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Abstract

Estimation of distribution algorithms (EDAs) are a wide-ranging family of evolutionary algorithms whose common feature is the way they
evolve by learning a probability distribution from the best individuals in a population and sampling it to generate the next one. Although they
have been widely applied to solve combinatorial optimization problems, there are also extensions that work with continuous variables. In this
paper [this paper is an extended version of delaOssa et al. Initial approaches to the application of islands-based parellel EDAs in continuous
domains, in: Proceedings of the 34th International Conference on Parallel Processing Workshops (ICPP 2005 Workshops), Oslo, 2005, pp.
580–587] we focus on the solution of the latter by means of island models. Besides evaluating the performance of traditional island models
when applied to EDAs, our main goal consists in achieving some insight about the behavior and benefits of the migration of probability models
that this framework allow.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Early attempts to parallelize genetic algorithms soon went
further than the simple distribution of the evaluation of indi-
viduals among processors. Although the models that emerged
preserve many of the original features from the sequential al-
gorithms, they introduce some basic differences of behavior
which improve their performance even when executing on a
single processor [2]. Thus, besides reducing execution time by
taking advantage of the computational power of parallel ma-
chines, they achieve higher quality solutions.

Very frequently, the use of a structured population in the
form of islands or demes is responsible for such benefits. These
kinds of parallel evolutionary algorithms (PEAs) are known as
multideme algorithms or island models. They basically work by
considering a set of subpopulations that evolve independently

∗ Corresponding author.
E-mail addresses: ldelaossa@info-ab.uclm.es (L. delaOssa),

jgamez@info-ab.uclm.es (J.A. Gámez), jpuerta@info-ab.uclm.es
(J.M. Puerta).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.03.005

and occasionally exchange information (generally a subset of
individuals) among each other.

In the family of evolutionary computation, EDAs represent
a relatively recent paradigm that explicitly models the popula-
tion of good solutions by using a probabilistic model, which
is used to guide the search. Although EDAs were initially pro-
posed to solve combinatorial optimization problems (discrete
domains) several attempts to apply them to numerical optimiza-
tion (continuous domains) have been made. In literature we can
find several approaches to the application of parallel EDAs to
combinatorial domains; however, little work has been done in
the numerical case. In fact, to the best of our knowledge there
are only two (very recent) studies in which this task has been
tackled. These works, [7,16], have been developed at the same
time but independently. Thus, [7] is a subset of this paper and
was presented in June, while [16] is an in-press work.

Madera et al. [16] propose a parallel asynchronous island-
based estimation of the distribution algorithm which is ap-
plied to combinatorial and numerical problems showing
better performance (with respect to the number of evaluations)
than the sequential algorithm. Concretely, UMDA (univariate
marginal distribution algorithm) is used inside each island. The
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information (asynchronously) shared between the different is-
lands is a set of individuals (the best individuals are sent from
the source and the worst individuals are replaced in the target
island).

On the other hand, [7] is completely devoted to dealing with
numerical domains. As in [16], UMDA is one of the EDAs
used inside each island but, instead of comparing sequential vs
parallel models, the target of the paper is to compare migrat-
ing individuals or migrating probabilistic models. This paper
is an extension of [7] and in our opinion our main contribu-
tions are: (1) to design parallel EDAs that share probabilistic
models and to compare them with the classical migration of
individuals; (2) to enlarge the class of algorithms considered
from the univariate case [7] to the multivariate one, offering
a general framework that can be used with any kind of EDAs;
and (3) to analyze the impact of different parameters (num-
ber of islands, population size, problem size) on the proposed
algorithms.

With this purpose in mind, this article, is organized into
six sections apart from the introduction. Section 2 briefly de-
scribes EDAs and the approaches used in this work: UMDAg

and EMNAGLOBAL. In Section 3, we give some basic ideas
about PEAs based on the island model. In Section 4, we show
the way we propose to carry out migrations when working with
EDAs and the island-based algorithms designed. In Section 5,
we show experiments carried out and the analysis of the results
obtained. Finally, in Section 6 we present our conclusions and
some possibilities for future research.

2. Estimation of distribution algorithms: EDAs

EDAs [15] belong to the family of population-based evo-
lutionary algorithms. Their main cycle is quite similar to that
of genetic algorithms but they do not use local information
through crossover or mutation of individuals. Instead, they cap-
ture global knowledge from the population in the form of a
probabilistic model. Thus, the transition between populations is
made by estimating a probability distribution/model from (usu-
ally the best individuals of) the population and sampling it to
obtain the new population.

The general schema of an EDA is as follows:

1. D0 ← Generate initial population (N individuals)
2. Evaluate D0
3. i = 0
4. Repeat

a. i = i + 1
b. Ds ← Select S�N individuals from Di−1
d. Estimate a new model M from Ds

e. Dnew ← Sample N individuals from M
e. Evaluate Dnew
g. Di ← Select N individuals from Di−1 ∪Dnew
until stop condition

The main advantage of EDAs with respect to other techniques
lies in the capability of the probabilistic model, M, to make the
interrelations among variables explicit. Also noteworthy is the
small number of parameters that must be specified and the fact

that many of them can be set to their (commonly used) default
values. On the other hand, as it is very hard to deal with the
joint probability distribution, M is taken as a simplification of
it. This gives rise to three main groups of EDAs [15]: univari-
ate models, which assume that variables are marginally inde-
pendent; bivariate models, which accept dependences between
pairs of variables; and multivariate models where there is no
limitation of dependences.

In order to test our models we are going to use two differ-
ent algorithms: a univariate one, UMDAg , and EMNAGLOBAL
which is an easy-to-learn multivariate model. The second one
is more complex and powerful, although it requires a larger
population than UMDAg to evolve effectively. Therefore, im-
portant behavioral differences can be expected when applying
island models.

2.1. UMDAg

In literature we can find different proposals of univari-
ate EDAs in continuous domains: continuous PBIL [22] and
Gaussian UMDA [14,13] which are extensions of the discrete
versions to the continuous case by using unidimensional and
independent normal densities to model the joint distribution;
UMDAt which models the unidimensional and independent
densities by using the TSP-distribution [8]; FHH and FWH [9]
which uses marginal histograms to model the population; and
the IDEA framework [4] which makes a clear distinction be-
tween the algorithm used (univariate, . . .) and the distribution
considered (uniform, normal, kernels, . . .).

In the univariate case we have selected UMDAg (univariate
marginal distribution algorithm for Gaussian models) as the
algorithm that evolves inside each island. Our choice is due to
different reasons: besides usually being used as a baseline for
comparison, its simple structure makes it easier to identify the
benefits coming from parallelism. Moreover, we have success-
fully tested the parallelization of the UMDA [17] algorithm in
the discrete case.

As has been mentioned, UMDAg uses the normal distribu-
tion to model the density of each variable, and the joint (n-
dimensional) density is factorized as the product of all the uni-
dimensional and independent normal densities:

f (x; �)= fN(x;µ, �) =
n∏

i=1

fN(xi; �i , �
2
i )

=
n∏

i=1

1√
2��i

· e− 1
2

(
xi−�i

�i

)2

. (1)

Thus, model induction is reduced to the estimation of � and �2

for each variable Xi , i = 1, . . . , n. Furthermore, as each vari-
able is independently simulated, any standard method for sam-
pling from a normal distribution can be used (see for example
[21]).

However, as mentioned in [22] the performance of a uni-
variate algorithm hardly depends on the way that the variance
(�2) is estimated. In fact, four different ways of computing the
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new variance are proposed in [22]. The main problem with the
variance is that if this parameter decreases too fast, then very
similar values are generated which leads to the premature con-
vergence phenomenon. In our case this situation is emphasized
by the use of truncation selection, that is, we generate popula-
tion Di by selecting the best N individuals from Di−1 ∪Dnew.
Furthermore, as the model is induced from the best N

2 individ-
uals of Di , the variance decreases too fast.

In order to maintain population diversity during the search
progress we have tried different ways of computing the param-
eters (�, �2) when estimating the probabilistic model. In the
end, we have selected the following:

• � is estimated as usual, that is, from the best N
2 individuals

taken from Di .
• �2 is computed by using the whole population Di (N indi-

viduals), but considering the mean previously computed by
using only the best half of the population:

�2 =
∑N

j=1 (x
j
i − �i(N/2)(Xi))

2

N
, (2)

where x
j
i is the value of variable Xi in the jth individual and

�N/2(Xi) is the mean value of variable Xi over the best N
2

individuals of the population.
In this way, we try to quickly obtain good values for the

mean, but diversity is introduced by avoiding a too fast de-
crease in variance. Fig. 1(a) shows the evolution of the two
different estimations of the variance parameter (in logarithmic
scale) for the left-most variable during the first 140 generations
in a typical execution of the Summation Cancellation problem
(dimension 10). As can be seen, Eq. (2) yields a smoother de-
crease than when using �N/2, allowing the evasion of prema-
ture convergence to non-optimal values (see fitness evolution in
Fig. 1(b)).

2.2. EMNAGLOBAL

As mentioned above, in the multivariate approach there is no
assumption about independences. Therefore, this kind of model
can gather all the information about relations among variables
and make use of it to generate the next population. In literature
we can find several models of multivariate EDAs for continuous

domains: EMNAGLOBAL, EGNAee, EGNABGe, EGNABIC ([15,
Chapter 8]). Whereas the first one, EMNAGLOBAL, codifies
the model by directly learning the covariance matrix, the rest
use different techniques to learn a Gaussian network which
represents the probabilistic model. These models are richer than
univariate or bivariate, but their learning and sampling is rather
more complex.

In our work, we are going to use the algorithm EMNAGLOBAL,
which uses a multinormal distribution, N(µ, �), to model the
joint density:

f (x; �) = (2�)
−n
2 |�| −1

2 exp

(
−1

2
(x− µ)′�−1(x− µ)

)
, (3)

where µ = (�1, . . . , �n) is the vector of means, � is the (n×
n) covariance matrix, prime denotes the transpose operator,
|�| denotes the determinant of � and �−1 denotes the inverse
matrix of �.

As in UMDAg , in EMNAGLOBAL there is no structural
learning, only parameter learning. It requires the estimation of

2n+
(

n−1
2

)
parameters at each generation: n means, n variances

and

(
n−1
2

)
covariances. This can be done very efficiently in a

single pass through the population.
With respect to sampling [21], since � is positive, definite

and symmetric, there exists a unique lower triangular matrix
L such as � = LL′, called Cholesky factor of �. Samples
of the vector x can be represented as x = µ + L−1z, where
z = z1, . . . , zn is a vector whose components are marginally
distributed to the standard normal distribution N(0, 1).

3. Coarse-grained PEAs: the islands model

The ways to parallelize an evolutionary algorithm go from
the distribution of the evaluations of individuals (global paral-
lelization) which does not change its behavior, to new models
that make a very intensive use of communication [5], which
generally give rise to a completely different algorithm (fine
grained parallelization).

Among these, we can find the so-called coarse-grained paral-
lelization or island-based models. They consist of using several
populations that evolve independently according to the original
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sequential algorithm and occasionally interchange individuals
among each other.

These models have been successfully tested with different
kinds of algorithms such as genetic algorithms, simulated an-
nealing or variable neighborhood search (VNS) (see [3, Chap-
ters 5, 11 and 12]). However, despite being the most widely
used and popular kind of PEA, there are still some questions
which are not completely clear since the effects of migration
are not fully known and because there are many parameters in-
volved in their design. Besides the parameter setting required
for each island to evolve (population size, elitism, etc.) it is nec-
essary to specify the way that interaction among islands will
be carried out. The parallel model is mainly specified by using
the following parameters:

• Number of islands: When real parallelism is used this pa-
rameter is constrained by the available hardware, but when
parallelism is simulated this is a tunable parameter.
• Number of individuals that migrate from one island to an-

other.
• Migration policies: The most common option consists in

fixing the number of generations elapsed in an island before
individuals are received or sent from/to others.
• Topology: Islands and migrations must be defined by some

interconnection topology (star, ring, etc.).
• Replacement policies: It is necessary to define how pop-

ulation inside an island is formed after a migration is
carried out. The most common option relies on elitism,
that is, received individuals are added to current popula-
tion and, afterwards, individuals with the worst fitness are
discarded.

4. Islands-based EDAs: migration of probabilistic models

As has been mentioned before, cooperation among islands
is carried out by interchanging information among each other.
This information usually takes the form of a subset of individ-
uals that are passed to an island, which in turn incorporates it.
There are some works on parallel EDAs that follow this ap-
proach in combinatorial (i.e. [1,16,19,20]) and numerical (i.e.
[12,16]) optimization. However, because of the intrinsic func-
tioning of EDAs, parallelization can be designed in a different
way. In fact, as EDAs resume the properties of the best indi-
viduals in the population by using a compact representation,
this opens the possibility of sharing only those parameters that
define the probabilistic model instead of sharing individuals.
This alternative scheme (migration of the probabilistic model)
has been explored in the combinatorial case [6], showing bet-
ter performance than the standard migration of individuals. In
general we can expect some benefits when interchanging this
kind of information:

• A probabilistic model gathers more information than a subset
of individuals because it usually represents and resumes a
larger number of them. Besides, it may contain additional
information about interrelations among variables.
• This richer information is also easier to analyze since it is

more compact and explicitly represented.

• Whereas the options when migrating individuals are reduced
to their incorporation or not to the receiver island evolution,
the migration of models allows more flexibility.

4.1. Model combination

The next point to discuss is how the receiver island incorpo-
rates (or otherwise) the information received. That is, we have
to decide how two probabilistic models (the resident and the
incoming one) are combined. We refer to this step as model
combination.

In this initial study, our first choice has been to try a strategy
successfully tested in discrete domains with univariate models
[6]. It consists in replacing the probabilistic model in an island
by a convex combination between the resident and the incoming
models, yielding a mixed model that belongs to the same family.
In the univariate case, given a parameter � ∈ [0, 1] and the
parameters for two marginal normal distributions (�i ,�

2
i ) and

(�j ,�2
j ) the combined model is obtained as

�k = � · �i + (1− �) · �j ,

�2
k = �2 · �2

i + (1− �)2 · �2
j , (4)

where (�k, �
2
k) are also the parameters for a normal distribution.

In the case of more complex models the combination can be
carried out by adding two weighted covariance matrices.

However, preliminary experiments with this type of model
combination showed us that the variance of the obtained
model decreases at a critical velocity, causing the algorithms
to converge prematurely. It seems that as both UMDAg and
EMNAGLOBAL use models best suited for unimodal fitness
landscapes, this (closed) model combination yields a model
again only suited for unimodal fitness. 1 Because of this, we
have abandoned this type of model combination and study a
more general alternative way.

Our new approach for model combination in continuous do-
mains consists of using a mixture model M = ∑

i �iMi as a
linear convex combination of simpler distributions, where {�i}
are called the mixture coefficients and satisfy

∑
i �i = 1; {Mi}

are called the components of the mixture model, each one hav-
ing its own parameters, and can even belong to different types
of models or distributions. Mixture models provide a flexible
way for modeling complex distributions, because they allow
the combination of single distributions (such as normal dis-
tributions) into a joint model by using a building-block like
scheme.

Mixture models are used, for instance, in clustering prob-
lems, where each component in the mixture corresponds to a
different cluster from which the data can be generated and the
coefficients represent the importance of each cluster. This is
very closely related to the island model because each island
can be associated to a cluster of solutions in the mixture model
and the coefficients could be the relative importance of the

1 This possible explanation was provided by an anonymous reviewer.
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fitness solutions reached in an island with respect to the fitness
solutions in the other island. So, this kind of combination is a
natural way of mixing models in PEA.

As this type of model combination is suitable for all families
of EDAs, not only for univariate models, we can understand
this proposal of island-based parallel EDAs with migration of
models as a framework that can be instantiated by using prob-
abilistic models of different complexity and does not force the
use of the same type of algorithm at each island. Of course, we
plan to investigate these topics as future research.

In this work, we consider a mixture of two distributions,
so we only have to learn one coefficient � ∈ [0, 1] involved
in the mixture, and after that we just sample from the learnt
mixture. Thus, if Mr is the resident model on a given island
and Mi is the incoming model, the mixture is sampled as
follows:

for i = 1 to N do

u = random(0, 1)

if u < � sample(Mr)

else sample(Mi)

We discuss � in the next section.

4.2. Proposed algorithms

Due to the great number of parameters which need to be
specified in a PEA and bearing in mind the goal of this work,
we have fixed some of these by using standard values or
according to our experience (previous work or preliminary
experiments). Thus, (1) we use eight islands arranged in an
unidimensional ring; (2) we use synchronous communication
every five generations; and (3) we use standard parameter set-
ting for the algorithms running inside each island (truncation
selection, best half population is used for learning, etc.).

For the sake of comparison we consider the traditional
migration-of-individuals scheme and additionally we propose
two migration-of-models-based algorithms.

• pEDAInd. In this algorithm we migrate the best 10% of
the individuals in the population. The receiver island uses
elitism to incorporate these individuals, that is, it enlarges its
population with the incoming individuals and then truncates
the population by removing the worst 10% individuals.
• pEDAMod(0.9). This algorithm uses migration of models

and combines them by using the mixture described above.
In this case � is given the value 0.9. The choice of this value
conforms to two different requirements: (1) it represents a
rather conservative value that avoids strongly degrading the
resident model even if the incoming one is of low quality;
and (2) in some way allows a fair comparison with pEDAInd
because in the mixture around 10% of the individuals are
expected to be sampled from the incoming model.
• pEDAMod(Adpt). This algorithm differs from the previous

one in the way in which � is estimated. In this case instead
of using a fixed value for � we use an adaptive method that
takes into account the goodness of the incoming model with
respect to the resident one. Thus, an island j sends/receives
a pair (M, f ) where M is a probabilistic model and f is its

associated fitness, which is computed as the fitness average of
the 50% best individuals of the island population. Therefore,
fj can be viewed as the goodness of population/model in
island j. Finally,

� =
⎧⎨
⎩

fr

fi + fr
if fi �fr,

1 otherwise,

where fr is the fitness associated to the resident model and
fi is the fitness associated to the incoming model. That is,
if an island receives a model which is better than the one
it possesses, then a low weight is assigned to the resident
model. Otherwise a conservative policy is used and the island
does not incorporate any information.

5. Experimental study

In this section, we describe the experimental study carried
out and the results obtained. Our purpose is twofold: besides
evaluating the behavior of UMDAg and EMNAGLOBAL when
applying island models, we will try to compare migration of
individuals vs migration of models.

5.1. Study cases

In order to test the proposed algorithms we have chosen
four standard functions broadly used in the related literature. In
addition, we have used two more functions that exhibit different
features. The first is a rotation of the Cigar function, whereas the
other (Test [7]) is a deceptive function with different properties.
In all cases the function takes a n-dimensional individual x =
(x1, . . . , xn) as input. The mathematical description of the six
functions is

• Summation Cancellation:

fsum(x) = 1

(10−5 +∑n
i=1 |yi |) ,

y1 = x1,

yi = xi + yi−1; i = 2, . . . , n,

−0.16�xi �0.16; i = 1, . . . , n.

• Griewangk:

fgri(x)= 1+
n∑

i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)

−600�xi �600; i = 1, . . . , n.

• Schwefel:

fsch(x) =
n∑

i=1

[
(xi − x2

i )2 + (xi − 1)2
]

−10�xi �10; i = 1, . . . , n.
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• Rosenbrock generalized:

fros(x) =
n−1∑
i=1

[
100 · (xi+1 − x2

i )2 + (1− xi)
2
]

−10�xi �10; i = 1, . . . , n.

• RotatedCigar:

fcigar(x) = y2
1 + 104

n∑
i=1

y2
i ,

with

y = [o1, . . . , on]T x, i.e. yi = oT
i x(see text),

−3�xi �7; i = 1, . . . , n.

• Test:

ftest(x) =
m∑

j=1

f 5
dec(sj),

sj = (x5j−4, x5j−3, x5j−2, x5j−1, x5j ); n = 5m,

f 5
dec(x1, x2, . . . , x5)=

(
4∑

i=1

xi

)
· f 1(x5)

+4 ·max{abs(f 1(−1)), 1}

f 1(x) = (1− (x − p)2),

−1�xi �1; i = 1, . . . , n.

In the first case the goal is to maximize the function and the
optimum value is 100 000.

In the next three cases the goal is to minimize, and the opti-
mum value is 0. In the four problems the optimum is achieved
by the configuration (0, 0, . . . , 0). The RotatedCigar function
is a minimization one with optimum 0. As described in [10] we
have carried out a rotation of the function Cigar, y = Ax, where
A = [o1, . . . , on]T implements an orthonormal linear transfor-
mation of x obtained through Gram Schmidt process. Finally,
the Test problem [7] is a deceptive function with a parameter,
0�p�1, that changes the properties of the function. Thus, for
f 5

dec(x), values of f 1(x5) below 0 leads x1 to x4 to −1, since
values above 0 lead these values to 1. The role of p has to do
with the probability of f 1(x5) being above 0 and the difference
between values of local and global optimum (Fig. 2).

We have considered an instance of this function which cor-
responds to p = 0.75. Thus, the a priori probability of f 1(x5)

being above 0 is 0.625, so it induces a trend for the blocks to
reach the configuration (1, 1, 1, 1, 0.75) and the local optima
8m. Values of f 1(x5) below 0, with an a priori probability of
0.375 leads to (−1,−1,−1,−1,−1) and a value of 16.5m.

In order to have only problems of maximization, we have
multiplied the fitness of the functions which had to be mini-
mized by −1.
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Fig. 2. f 1(x) for different values of p.

5.2. Experiments

In the experiments, we have considered the algorithms and
parameters described in Section 4. In order to provide a baseline
for comparison, we have replaced the search method (UMDAg

and EMNAGLOBAL) by a genetic algorithm. This algorithm uses
arithmetic crossover (with probability 0.6 and � = 0.25) and
Mühlenbein mutation [18] (with probability 0.05). Both opera-
tors have been successfully tested and compared with others in
[11]. Furthermore, we have also considered sequential versions
of UMDAg and EMNAGLOBAL.

We have divided our experiments into two different groups.
In the first of these, we analyze the convergence of the algo-
rithms whereas with the second we try to achieve some insight
into scalability issues.

5.2.1. Convergence
As the relation between population and quality of the solu-

tions is not linear, we have tested all the proposed algorithms
with population size 256 and 2048, splitting the population
equally among the eight islands in the parallel algorithms.
We have tested the behavior of each configuration problem-
algorithm-population by running it 50 times, allowing a max-
imum of 512 000 evaluations. Table 1 shows the obtained
results, mean ± deviation of fitness and number of evaluations.
The problem size considered is n = 10 in all cases except for
Test where we have used n = 20.

In order to determine whether there is some algorithm or
type of migration which outperforms the rest, we compared,
for each problem, the group of 4 algorithms that use the same
probabilistic model. These comparisons were made as follows:

1. We chose the algorithm with best mean fitness as the refer-
ence (we use number of evaluations followed by random de-
cision for tie-breaking). Then, we compared this algorithm
with the others in its group by using an unpaired t-test (sig-
nificance level � = 0.05). The fitness of the reference algo-
rithm and all those which do not present a significant differ-
ence with respect to it are marked with •.

2. Once we had identified the algorithms with best fitness, we
proceeded in the same way for the number of evaluations,
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Table 1
Experimental results for the six problems with population size 256 and 2048

Population 256 Population 2048

SummationCancellation(10)

Genetic 10% 4621.76087± 9665.27592 300 467.2± 89 179.86537 4089.53718± 2990.67859 510 156.8±4480.26122
UMDAg • 97 405.02053±14 367.96418 194 763.66±26 111.64882 91 299.59464±13 212.52913 498 625.46±65 551.70533
pEDAInd—UMDA—10% • 100 000±0.00002 • 171 084.8±12 601.52408 98 500.88305±306.91794 511 590.4±2026.99432
pEDAMod(0.9)—UMDA • 100000±0 232 704±23 734.8289 94 250.27981±1124.03892 510 361.6±4789.60071
pEDAMod(Adpt)—UMDA • 99 971.28644±163.23752 273 920±80 456.72727 95 414.51467±959.92388 509 952±5067.48579
EMNA • 100 000±0 • 37 675.22±315.327 • 100 000±0 307 419.94±1039.68094
pEDAInd-EMNA—10% 131.89238±121.93095 20 812.8±2295.71299 • 100 000±0 286 720±0
pEDAMod(0.9)— EMNA 75.99395±35.35615 20 428.8±2636.69602 • 100 000±0 303 923.2±4825.21161
pEDAMod(Adpt)—EMNA 53.73989±25.3624 15 692.8±2251.59448 • 100 000±0 296 960±0

Rosenbrock(10)

Genetic 10% −3.92687± 1.71642 512 000±0 −6.42791± 1.0945 512 000±0
UMDAg −7.79648± 0.08518 38 114.74±2725.31401 7.77431±0.03037 316 755.74±11 294.86208
pEDAInd—UMDA—10% −5.70504± 0.17617 512 000±0 −7.23648± 0.09418 512 000±0
pEDAMod(0.9)—UMDA −6.55944± 0.54114 512 000±0 −7.58713± 0.06361 512 000±0
pEDAMod(Adpt)—UMDA • −0.28805± 0.06104 •512 000±0 −5.89412± 0.30222 511 590.4±2896.30938
EMNA −7.66572± 0.54625 17 356.8±679.20304 −7.40217± 0.18108 143 794.66±17588.25225
pEDAInd—EMNA—10% −16.85461± 8.70958 22 348.8±4139.28153 • −6.82922± 0.28296 511 385.6±2456.55488
pEDAMod(0.9)—EMNA −22.83298± 11.88463 21 555.2±3492.14059 • −6.85737± 0.35934 49 2134.4±39 816.05851
pEDAMod(Adpt)—EMNA −44.67464± 33.18334 18304±2056.63486 • −6.92935± 0.35556 • 33 4028.8±110 518.63931

Schwefel (10)
Genetic 10% 0±0 212 480±39 000.47514 −0.00216± 0.00144 512 000±0
UMDAg −0.02896± 0.01304 25 775.04±1321.24074 −0.02479± 0.00398 202 697.72±9073.52838
pEDAInd—UMDA—10% • 0±0 167 603.2±31 841.735 −0.00082± 0.00081 512 000±0
pEDAMod(0.9)—UMDA • 0±0.00001 219 110.4±78 001.24606 −0.00364± 0.00265 512 000±0
pEDAMod(Adpt)—UMDA • 0±0 • 48 307.2±10 140.94128 • 0±0 334 643.2±51 113.82789
EMNA −1.91042± 1.09402 16 085.62±864.54846 −0.87415± 0.20443 126 513.36±23 256.80303
pEDAInd—EMNA—10% −3.65674± 1.73999 20 454.4±2362.89356 • −0.24985± 0.18448 • 510 566.4±7743.47645
pEDAMod(0.9)—EMNA −4.99876± 2.09143 20 249.6±2365.72202 −0.63161± 0.3714 468 992±73 957.52029
pEDAMod(Adpt)—EMNA −5.1184± 2.73176 17 075.2±2 203.56135 −0.69711± 0.32355 291 430.4±99 672.21988

Griewangk (10)
Genetic 10% −0.07444± 0.02816 79 232±17 440.10485 −0.03478± 0.02031 420 659.2±70 849.41997
UMDAg −0.35167± 0.16933 16 313.8±9605.22245 −0.27945± 0.09238 117 946±57 619.52701
pEDAInd—UMDA—10% −0.02649± 0.0238 53 145.6±15 321.29 −0.0304± 0.02345 428 441.6±77 803.09923
pEDAMod(0.9)—UMDA • −0.00172± 0.00393 • 39 910.4±13 103.82916 • −0.00472± 0.01224 425 574.4±75 082.06025
pEDAMod(Adpt)—UMDA −0.00505± 0.01047 33920±10 172.01924 • −0.00507± 0.013 419 020.8±79 878.96568
EMNA −0.0623± 0.14189 21 721.12±8194.75666 −0.19092± 0.13308 146 097.3±109 398.70613
pEDAInd—EMNA—10% −0.31505± 0.1622 33 100.8±15 290.20332 −0.01927± 0.03775 321 126.4±115 533.4899
pEDAMod(0.9)—EMNA −0.5174± 0.20408 24 780.8±4199.82694 • 0±0 163 430.4±16 152.48676
pEDAMod(Adpt)—EMNA −0.86217± 0.28036 18 816±2951.31655 • 0±0 • 160 768±14 810.29978

RotatedCigar (10)
Genetic 10% −1.30513± 1.99197 358 041.6±204 952.76588 −0.38898± 0.47926 487 014.4±46 635.55533
UMDAg −0.63085± 0.77231 45 011.48±7708.3914 −0.30033± 0.23005 363 600.88±32 719.10891
pEDAInd—UMDA—10% −0.4955± 0.66971 511 795.2±979.95052 −0.20009± 0.27923 493 772.8±66 339.88596
pEDAMod(0.9)—UMDA −0.29689± 0.60245 388 736±194 399.80516 • −0.05935± 0.07984 • 469 811.2±97 115.2065
pEDAMod(Adpt)—UMDA −0.40035± 0.67451 482 432±116 925.45457 • −0.08531± 0.13762 • 491 520±62 783.67447
EMNA −52.2593± 215.55052 15 068.44±3018.02367 • 0±0 104 100.66±1525.89624
pEDAInd—EMNA—10% −4276.03436± 3009.29172 19 814.4±3211.62948 • 0±0 • 102 400±0
pEDAMod(0.9)—EMNA −7945.42954± 6469.66892 21 376±3304.10258 • 0±0 110 182.4±4417.73169
pEDAMod(Adpt)—EMNA −11 467.80758± 6181.33831 18 201.6±2776.66028 • 0±0 104 857.6±4417.73169

Test (20)
Genetic 10% 59.54±3.35196 81 817.6±5086.19041 60.72969±3.04274 511 180.8±4551.3433
UMDAg 54.44±4.46487 34 460.42±2001.8494 50.14257±3.50006 248 321.1±84 113.16713
pEDAInd—UMDAvv—10% • 60.05±3.32546 • 35 635.2±1889.01253 • 60.645±3.52038 300 646.4±33 534.86336
pEDAMod(0.9)—UMDA • 60.74744±2.79943 37 862.4±4524.30108 58.59561±2.65642 293 683.2±43 809.57967
pEDAMod(Adpt)—UMDA • −61.0076± 3.12438 • 36 454.4±3471.78256 58.35±3.54022 282 828.8±12 565.25313
EMNA 58.87835±2.07826 7971.72±14 591.88229 61.71569±1.16702 27 143.56±9453.81368
pEDAInd—EMNA—10% 39.66867±1.11555 1280±0 • 62.9435±1.63767 275 251.2±206 761.70032
pEDAMod(0.9)—EMNA 39.95651±1.36175 1280±0 • 62.51193±1.30228 • 179 404.8±180 344.12323
pEDAMod(Adpt)—EMNA 39.66872±0.98991 1280±0 62.0844±1.27567 204 185.6±222 050.05352
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Fig. 3. Fitness with respect to number of islands in algorithms with population 2048.
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Fig. 4. Fitness with respect to number of islands in algorithms with population 256.

but only taking into account those algorithms previously
selected by using fitness. Therefore, those algorithms marked
with • in the number of evaluations are those which were
found non-different with respect to the algorithm having best
average fitness and also non-different with respect to the
algorithm carrying out fewer evaluations (on average). Cells
containing the reference algorithm (and those with the same
mean) have been marked in italics.

3. Finally, we made a similar comparison between the best
algorithm(s) that use UMDAg and the best one(s) using
EMNAg . If any of them outperformed the other(s) then their
cell(s) are marked in bold.

From the results of the table and the comparisons carried out
we have observed that concerning univariate models, it can be
seen that islands always outperform sequential versions. More-
over, except in the RotatedCigar problem, the results obtained
by these algorithms are always much better when running with
a population of 256 individuals. We could expect that this is
due to the fact that they need enough generations to evolve
through, and a bigger population reaches the stop condition
earlier. However, in most cases the number of evaluations is
lower than 512 000, which means that apart from generations
to evolve, algorithms based on UMDAg can benefit from small
population islands.

For a deeper insight within this phenomenon, we ran another
experiment, in which the number of islands changed from 4
to 16. Fig. 3 shows the results where we can appreciate that,

although population is the highest we have tested (2048) and
the maximum number of generations is the same (512 000),
the benefits of augmenting the number of islands are clear in
all problems without exception. Moreover, in some problems
such as Rosenbrock or Schwefel this trend can even be observed
when using a population of size 256 (Fig. 4).

A possible explanation for this could be that since UMDAg

only computes marginal probabilities, the mean value of a given
variable will evolve towards the region with more frequent good
values. A different region (for this variable) where the proba-
bility of reaching good values is very small (although they can
be better) will not be reached even if a few individuals taking
values in such a region appear throughout the search. However,
if these few individuals appear in an island where the popula-
tion is smaller, their influence when computing the probabilis-
tic model is bigger and can lead the mean of the variable to the
right region. Furthermore, this information is shared with the
rest of the islands through communication.

On the other hand, concerning EMNAGLOBAL-based algo-
rithms, it is clear that they need a larger population to determine
the model parameters. To get more insight into this situation we
have conducted a new experiment in which different popula-
tion sizes have been tried. As can be seen in Fig. 5, the increase
in population leads to better performance, although there is a
point at which this trend stops.

The other key point of our analysis is the comparison be-
tween migration of models and migration of individuals. As
can be seen in Table 1, with UMDAg , the migration of models
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Fig. 5. Population vs fitness within island algorithms that use EMNA.

Table 2
Results when increasing the complexity of the problems (population sizes 256 and 2048)

Population 256 Population 2048

Summation Cancellation (50)
UMDAg 0.43836±0.05086 9108.22±6185.10313 0.51231±0.05769 94 625.68±52 185.1973
pEDAInd—UMDA—10% 2.28311±0.77034 937 318.4±84 999.22861 2.88527±0.73994 1 022 361.6±4839.2352
pEDAMod(0.9)—UMDA • 4.46237±1.39961 • 1 023 744±739.00834 1.06616±0.16696 831 078.4±292 134.47599
pEDAMod(Adpt)—UMDA • 5.27216±1.46708 • 1 023 846.4±424.52797 1.08491 ± 0.17086 820 428.8±284 199.51197

Rosenbrock (50)
UMDAg −47.58985± 0.07711 69 043.62±2411.24206 −47.57181± 0.02161 556 667.48±10 868.52866
pEDAInd—UMDA—10% −44.2741± 0.13457 1 024 000±0 −46.72235± 0.09526 1 024 000±0
pEDAMod(0.9)—UMDA −45.4253± 0.55201 1 024 000±0 −47.38645± 0.07439 1 024 000±0
pEDAMod(Adpt)—UMDA • −30.73386± 0.4261 • 1 024 000±0 −44.3419± 0.2754 1 024 000±0

Schwefel (50)
UMDAg −0.23512± 0.22688 57 073.92±2020.34504 −0.28175± 0.10116 460 617.52±11 436.63328
pEDAInd—UMDA—10% • 0±0 588 134.4±59 284.54647 −0.04008 ±0.01589 1 024 000±0
pEDAMod(0.9)—UMDA • −0.00002± 0.00005 691 046.4±221 984.16991 −0.0701± 0.04207 1 024 000±0
pEDAMod(Adpt)—UMDA • 0±0 • 298 496±16 029.83884 −0.0039± 0.00526 1 024 000±0

Griewangk (50)
UMDAg −0.23512± 0.22688 57 073.92±2020.34504 −0.28175± 0.10116 460 617.52±11 436.63328
pEDAInd—UMDA—10% • 0±0 588 134.4±59 284.54647 −0.04008± 0.01589 1 024 000±0
pEDAMod(0.9)—UMDA • −0.00002± 0.00005 691 046.4±221 984.16991 −0.0701± 0.04207 1 024 000±0
pEDAMod(Adpt)—UMDA • 0±0 • 298 496±16 029.83884 −0.0039± 0.00526 1 024 000±0

Griewangk (50)
UMDAg • 0±0 • 49 528.54± 453.96688 • 0±0 393 089.4±1674.50968
pEDAInd—UMDA—10% • 0±0 • 49 254.4±652.6745 • 0±0 374 374.4±5187.81752
pEDAMod(0.9)—UMDA • 0±0 52 531.2±449.52123 • 0±0 398 950.4±2048
pEDAMod(Adpt)—UMDA • 0±0 51 865.6± 652.6745 • 0±0 396 902.4± 4463.51252

RotatedCigar (50)
UMDAg −2.95162± 2.21312 152 510.24±25 021.95314 −2.64521± 0.951 1 020 572.42±2360.17203
pEDAInd—UMDA—10% −2.04732± 1.55568 1 023 897.6±512 −2.15689± 0.87874 1 024 000±0
pEDAMod(0.9)—UMDA • −1.51311± 1.47151 • 985 497.6±192 245.50349 • −1.40967± 0.69845 • 1 024 000±0
pEDAMod(Adpt)—UMDA −3.13416± 3.43959 1 023 948.8±256 • −1.34577± 1.03632 • 1 016 217.6±50 698.50066

Test (100)
UMDAg 251.65733±35.64567 82 438.32±41 644.68788 194.80968±25.73027 150 442.08±308 816.34329
pEDAInd—UMDA—10% • 284.95± 8.32103 • 121 702.4±5934.19559 • 283.93 ±8.56 896 614.4±28 055.85591
pEDAMod(0.9)—UMDA • 284.1±6.94022 170 547.2±26 417.04177 272.37±6.38444 878 182.4±27 137.61002
pEDAMod(Adpt)—UMDA • 283.08±7.0989 • 121 600±3544.15951 268.8±8.58809 849 100.8±19 590.2735

that use adaptive � is the best island algorithm (or is included
in best group) in four of the six problems. Moreover, in the
Schwefel problem, where the best is the migration of models
with adaptive �, the result of this scheme is far better than the
others. Algorithms that migrate individuals are the best in two
problems, although it is worth mentioning that the difference

with model migration is not as great as it is in the remaining
cases.

EMNAGLOBAL-based algorithms behave differently since the
best kind of migration hardly depends on the problem. Thus,
the migration of individuals is the best option in two problems;
the migration of models with � = 0.9 is the best option in one
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case; and migration of models with adaptive � is the best option
in the rest. When using small populations we have obtained
worse results mixing models than migrating individuals. It is
clear that learning a multivariate model from a small population
reduces the confidence in the learnt model and therefore in its
combinations. On the other hand, in the migration of individuals
scheme if the received individuals are bad they can be discarded
very quickly by the resident island.

In general, it could be said that there is no clear trend in
EMNAGLOBAL-based algorithms, while migration of models
with adaptive � performs better in the univariate models-based
island algorithms.

5.2.2. Increasing the problem complexity
In order to test the robustness of the proposed models with

respect to the problem complexity, we have repeated the ex-
periments for instances of size n = 50 (n = 100 for Test).
As the complexity increases so much we have duplicated the
maximum number of allowed evaluations (1 024 000). For the
reasons previously explained in this experiment, we have con-
sidered only the univariate case. The results are shown in Table
5.2.1.

The algorithms have been compared by using the method-
ology previously described. In all cases, but RotatedCigar the
use of a small population leads to better solutions. Moreover,
the number of evaluations required to reach these solutions is
considerably smaller.

Concerning the kind of migration the differences are not so
clear in some cases. However, in general migration of models
with adaptive � estimation seems to be the best option, because
in all problems it is either the best or similar to the best. More-
over, in two of the problems where this scheme outperforms
the others (Rosenbrock and Schwefel) the differences are fairly
substantial.

6. Conclusions

In this work, the problem of applying migration-of-models-
based parallel EDAs to continuous problems has been ad-
dressed. The approach can be viewed as a general framework
which can be instantiated for different algorithms. The experi-
ments carried out here show that islands-based parallelization
is very beneficial when applied to univariate EDAs since it
helps, with little computational effort, to overcome some of
the shortcomings that sequential versions present. In general,
when using a small population they offer a good tradeoff
between quality of solution and (low) number of required
evaluations. However, in the case of multivariate algorithms,
such as EMNAGLOBAL the requirements of a huge population
to (correctly) determine model parameters causes a decrease in
their performance when using multiple demes. This problem is
more notable when the complexity (problem size) of the task
increases.

The other aim of our work was to compare migration of
models against migration of individuals. As the results reflect,
migration of models plus mixture-based model combination

offers the best performance particularly when adaptive estima-
tion of � is used.

As future work we plan to center our efforts on the improve-
ment of model combination (i.e. by using memetic algorithms
or trying to take advantage of the knowledge acquired during
the search process). Additionally, we plan to experiment with
asynchronous communication and with heterogeneous memes.
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