √
This paper  √  √  √  √
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the model with solution methodology is presented in 
Section 3. Section 4 derives two special cases of random 
planning horizon, namely, uniform and truncated nor-
mal distribution. In Section 5, numerical examples with 
sensitivity analysis are presented in support of foregoing 
mathematical development and discussion. Finally, dis-
cussion is ended with Section 6 of concluding remarks 
and future extension of the research.

2.  Notations and assumptions

The following notations to be used throughout the 
paper.

2.1.  Notations
Parameters:

r  	 Demand rate per unit time

x  	� Random variable that represents the time/
planning horizon(xmin ≤ x ≤ xmax)

f (x)  	 Probability density function of x
xmin  	 Minimum value of the random time horizon x
xmax  	 Maximum value of the random time horizon x
tp  	 Time period during which no deterioration
α  	 Deterioration rate at the RW
β  	 Deterioration rate at the OW
γ  	�F raction of shortage quantity that is back-

logged during shortage period (0 < γ < 1)
W  	C apacity of OW
p  	 Purchasing price per unit the product
A  	 Ordering cost per order
hr  	� Inventory holding cost per product per unit 

time at RW
ho 	  �Inventory holding cost per product per unit 

time at OW
b  	 Backlogging cost per product per unit time
l  	L ost of sale cost per product

Decision variables:

S  	 Maximum inventory level

Dependant variables:

ir(t)  	 Inventory level at the RW at time t

io(t)  	 Inventory level at the OW at time t
tr  	� Time taken to consume the inventory of RW 

after the replenishment
to  	� Time taken to consume the inventory of OW 

after the replenishment
Ir  	 Accumulated inventory at RW
Io  	 Accumulated inventory at OW
D̄  	 Expected deteriorating items
Q̄  	 Expected order quantity
Īr  	 Expected inventory at RW
Īo  	 Expected inventory at OW
B̄  	 Expected shortage
L̄  	 Expected lost sale quantity
ETC  	 Expected total cost

2.2.  Assumptions

While the following assumptions are made in developing 
the model.

(1) � �  Demand rate is uniform and constant through-
out the horizon.

(2) � �  Shortage is allowed, and is partially back-
logged, i.e. a fraction γ (0 ≤ γ ≤ 1)of shortage 
quantity is backlogged and remaining is lost 
sale.

(3) � �  The planning horizon is a random variable.
(4) � �  The OW has a fixed capacity of W units, 

whereas the RW has no such limitation of 
stocking. The items of RW are consumed first 
and then of OW because inventory carrying 
cost at OW is higher than of RW.

(5) � �  The OW is more improved than RW which pre-
vents the product to deteriorate. Hence, the 
deterioration rate at the RW is higher than the 
deterioration rate at OW, i.e. α > β > 0.

(6) � �  Repairing or replacement for the deteriorated 
items are not permissible.

Figure 1. Inventory variation over random time horizon. (a) t
p
≤ t

r
1

≤ t
o
1

, (b) t
r
2

≤ t
p
≤ t

o
2

, and (c) t
r
3

≤ t
o
3

≤ t
p
.

D
ow

nl
oa

de
d 

by
 [

O
rt

a 
D

og
u 

T
ek

ni
k 

U
ni

ve
rs

ite
si

] 
at

 1
0:

45
 0

5 
M

ay
 2

01
6 



4    D. J. Mohanty et al.

 

and
 

As Figure 1(a) describes, inventory levels at both OW and 
RW are continuous functions of time. Continuity prop-
erty of RW inventory level via Equation (6) gives

 

and continuity of OW inventory level via Equation (7) 
gives

 

As we discussed earlier, the review period is a random 
variable. So, for the fixed values of tp, tr1 and to1, x may 
fall in any one of the intervals: (i) [0, tp], (ii) [tp, tr1 ], (iii) 
[tr1

, to1
], and (iv) [to1 , ∞) . Therefore, the total accumulated 

inventory at the RW and the OW, respectively, over the 
random interval [0, x] are as follows:

 

and

The random planning horizon results random inven-
tory level as described in Equations (10) and (11). 
Consequently, order quantity, backorder quantity, etc. 
are random variables. Thus, in order to scalarize these, 
we obtain the expected order quantity, expected inven-
tory, expected deterioration, expected backorder, and 
lost sale, respectively, as follows:

(6)ir1
(t) =

{
−rt + S −W , 0 ≤ t ≤ tp
r

�
{e

−�(t−tr1
)
− 1}, tp ≤ t ≤ tr1

(7)io1
(t) =

⎧
⎪⎨⎪⎩

W , 0 ≤ t ≤ tp

We−�(t−tp), tp ≤ t ≤ tr1
r

�
{e

−�(t−to1
)
− 1}, tr1

≤ t ≤ to1
.

(8)tr1
= tp +

1

�
ln
[
1 + �

(
S −W

r
− tp

)]
,

(9)to1
= tr1

+
1

�
ln

[
1 +

W�

r

(
1 + �

(
S −W

r
− tr1

))−
�

�

]

(10)Ir1
(x) =

⎧
⎪⎪⎨⎪⎪⎩

�
x

0
ir1
(t)dt, 0 ≤ x ≤ tp

�
tp

0
ir1
(t)dt + �

x

tp
ir1
(t)dt, tp ≤ x ≤ tr1

�
tp

0
ir1
(t)dt + �

tr1
tp

ir1
(t)dt, tr1

≤ x ≤ to1

�
tp

0
ir1
(t)dt + �

tr1
tp

ir1
(t)dt, x ≥ to1

.

(11)

Io1
(x) =

⎧
⎪⎪⎨⎪⎪⎩

�
x

0
io1
(t)dt, 0 ≤ x ≤ tp

�
tp

0
io1
(t)dt + �

x

tp
io1
(t)dt, tp ≤ x ≤ tr1

�
tp

0
io1
(t)dt + �

tr1
tp

io1
(t)dt + �

x

tr1
io1
(t)dt, tr1

≤ x ≤ to1

�
tp

0
io1
(t)dt + �

tr1
tp

io1
(t)dt + �

to1
tr1

io1
(t)dt, x ≥ to1

.

(12)

Q̄1 = E(Q1) =

tp

∫

xmin

rxf (x)dx

+

tr1

∫

tp

(S − ir1
(x) − io1

(x))f (x)dx +

to1

∫

tr1

(S − io1
(x))f (x)dx

+

xmax

∫

to1

[S + 𝛾r(x − to1
)]f (x)dx

(7) � �  The product has a fixed safe time period dur-
ing which no deterioration occurs, i.e. tp is a 
given constant.

(8) � �  The distance between two-warehouses is 
known and transportation cost between them 
are constant. Hence, transportation cost and 
time from RW to OW are negligible.

3.  Mathematical formulation of the model

In this section, we mathematically formulate the model 
and then analyze to find the global optimal solution. 
As illustrated in Figure 1, at the beginning of the cycle, 
a replenishment is occurred that brings the inventory 
level up to S. After that, inventory level is depleted due 
to demand or both demand and deterioration . Due to a 
fixed safe time tp during which no deterioration occurs, 
and consumption time tr and to of the products of RW 
and OW, three cases arise: (i) tp ≤ tr1

≤ to1
, (ii) tr2 ≤ tp ≤ to2

, and (iii) tr3 ≤ to3
≤ tp. In each case, RW inventory is first 

used to meet the demand of customer, and if it finished 
then OW inventory is used. When OW inventory reaches 
zero at toj, after that shortage occurs and is continued 
until the next replenishment. Now, each case is discussed 
in detail as follows.

Case (i). When tp ≤ tr1
≤ to1

: As Figure 1(a) shows, inven-
tory level at RW is depleted due to demand up to time tp. 
After that deterioration occurs and inventory level of RW 
is depleted due to demand and deterioration up to time 
tr1

, whereas OW inventory is depleted due to deteriora-
tion, only, during tr1. The RW inventory level tr1 is governed 
by the following differential equations:

 

with initial condition
 

and boundary condition
 

The OW is full with the maximum capacity W up to time 
tp. During the period [tp, tr1 ] ∪ [tr1

, to1
], OW inventory level 

is governed by the following differential equations:
 

with boundary condition
 

After solving the Equations (1)–(5), the inventory levels 
of RW and OW can be described as follows:

(1)

{ dir
1

dt
= −r, 0 ≤ t ≤ tp

dir
1

dt
+ �ir

1

= −r, tp ≤ t ≤ tr
1

(2)ir1
(0) = S −W

(3)ir1
(tr1

) = 0

(4)

{ dio1

dt
+ �io1

= 0, tp ≤ t ≤ tr1
dio1

dt
+ �io1

= −r, tr1
≤ t ≤ to1

(5)io1
(tp) = W and io1

(to1
) = 0
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is depleted due to demand and reached zero at the end 
of period tr2. After that OW inventory started to meet the 
demand. Up to tp, OW inventory is depleted due to the 
demand, and then due to the demand and deterioration 
up to to2. Then similar to Case (i), shortage occurs and is 
partially backlogged. The RW inventory for this case is 
governed by the following differential equations.

 

with initial condition
 

and boundary condition
 

The OW is full with the capacity W up to time tr2. Then 
inventory level during the period [tr2 , tp] ∪ [tp, to2

] is gov-
erned by the following differential equations.
 

with boundary condition
 

After solving the Equations (19)–(23), the inventory lev-
els of RW and OW with respect to time are described as 
follows:

 

 

The boundary condition (21) gives
 

and the continuity of io2(t) at tp gives
 

Similar to Case (i), for the fixed values of tp, tr2 and to2 , x 
may fall in any one of the intervals: (i) [0, tr2] , (ii) [tr2 , tp] , 
(iii) [tp, to2 ] , and (iv) [t

o
2

, ∞]. Therefore, the total accumu-
lated inventory over the random interval [0, x] is:

 

(19)
dir2

dt
= −r, 0 ≤ t ≤ tr2

(20)ir2
(0) = S −W

(21)ir2
(tr2

) = 0.

(22)

{ dio2

dt
= −r, tr2

≤ t ≤ tp
dio2

dt
+ �io2

= −r, tp ≤ t ≤ to2

(23)io2
(to2

) = 0.

(24)ir2
(t) = −rt + S −W , 0 ≤ t ≤ tr2

(25)io2
(t) =

⎧⎪⎨⎪⎩

W , 0 ≤ t ≤ tr2
−rt + S, tr2

≤ t ≤ tp
r

�
{e

−�(t−to2
)
− 1}, tp ≤ t ≤ to2

(26)tr2
=

S −W

r

(27)to2
= tp +

1

�
ln
[
1 + �

(
S

r
− tp

)]

(28)
Ir2
(x) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x

�

0

ir2
(t)dt, 0 ≤ x ≤ tr2

tr2

�

0

ir2
(t)dt, tr2

≤ x ≤ tp

tr2

�

0

ir2
(t)dt, tp ≤ x ≤ to2

tr2

�

0

ir2
(t)dt, x ≥ to2

.

 

 

The expected total cost is comprised with ordering, pur-
chasing, holding, deterioration, backlogging costs, and 
lost sale. Let us denote expected total cost for this case 
as ETC1.

 

Case (ii). When tr2 ≤ tp ≤ to2
: Inventory fluctuation at 

both warehouses in this case is shown in Figure 1(b). 
There is no deterioration in the RW, and inventory level 

(13)

lĪr
1

= E(Ir
1

) =

tp

∫
x
min

⎛
⎜⎜⎝

x

∫
0

ir
1

(t)dt

⎞
⎟⎟⎠
f (x)dx

+

x
max

∫
tp

⎛
⎜⎜⎝

tp

∫
0

ir
1

(t)dt

⎞
⎟⎟⎠
f (x)dx +

tr
1

∫
tp

⎛
⎜⎜⎜⎝

x

∫
tp

ir
1

(t)dt

⎞
⎟⎟⎟⎠
f (x)dx

+

x
max

∫
tr
1

⎛
⎜⎜⎜⎝

tr
1

∫
tp

ir
1

(t)dt

⎞
⎟⎟⎟⎠
f (x)dx

(14)

lĪo
1

= E(Io
1

) =

tp

∫
x
min

�
∫

x

0

io
1

(t)dt

�
f (x)dx

+

x
max

∫
tp

⎛⎜⎜⎝

tp

∫
0

io
1

(t)dt

⎞⎟⎟⎠
f (x)dx +

tr
1

∫
tp

⎛⎜⎜⎜⎝

x

∫
tp

io
1

(t)dt

⎞⎟⎟⎟⎠
f (x)dx

+

x
max

∫
tr
1

⎛⎜⎜⎜⎝

tr
1

∫
tp

io
1

(t)dt

⎞⎟⎟⎟⎠
f (x)dx +

to
1

∫
tr
1

⎛⎜⎜⎜⎝

x

∫
tr
1

io
1

(t)dt

⎞⎟⎟⎟⎠
f (x)dx

+

x
max

∫
to

1

⎛⎜⎜⎜⎝

to
1

∫
tr
1

io
1

(t)dt

⎞⎟⎟⎟⎠
f (x)dx

(15)

D̄1 = E(D) =

tr1

∫

tp

(S − ir(x)

−io1
(x) − rx)f (x)dx + ∫

to1
tr1
(S − io1(x) − rx)f (x)dx

+

xmax

∫

to1

[S − rto1
]f (x)dx

(16)B̄1 = E(B) =

xmax

∫
to1

1

2
𝛾r(x − to1

)
2f (x)dx

(17)L̄1 = E(L) =

xmax

∫
to1

(1 − 𝛾)r(x − to1
)f (x)dx

(18)ETC1 = A + pQ̄1 + hr Īr1
+ hoĪo1

+ pD̄1 + bB̄1 + lL̄1
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6    D. J. Mohanty et al.

Let us denote expected total cost for this case as ETC2, 
then

 

Case (iii). When tr3 ≤ to3
≤ tp: In this case, all items are 

consumed before to start the deterioration as shown in 
Figure 1(c). The RW inventory level is governed by the 
following differential equations.

 

with initial condition
 

and boundary condition
 

The OW is full with the capacity W up to time tr3, and 
inventory level during the period [tr3 , to3 ] is governed by 
the following differential equations.

 

with boundary condition
 

After solving the Equations (37)–(41). The RW and OW 
inventory levels can be expressed as follows.

 

and
 

The boundary conditions (39) and (41), respectively, give 
the following relationships.

 

 

Similar to Case (i) and Case (ii), for the fixed values of tp, tr3 
and to3, x may fall in any one of the intervals: (i) [0 t

r
3

], (ii) 
[tr3

, to3
], (iii) [to3 , tp], and (iv) [tp, ∞). Therefore, the total 

accumulated inventory at RW and OW, respectively, over 
the random interval [0, x] are:

 

(36)ETC2 = A + pQ̄2 + hr Īr2
+ hoĪo2

+ pD̄2 + bB̄2 + lL̄2

(37)
dir3

dt
= −r, 0 ≤ t ≤ tr3

(38)ir3
(0) = S −W

(39)ir3
(tr3

) = 0

(40)io3
(t) =

dio3

dt
= −r, tr3

≤ t ≤ to3

(41)io3
(to3

) = 0

(42)ir3
(t) = −rt + S −W , 0 ≤ t ≤ tr3

(43)io3
(t) =

⎧⎪⎨⎪⎩

W , 0 ≤ t ≤ tr3
−rt + S, tr3

≤ t ≤ to3

(44)tr3
=

S −W

r

(45)to3
=

S

r
.

(46)Ir3
(x) =

⎧⎪⎨⎪⎩

�
x

0
ir3
(t)dt, 0 ≤ x ≤ tr3

tr3

�

0

ir3
(t)dt, x ≥ tr3

.

and
 

Consequently, the expected order quantity, expected 
inventory, expected deterioration, expected backorder, 
and lost sale, respectively, are as follows:
 

 

 

 

 

(29)Io2
(x) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x

�

0

io2
(t)dt, 0 ≤ x ≤ tr2

tr2

�

0

io2
(t)dt +

x

�

tr2

io2
(t)dt, tr2

≤ x ≤ tp

tr2

�

0

io2
(t)dt +

tp

�

tr2

io2
(t)dt +

x

�

tp

io2
(t)dt, tp ≤ x ≤ to2

tr2

�

0

io2
(t)dt +

tp

�

tr2

io2
(t)dt +

to2

�

tp

io2
(t)dt, x ≥ to2

.

(30)

Q̄2 = E(Q2) =

tp

∫

xmin

rxf (x)dx +

to2

∫

tp

(S − io2
(x))f (x)dx

+

xmax

∫

to2

[S + 𝛾r(x − to2
)]f (x)dx

(31)

Īr2
= E(Ir2

) =

tr2

∫

xmin

(
∫
x

0
ir2
(t)dt

)
f (x)dx

+

xmax

∫

tr2

(
tr2

∫

0

ir2
(t)dt

)
f (x)dx

(32)

Īo
2

= E(Io
2

) =

tr
2

∫
x
min

⎛⎜⎜⎝

x

∫
0

io
2

(t)dt

⎞⎟⎟⎠
f (x)dx

+

x
max

∫
tr
2

⎛⎜⎜⎜⎝

tr
2

∫
0

io
2

(t)dt

⎞⎟⎟⎟⎠
f (x)dx +

tp

∫
tr
2

⎛⎜⎜⎜⎝

x

∫
tr
2

io
2

(t)dt

⎞⎟⎟⎟⎠
f (x)dx

+

x
max

∫
tp

⎛⎜⎜⎜⎝

tp

∫
tr
2

io
2

(t)dt

⎞
⎟⎟⎟⎠
f (x)dx +

to
2

∫
tp

⎛⎜⎜⎜⎝

x

∫
tp

io
2

(t)dt

⎞
⎟⎟⎟⎠
f (x)dx

+

x
max

∫
to

2

⎛⎜⎜⎜⎝

to
2

∫
tp

io
2

(t)dt

⎞⎟⎟⎟⎠
f (x)dx

(33)

D̄2 = E(D2) =

to2

∫

tp

(S − io2
(x) − rx)f (x)dx

+

xmax

∫

to2

[S − rto2
]f (x)dx

(34)
B̄2 = E(B2) =

xmax

∫
to2

1

2
𝛾r(x − to2

)
2f (x)dx

(35)L̄2 = E(L2) =

xmax

∫
to2

(1 − 𝛾)r(x − to2
)f (x)dx
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It is not possible to optimize analytically the cost func-
tion (54) via ETC1, ETC2 and ETC3 using any optimization 
method. Thus, we use Mathematica software to optimize 
the integrated cost function. However, the necessary and 
sufficient conditions of minimizing the cost function are

 

where S∗j  is an extremum point obtained from the equa-
tion d(ETCj)/dS  =  0. The convexity of cost function is 
shown in Figures 2–5. We here write the solution proce-
dure in order to find the global optimal solution.

Step 1. Minimize ETC1 subject to the constraint tr1 ≥ tp 
using the command NMinimize of Mathematica.

Step 2. Minimize ETC2 subject to the constraints 
tr2

≤ tp and tp ≤ to2
 using the command NMinimize of 

Mathematica.
Step 3. Minimize ETC3 subject to the constraint to3 ≤ tp 

using the command NMinimize of Mathematica.
Step 4. Set, j∗ = arg(minj∈{1,2,3} ETC

∗

j ), where ETCj∗ is the 
minimum value of ETC∗

j  .
Step 5. Optimal solution is, ETC∗

= ETCj∗, S
∗
= Sj∗, 

t∗r = trj∗, and t∗o = toj∗.

4.  Special cases

In this section, two cases of random planning horizon, 
namely, uniform and truncated normal distributions are 
considered.

4.1.  Uniform distribution function

In many cases, data are available with incomplete knowl-
edge about the distribution type. In such a case, it is 
difficult to fit any distribution other than uniform. This 
situation can be contemplated by considering random 
time horizon that is uniformly distributed as

f(x) = 1/(xmax − xmin), xmin ≤ x ≤ xmax. This assumption 
also captures the situation that random time horizon 
is equally likely in the interval [xmin, xmax]. However, the 
expected order quantity, inventory level, etc. for all three 
cases are obtained in Appendix 1.

4.2.  Truncated normal distribution function

According to the central limit theorem, for a sufficiently 
large number of any independent and identically distrib-
uted random variables, the approximated distribution 
is normal. Moreover, the normal distribution is easier to 
use in calculation point of view. Hence, it is one of the 
most useful distributions. But, in dealing with normal 
distribution, an unrealistic situation incur regarding 
its range that is −∞ to ∞. It is impossible to take time 
horizon as any negative real number or ∞. The general 

(55)

d(ETCj)

dS
= 0 and

d
2
(ETCj)

dS2

||||||S=S∗j
> 0 for j = 1, 2, 3

 

Consequently, the expected order quantity, expected 
inventory, expected deterioration, expected back-order, 
and lost sale, respectively, are as follows:
 

 

 

 

Let us denote expected total cost for this case as ETC3. 
Hence,

 

We have discussed three cases depending upon the val-
ues of tp, trj, and toj. We now combine all three cases to 
find the integrated expected total cost ETC, as:

 

(47)Io3
(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
x

0
io3
(t)dt, 0 ≤ x ≤ tr3

tr3

�

0

io3
(t)dt +

x

�

tr3

io3
(t)dt, tr3

≤ x ≤ to3

tr3

�

0

io3
(t)dt +

to3

�

tr3

io3
(t)dt, x ≥ to3

.

(48)

Q̄3 = E(Q3) =

to3

∫

xmin

rxf (x)dx

+

xmax

∫

to3

[S + 𝛾r(x − to3
)]f (x)dx

(49)

Īr3
= E(Ir3

) =

tr3

∫

xmin

( x

∫

0

ir3
(t)dt

)
f (x)dx

+

xmax

∫

tr3

(
tr3

∫

0

ir3
(t)dt

)
f (x)dx

(50)

Ī
o
3

= E(I
o
3

) =

t
r
3

∫
x
min

⎛⎜⎜⎝

x

∫
0

i
o
3

(t)dt

⎞⎟⎟⎠
f (x)dx

+

x
max

∫
t
r
3

⎛⎜⎜⎜⎝

t
r
3

∫
0

i
o
3

(t)dt

⎞⎟⎟⎟⎠
f (x)dx +

t
o
3

∫
t
r
3

⎛⎜⎜⎜⎝

x

∫
t
r
3

i
o
3

(t)dt

⎞⎟⎟⎟⎠
f (x)dx

+

x
max

∫
t
o
3

⎛⎜⎜⎜⎝

t
o
3

∫
t
r
3

i
o
3

(t)dt

⎞⎟⎟⎟⎠
f (x)dx

(51)B̄3 = E(B3) =

xmax

∫
to3

1

2
𝛾r(x − to3

)
2f (x)dx

(52)L̄3 = E(L3) =

xmax

∫
to3

(1 − 𝛾)r(x − to3
)f (x)dx

(53)ETC3 = A + pQ̄3 + hr Īr3
+ hoĪo3

+ bB̄3 + lL̄3

(54)
ETC =

⎧⎪⎨⎪⎩

ETC1, tp ≤ tr1
≤ to1

;

ETC2, tr2
≤ tp ≤ to2

;

ETC3, tr3
≤ to3

≤ tp.

D
ow

nl
oa

de
d 

by
 [

O
rt

a 
D

og
u 

T
ek

ni
k 

U
ni

ve
rs

ite
si

] 
at

 1
0:

45
 0

5 
M

ay
 2

01
6 



8    D. J. Mohanty et al.

backlogging cost b  =  $2/unit/month, lost sales, and 
l = $10/unit item. In order to examine the effectiveness 
of the model, we take two values of tp as, tp = 2 months 
and tp  =  5  months, and two instances of uniform dis-
tribution parameters are taken as, (i) xmin  =  1  month, 
xmax = 5 months and (ii) xmin = 3 months, xmax = 8 months. 
Convexity of the cost function for this data-set is shown 
in Figures 2 and 3 which ensure uniqueness of optimal 
solution.

For instance (i) with tp = 2 months, Figure 2(a) shows the 
uniqueness of optimal solution, and is: S* = 41.3175 units 
and ETC* = $264.017, which is optimized by the cost func-
tion ETC2 of the integrated cost function ETC. Figure 2(b) 
shows the convexity of cost function for instance (i) with 
tp = 5 months, the optimal solution is: S* = 43.3686 units 
and ETC* = $261.014 which is obtained from third case. 
For instance (ii) with tp = 2 months, as Figure 3(a) shows, 
ETC1 optimizes the ETC with optimal solution S* = 61.4417 
units and ETC* = $425.785, and for tp = 5 months, ETC2 
(Figure 3(b)) optimizes the ETC to S* = 64.1208 units and 
ETC* = $410.69 for this numerical example.

5.1.1.  Sensitivity of demand and deterioration
“How the changing demand rate and deterioration rate 
make effects on the decision policy?” are examined here. 
For this we vary the demand rate and deterioration rate 
singly from −40% to 40%. The performances of changing 
parameters are obtained in Tables 2–5 for instance (i) and 

idea about area of normal curve is that the interval 
[ρ − 3σ, ρ + 3σ] cover 99.73% of total area, where ρ is 
mean and σ is standard deviation. Hence, for conven-
ience we truncated normal distribution to an interval 
[xmin, xmax], where 0 ≤ xmin ≤ ρ − 3σ and xmax ≥ ρ + 3σ. 
Thus, time horizon is truncated normally distributed as, 
f (x) =

1

Φ(xmax)−Φ(xmin)

1√
2��

e−
1

2
(
x−�

�
)2, xmin ≤ x ≤ xmax, where Φ is 

c.d.f. of standard normal distribution. For this distribution 
function, the expected values of order quantity, inven-
tory level, etc. are obtained in Appendix 2.

5.  Numerical experiment with sensitivity 
analysis

In this section, forgoing discussion is elaborated with 
some numerical examples. The data are taken from an 
article by [13] after some modification as per our model 
requirement.

5.1.  Uniform distribution function

Example 1. Let us consider an inventory control problem 
with the following input data: demand rate, r = 10 units/
month, OW capacity, W = 25 units, deterioration rate at 
RW, α = 0.01, deterioration rate at OW, β = 0.02, backlog-
ging fraction, γ = 0.5, purchasing price, p = $5/unit, hold-
ing cost at RW, hr = $0.2/unit/month, holding cost at OW, 
ho = $0.1/unit/month, ordering cost, A = $100 per order, 

Figure 2. Convexity of instance (i) for uniformly distributed time horizon. (a) tp = 2, and (b) tp = 5.

Figure 3. Convexity of instance (ii) for uniformly distributed time horizon. (a) tp = 2, and (b) tp = 5
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decision-maker has to procure more quantity, conse-
quently, increment in S* is noticed. Demand rate also 
affects the consumption time of OW and RW inventories. 
When demand rate is increased then for both instances, 
t∗r  increased, whereas t∗o decreased. The increment in t∗r  is 

instance (ii). Tables 2 and 3 show that the performances 
of changing demand rate for both instances. This evinces 
when demand rate is increased, order up to level (S*) 
increases, consequently, expected total cost increases. 
This is a natural conscious when demand rate increases, 

Figure 4. Convexity of instance (i) for truncated normal distributed time horizon. (a) tp = 2, and (b) tp = 5.

Figure 5. Convexity of instance (ii) for truncated normal distributed time horizon. (a) tp = 2, and (b) tp = 5.

Table 2. Sensitivity of demand for uniformly distributed time horizon with tp = 2.

xmin xmax % Change r S* j*  Q̄∗  D̄∗  B̄∗  L̄∗  t∗
r
  t∗

o
  ETC* 

1 5 −40  6 25.8925  2 17.9719 0.175414 0.049957 0.203465 0.14875 4.2634 197.55 
−20  8 33.5387  2 23.8487 0.213654 0.103937 0.364965 1.06734 4.14564 230.548 

 0  10 41.3175  2 29.7345 0.254829 0.158263 0.520348 1.63175 4.08755 264.017 
 20  12 49.1754  1 35.6281 0.297674 0.210889 0.669583 2.01462 4.05513 297.688 
 40  14 57.3841  1 41.5638 0.342719 0.244988 0.778957 2.31266 4.05648 331.415

3 8 −40  6 36.8909  2 32.6986 0.91625 0.817713 1.21765 1.98182 5.98535 293.616 
 −20  8 49.1764  1 43.5583 1.17623 1.08461 1.6179 3.01686 5.98885 359.717 

 0  10 61.4417  1 54.3729 1.38521 1.34568 2.01233 3.6308 5.99385 425.785 
 20  12 73.6882  1 65.1664 1.57197 1.60556 2.40556 4.03647 5.99769 491.83 
 40  14 85.9236  1 75.9492 1.74736 1.86487 2.7982 4.32446 6.00064 557.862 

Table 3. Sensitivity of demand for uniformly distributed time horizon with tp = 5.

xmin  xmax % Change r  S* j*  Q̄∗  D̄∗  B̄∗  L̄∗  t∗
r
  t∗

o
  ETC* 

1 5 −40 6 27.1308 3 17.9142 0 0.0136688 0.0857521 0.355136 4.5218 195.543 
−20 8 35.1814 3 23.8186 0 0.0364202 0.181398 1.27267 4.39767 228.055 

0 10 43.3686 3 29.7252 0 0.0607549 0.27485 1.83686 4.33686 261.014 
20 12 51.6232 3 35.6345 0 0.0850426 0.365476 2.2186 4.30193 294.164 
40 14 59.9162 3 41.5461 0 0.108986 0.453938 2.49402 4.27973 327.411

3 8 −40 6 39.4792 2 32.4468 0.0728365 0.301453 0.626038 2.41321 6.55543 283.277 
−20 8 51.7485 2 43.121 0.0852466 0.499014 0.96422 3.34356 6.44741 346.759 

0 10 64.1208 2 53.8073 0.0993047 0.692305 1.29202 3.91208 6.39251 410.69 
20 12 76.5437 2 64.5003 0.114122 0.882227 1.61381 4.29531 6.35998 474.818 
40 14 88.9953 2 75.1975 0.129353 1.06979 1.93188 4.57109 6.33873 539.049 
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10    D. J. Mohanty et al.

5.2.  Truncated normal distribution function

Example 2. We now suppose that the time horizon is 
truncated in the interval [xmin, xmax] for normally distrib-
uted random variable. The value of the other param-
eters is as same as Example 1. Moreover, we consider 
two instances of truncated normal distribution as, (i) 
xmin = 1 month, xmax = 5, ρ = 3, σ = 2 and (ii) xmin = 3 months, 
xmax = 8 months, ρ = 5, σ = 3. Convexity of cost function 
for this data-set is shown in Figures 4 and 5. The opti-
mum solution for both instances is obtained in Tables 
6–9. For instance (i) with tp = 2 months, as Figure 4(a) 
shows, ETC2 optimizes the ETC to the global optimum 
as S* = 40.3031 units and ETC* = $263.547. On the other 
hand, for same instance with tp = 5 months, optimum 
solution is obtained from case (iii) (shown in Figure 4(b)) 
as S* = 42.3286 units and ETC* = $260.733. Furthermore, 
for instance (ii) with tp  =  2  months, the optimal solu-
tion is S* = 59.8088 units and ETC* = $417.985; and with 
tp = 5 months, the optimal solution is S* = 62.5915 units 
and ETC* = $403.638. Convexity of the cost function for 
instance (ii) is shown in Figures 5(a) and (b), respectively.

an outcome of joint effect of more stocking in RW and 
increasing demand rate.

Decrement in t∗o is an outcome of increasing demand 
rate while fixed capacity of OW. The effectiveness of 
deterioration rate is shown in Tables 4 and 5. When it is 
increased, S* slightly decreases, whereas ETC increases 
slightly. Due to increasing deterioration rate, compara-
tively lesser amount has been kept in the stock. Total cost 
is increased because more items have been deteriorated 
and that’s why deterioration cost has been increased. 
As Tables 2–5 delineate demand rate is more sensitive 
than deterioration rate. When tp is increased from 2 to 5, 
then order quantities almost same whereas order-up-to 
levels slightly increase. It is because when deterioration 
starts later then comparatively fewer items will deterio-
rate. Table 5 shows that for the case xmin = 1 and xmax = 5, 
the optimal solution is remains same for different values 
of α and β because in this case no item is deteriorated. 
Hence, more stocking increases the order-up-to level 
and decreases backorder cost and lost sale, which finally 
results decrement in the total cost.

Table 4. Sensitivity of deterioration for uniformly distributed time horizon with tp = 2.

xmin xmax % Change  α  β S* j*  Q̄∗  D̄∗  B̄∗  L̄∗  t∗
r
  t∗

o
  ETC*

1 5 −40 0.006 0.012 42.1143 2 29.7463 0.163923 0.113782 0.417595 1.71143 4.18259 262.875 
−20 0.008 0.016 41.7116 2 29.7427 0.21108 0.135163 0.468396 1.67116 4.1343 263.455 

 0 0.01 0.02 41.3175 2 29.7345 0.254829 0.158263 0.520348 1.63175 4.08755 264.017 
 20 0.012 0.024 40.9321 2 29.7222 0.295367 0.182983 0.573212 1.59321 4.04233 264.56 
 40 0.014 0.028 40.5557 2 29.7061 0.332887 0.209218 0.626768 1.55557 3.99859 265.085 

3 8 −40 0.006 0.012 63.1155 1 54.294 0.890517 0.950975 1.59655 3.80177 6.21307 419.55 
−20 0.008 0.016 62.2769 1 54.3462 1.14737 1.13951 1.80115 3.71586 6.10203 422.72 

 0 0.01 0.02 61.4417 1 54.3729 1.38521 1.34568 2.01233 3.6308 5.99385 425.785 
 20 0.012 0.024 60.6108 1 54.3754 1.60466 1.56904 2.22926 3.54664 5.88848 428.746 
 40 0.014 0.028 59.785 1 54.3552 1.80636 1.80911 2.45121 3.4634 5.78586 431.607 

Table 5. Sensitivity of deterioration for uniformly distributed time horizon with tp = 5.

xmin  xmax % Change α β S* j* Q̄
∗

D̄
∗

B̄
∗

L̄
∗ t

∗

r
t
∗

o
ETC*

1 5 40 0.014 0.028 43.3686 3 29.7252 0 0.0607549 0.27485 1.83686 4.33686 261.014
20 0.012 0.024 43.3686 3 29.7252 0 0.0607549 0.27485 1.83686 4.33686 261.014

0 0.01 0.02 43.3686 3 29.7252 0 0.0607549 0.27485 1.83686 4.33686 261.014
−20 0.008 0.016 43.3686 3 29.7252 0 0.0607549 0.27485 1.83686 4.33686 261.014
−40 0.006 0.012 43.3686 3 29.7252 0 0.0607549 0.27485 1.83686 4.33686 261.014

3 8 −40 0.006 0.012 64.6983 2 53.8741 0.0644454 0.61225 1.19039 3.96983 6.45702 410.202
−20 0.008 0.016 64.4049 2 53.8409 0.0826029 0.652233 1.24167 3.94049 6.42414 410.451

0 0.01 0.02 64.1208 2 53.8073 0.0993047 0.692305 1.29202 3.91208 6.39251 410.69
20 0.012 0.024 63.8457 2 53.7732 0.114662 0.732381 1.34141 3.88457 6.36207 410.92
40 0.014 0.028 63.5795 2 53.739 0.128778 0.772387 1.38983 3.85795 6.33277 411.142

Table 6. Sensitivity of demand for truncated normally distributed time horizon with tp = 2.

xmin  xmax % Change  r  S*  j*  Q̄∗  D̄∗  B̄∗  L̄∗  t∗
r
  t∗

o
  ETC* 

1 5 −40 6 25.2825 2 17.9556 0.165677 0.0566651 0.210051 0.0470835 4.16614 197.363
−20  8 32.7407 2 23.8321 0.201414 0.113142 0.369334 0.967582 4.04998 230.218

0  10 40.3031 2 29.7137 0.239462 0.17093 0.525773 1.53031 3.99018 263.547
20  12 47.9257 2 35.6001 0.278785 0.22809 0.67865 1.91047 3.95508 297.09
40  14 55.8122 1 41.5185 0.321181 0.271486 0.802724 2.20067 3.94833 330.723

3 8 −40  6 36.0167 2 32.0589 0.853936 0.797387 1.16334 1.83612 5.85064 288.92
−20  8 47.8658 1 42.6816 1.09805 1.08617 1.57418 2.85456 5.83592 353.463

0  10 59.8088 1 53.2862 1.29777 1.34873 1.95873 3.47002 5.8405 417.985
20  12 71.7331 1 63.8688 1.47429 1.61009 2.34208 3.8767 5.84407 482.486
40  14 83.6463 1 74.4402 1.6389 1.87088 2.72483 4.16541 5.84684 546.974
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with non-instantaneous deterioration of item, two- 
warehouse storing facility, and partial backlogging of 
shortages in stochastic environment. To capture the 
real life business situation, we have considered that 
time horizon as a random variable and focused on 
two distributions of random time horizon (1) uniform 
and (2) truncated normal. In this paper, first time, two- 
warehouse inventory model is developed in stochas-
tic environment for non-instantaneous deteriorating 
item. In real life, most of the seasonal commodities 
such as food stuff, vegetables, and fruits have a time 
span to maintain their freshness or original condition. 
Moreover, such type of products have a particular sea-
son which may vary randomly over the seasons. This 
model can be applied while dealing with such type of 
products under above discussed scenarios.

The competency of the model is elaborated with some 
illustrative examples and sensitivity analysis for chang-
ing values of parameters. Throughout in our investiga-
tion we have found that truncated normally distributed 
time horizon over performs to the uniform distribution. 
Moreover, for the both distributions, demand rate highly 
influences the decision-making policy.

5.2.1.  Sensitivity of demand and deterioration
Similar to Example 1, we vary the demand rate and 
deterioration rate from −40% to 40% in order to find the 
effective of demand and deterioration in case of trun-
cated normal distributed time horizon. The sensitivity of 
changing demand rate is shown in Tables 6 and 7, and 
sensitivity of deterioration is shown in Tables 8 and 9. 
These tables evince that the tendencies of effectiveness 
of the parameters are same as of the Example 1. However, 
a little difference in the magnitude of the decision varia-
ble obtained in both examples has been found. Similar 
to Example 1, when tp is increased from 2 to 5, then order 
quantities are almost the same, whereas order-up-to lev-
els slightly increase, as shown in Tables 6–9.

Throughout our investigation we found that 
demand rate is more sensitive than deterioration 
rate. Furthermore, truncated normal distribution over  
performs to the uniform distribution.

6.  Conclusion

In this study, we have presented a single-period inte-
grated inventory model that simultaneously deals 

Table 7. Sensitivity demand for truncated normally distributed time horizon with tp = 5.

xmin  xmax % Change r  S* j*  Q̄∗  D̄∗  B̄∗  L̄∗  t∗
r
  t∗

o
  ETC* 

1 5 −40 6 26.5842 3 17.9057 0 0.0175071 0.0942639 0.264026 4.43069 195.463
−20 8 34.3932 3 23.8058 0 0.0442052 0.194173 1.17415 4.29915 227.872

0 10 42.3286 3 29.7064 0 0.0730024 0.293558 1.73286 4.23286 260.733
20 12 50.3346 3 35.6096 0 0.10182 0.390419 2.11122 4.19455 293.797
40 14 58.3838 3 41.515 0 0.130206 0.485001 2.38456 4.17027 326.964

3 8  −40 6 38.5909 2 31.8186 0.0573132 0.310016 0.607054 2.26515 6.4117 279.192
−20 8 50.541 2 42.2882 0.0659134 0.510223 0.935463 3.19262 6.30056 341.185

0 10 62.5915 2 52.7681 0.0759481 0.706855 1.25505 3.75915 6.24356 403.638
20 12 74.6953 2 63.2545 0.0866808 0.900048 1.5688 4.14127 6.20985 466.296
40 14 86.8303 2 73.7452 0.0978031 1.09069 1.87873 4.41645 6.18794 529.062

Table 8. Sensitivity of deterioration for truncated normally distributed time horizon with tp = 2.

xmin  xmax % Change  α  β  S*  j*  Q̄∗  D̄∗  B̄∗  L̄∗  t∗
r
  t∗

o
  ETC* 

1 5 −40  0.006  0.012 41.0775 2 29.7244 0.154062 0.127366 0.429678 1.60775 4.08154 262.478
−20  0.008  0.016 40.6846 2 29.721 0.198344 0.148475 0.477329 1.56846 4.03497 263.022

 0  0.01  0.02 40.3031 2 29.7137 0.239462 0.17093 0.525773 1.53031 3.99018 263.547
 20  0.012  0.024 39.9329 2 29.7028 0.277622 0.194637 0.574833 1.49329 3.94708 264.056
 40  0.014  0.028 39.5735 2 29.6887 0.313016 0.219504 0.62435 1.45735 3.90559 264.548

3 8 −40  0.006  0.012 61.4218 1 53.2108 0.834593 0.97941 1.57104 3.63414 6.05023 412.154
−20  0.008  0.016 60.6114 1 53.2604 1.07508 1.15666 1.76187 3.55147 5.9438 415.119

 0  0.01  0.02 59.8088 1 53.2862 1.29777 1.34873 1.95873 3.47002 5.8405 417.985
 20  0.012  0.024 59.014 1 53.2895 1.50329 1.55528 2.161 3.38975 5.74018 420.755
 40  0.014  0.028 58.227 1 53.2713 1.69225 1.77595 2.36811 3.3106 5.6427 423.43

Table 9. Sensitivity of deterioration for truncated normally distributed time horizon with tp = 5.

xmin  xmax % Change  α  β  S*  j*  Q̄∗  D̄∗  B̄∗  L̄∗  t∗
r
  t∗

o
  ETC* 

1 5  40  0.014  0.028 42.3286 3 29.7064 0 0.0730024 0.293558 1.73286 4.23286 260.733
 20  0.012  0.024 42.3286 3 29.7064 0 0.0730024 0.293558 1.73286 4.23286 260.733

 0  0.01  0.02 42.3286 3 29.7064 0 0.0730024 0.293558 1.73286 4.23286 260.733
−20  0.008  0.016 42.3286 3 29.7064 0 0.0730024 0.293558 1.73286 4.23286 260.733
−40  0.006  0.012 42.3286 3 29.7064 0 0.0730024 0.293558 1.73286 4.23286 260.733

3 8 −40  0.006  0.012 63.0885 2 52.8242 0.0491259 0.639982 1.17211 3.80885 6.29868 403.264
−20  0.008  0.016 62.8359 2 52.7963 0.0630699 0.673493 1.21399 3.78359 6.27059 403.455

 0  0.01  0.02 62.5915 2 52.7681 0.0759481 0.706855 1.25505 3.75915 6.24356 403.638
 20  0.012  0.024 62.3551 2 52.7398 0.0878404 0.740024 1.29529 3.73551 6.21755 403.815
 40  0.014  0.028 62.1263 2 52.7113 0.0988206 0.772961 1.3347 3.71263 6.1925 403.985
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Some potential extensions of the model are: (1) Time 
horizon can be considered as infinite with stochas-
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