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Abstract—The successful application of estimation of distribu-
tion algorithms (EDAs) to solve different kinds of problems has
reinforced their candidature as promising black-box optimization
tools. However, their internal behavior is still not completely
understood and therefore it is necessary to work in this direction
in order to advance their development. This paper presents
a methodology of analysis which provides new information
about the behavior of EDAs by quantitatively analyzing the
probabilistic models learned during the search. We particularly
focus on calculating the probabilities of the optimal solutions, the
most probable solution given by the model and the best individual
of the population at each step of the algorithm. We carry out
the analysis by optimizing functions of different nature such as
Trap5, two variants of Ising spin glass and Max-SAT. By using
different structures in the probabilistic models, we also analyze
the impact of the structural model accuracy in the quantitative
behavior of EDAs. In addition, the objective function values of
our analyzed key solutions are contrasted with their probability
values in order to study the connection between function and
probabilistic models. The results not only show information about
the internal behavior of EDAs, but also about the quality of the
optimization process and setup of the parameters, the relationship
between the probabilistic model and the fitness function, and
even about the problem itself. Furthermore, the results allow us
to discover common patterns of behavior in EDAs and propose
new ideas in the development of this type of algorithms.

Index Terms—Abductive inference, Bayesian networks, estima-
tion of Bayesian networks algorithm, estimation of distribution
algorithms, Ising, Max-SAT, probabilistic model.

I. Introduction

ESTIMATION of distribution algorithms (EDAs) [1]–[3]
are a population-based optimization paradigm in the

field of evolutionary computation that have acquired special
relevance in the last decade. Nowadays, they are a strong
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alternative for solving optimization problems from different
domains such as engineering [4], biomedical informatics [5],
[6], or robotics [7]. However, despite their successful applica-
tion there are a wide variety of open questions [8] regarding
the behavior of this type of algorithms.

The main characteristic of EDAs is the use of probabilistic
models to lead the search toward promising areas of the space
of solutions. By making use of a subset of promising solutions
belonging to the population, the employed probabilistic models
allow us to estimate a new probability distribution over the
search space at each step of the algorithm. Thus, each of
the possible solutions has an associated probability of being
sampled which varies during the optimization process. The
probability values assigned to the solutions are the main
source in determining which solutions will be returned by the
algorithm. Consequently, given a problem, the fundamental
objective is to get higher probability values for the highest
quality solutions throughout an iterative process. Naturally,
to reach the optimal solution is an inherent challenge and
a reference in the development of both theoretical [9] and
practical [10] EDAs.

In order to better understand how these algorithms solve the
problems, the characteristics of the probabilistic models used
are a rich source of information which has been studied in
several works [11]–[17]. In particular, one class of model that
has been extensively applied in EDAs are Bayesian networks
[18], which allow to encode probability distributions through a
structure, that expresses explicit independence relations among
variables, and a set of parameters. There are different imple-
mentations of EDAs based on this type of models [19]–[21]. A
straightforward form of analysis when Bayesian networks are
used is through the explicit interactions among the variables
they provide. Thus, it has been shown how different parameters
of the algorithm influence the accuracy of the structural models
[16], how the dependences of the probabilistic models change
during the search [15] and, moreover, how the networks
learned can provide information about the problem structure
[14], [15], [22].

With the aim of continuing the study of EDAs, we take
a different but complementary path which was initiated in a
preliminary version [23] of this paper. Specifically, we propose
a new methodology based on a quantitative analysis of the
probabilistic models. As we have argued, the particular proba-
bility values assigned to the solutions during the search are the
raw material from which EDAs obtain the results. Therefore,
studying such probabilities provides useful new information
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to better understand the behavior of this type of algorithm.
Following this criterion, our quantitative analysis of EDAs is
based on monitoring the probability of certain distinguished
solutions during the search: 1) the optimal solution of the
function; 2) the solution with the highest probability in the dis-
tribution; and 3) the best individual in each generation. In order
to complete the quantitative analysis, we also record the fitness
function values for solutions 2) and 3) during the search.

In particular, the proposed analysis is carried out when
the estimation of Bayesian networks algorithm (EBNA) [19]
is applied to problems of different nature. We use different
structural models which can be learned from the population
or created by reproducing interactions among the variables of
the problem. We also use different population sizes in order
to analyze the influence of this parameter in the algorithm.
Furthermore, we take into account both successful (the opti-
mum is reached) and unsuccessful runs (the optimum is not
reached).

Throughout this paper we shed light on basic questions
of great interest that still remain open in EDAs such as the
following.

1) How does the probability assigned by the probability
distributions to the optimal solution evolve during the
search?

This first question plays a key role in this paper and it is
related with a number of current assumptions in the application
of EDAs. For example, whether, in order to solve a problem,
it is a necessary condition that the probability associated by
the algorithm to the optimal solution steadily increases at each
generation or whether the highest probability is assigned to the
optimum during the search.

2) How does the accuracy of the information about the
problem contained in the structural model influence the
internal behavior of EDAs?

This question is addressed in order to better know the
relation between the interactions of the problem and the
dependences of the probabilistic model. By using different
structures in EDAs, we study the effect that introducing more
interactions in the structural model has on the behavior of
EDAs in general and in the previously mentioned assumptions
about the probability of the optimum in particular.

Previous works [15], [24] have considered different means
of introducing a priori knowledge of the problem into the
algorithm in order to improve the efficiency and efficacy of
EDAs. Understanding the impact of this type of practices in
the internal behavior of EDAs is also a very important issue
in their application to real problems.

3) How does the function value for the most probable
solution given by the probabilistic models evolve during
the search?

A contribution of this paper is the exact calculation and
analysis of the solution with the highest probability in the
distributions estimated at each generation. Thus, by using its
fitness function value, we can study how the probabilistic
model captures the properties of the function. It would be
desirable that the function value of the solution with the
highest probability increased during the search.

Although the main target of this paper is to provide insights
about these key issues, the results obtained show a different
perspective of EDAs that is able to reveal constant patterns in
their behavior. Furthermore, both the probability and function
values analyzed are able to capture the quality of the proba-
bilistic models in terms of their use within EDAs. Throughout
the analysis proposed, it is also possible to better understand
how the convergence of the algorithm occurs and even detect
multimodality in the problems solved.

Finally, based on the conclusions of the work, we are able to
propose different ideas in order to assist in the use of EDAs in
real problems and contribute to their development. The main
proposals are related to: 1) bringing forward premature conver-
gence by detecting crucial phases of the search; 2) measuring
the influence of different components of the algorithm and
their impact in the search when the optimum is unknown;
3) on-line monitoring of the optimization process allowing
certain automatic decision making; and 4) taking advantage
of the available information of the problem.

The rest of this paper is organized as follows. Section II
presents EBNA, and introduces Bayesian networks and abduc-
tive inference. Section III explains the experimental design.
Sections IV, V, VI, and VII discuss Trap5, Gaussian Ising,
±J Ising, and Max-SAT problems, respectively, quantitatively
analyzing the behavior of EDAs for each problem when
different structural models and population sizes are used. Sec-
tion VIII discusses relevant previous works. Section IX draws
the conclusion obtained during the study. Finally, Section X
points out possible future studies.

II. Background

A. Notation

Let X be a random variable, a value of X is denoted by x.
X = (X1, . . . , Xn) will denote a vector of random variables.
We will use x = (x1, . . . , xn) to denote an assignment to the
variables. Each variable Xi has ri possible values, x1

i , . . . , x
ri

i .
We will work with discrete variables. The joint probability
distribution of X is represented as p(X = x) or p(x). We use
p(Xi = xi|Xj = xj) or, in a simplified form, p(xi|xj), to denote
the conditional probability distribution of Xi given Xj = xj .

B. Bayesian Networks

Formally, a Bayesian network is a pair (S, θ) representing
a graphical factorization of a probability distribution. The
structure S is a directed acyclic graph which reflects the set
of conditional (in)dependences among the variables. On the
other hand, θ is a set of parameters for the local probability
distributions associated with each variable.

The factorization of the probability distribution is codified
as

p(x) =
n∏

i=1

p(xi|pai) (1)

where pai denotes a value of the variables Pai, the parent set
of Xi in the graph S.
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Algorithm 1 EBNA

1: BN0 ← (S0, θ0) where S0 is an arc-less structure, and θ0

is uniform
2: D0 ← Sample N individuals from BN0

3: t ← 1
4: do {
5: Dt−1 ← Evaluate individuals
6: DSe

t−1 ← Select N/2 individuals from Dt−1

7: S∗
t ← Obtain a network structure

8: θt← Calculate θt
ijk using DSe

t−1 as the data set
9: BNt ← (S∗

t , θ
t)

10: Dt ← Sample N−1 individuals from BNt and create
the new population

11: }until Stop criterion is met

With reference to the set of parameters θ, if the variable Xi

has ri possible values, the local distribution p(xi|pa
j
i , θi) is an

unrestricted discrete distribution

p(xk
i |pa

j
i , θi) ≡ θijk (2)

where pa1
i , . . . ,pa

qi

i denote the qi possible values of the parent
set Pai. In other words, the parameter θijk represents the proba-
bility of variable Xi being in its kth value, knowing that the set
of its parents’ variables is in its jth value. Therefore, the local
parameters are given by θi = ((θijk)ri

k=1)qi

j=1. The introduction of
Bayesian networks in EDAs requires appropriate methods of
learning and sampling. As has been shown, to complete the
network learning it is necessary to obtain the structure S and
the set of parameters θ.

When the structure is not given, it can be learned from
a data set. We use a structural learning algorithm based on a
“score+search” technique [2]. Specifically, the search is carried
out using B algorithm [25] and the score is the Bayesian
information criterion (BIC) [26]. Regarding the second step,
the parameters θ of the Bayesian network are estimated by
maximum likelihood using Laplace correction [2]. Finally, to
sample the Bayesian network, a forward sampling method is
used. A variable is sampled once all its parents have been
sampled. This method is known as probabilistic logic sampling
(PLS) [27].

C. EDAs Based on Bayesian Networks

Following the main scheme of EDAs, EBNA [19] works
with populations of N individuals that constitute sets of
N candidate solutions. The initial population is generated
according to a uniform distribution, and hence, all the solutions
have the same probability of being sampled. Each iteration
starts by selecting a subset of promising individuals from the
population. Although there are different selection methods, in
this case we make use of truncation selection with threshold
50%. Thus, the N/2 individuals with the best fitness value are
selected. The next step is to learn a Bayesian network from the
subset of selected individuals. Once the Bayesian network is
built, the new population can be generated. At this point there
are different possibilities. We use elitism because it is a classic
technique widely used in evolutionary computation. From the

Bayesian network, N − 1 new solutions are sampled and then
added to the N individuals of the current population. The N

best individuals, among the 2N − 1 available, constitute the
new population. By using an elitist criterion, once an optimal
solution is reached by the algorithm, the solution will be kept
in the population until the end of the run. Thus, we can monitor
and analyze the same optimum throughout the generations.

The procedure of selection, learning, and sampling is re-
peated until a stop condition is fulfilled. A pseudocode of
EBNA is shown in Algorithm 1.

D. Abductive Inference in Bayesian Networks

In general, abductive reasoning tries to find the hypothesis
that would best explain a set of facts or observations. In the
probabilistic network context, the abductive inference [28]
consists of finding the maximum a posteriori probability
state of the network variables, given some evidence (observed
variables).

The total abductive inference involves all the problem vari-
ables and is defined as follows. Given a probability distribution
over the vector of random variables X and the evidence e,
that is an instance of the observed variable set E ⊆ X, we
want to obtain the assignment x∗

U to the unobserved variables
XU = X \ E such that

x∗
U = arg max

xU
p(xU |e). (3)

Usually, x∗
U is known as the most probable explanation.

However, when this technique is applied to the probability
distributions associated with Bayesian networks in EDAs,
there is no evidence. In this case, the objective is to look for the
assignment x∗ with the highest probability for the whole set
of variables X. Knowing that P(XU |E) = P(X|E) and having
an empty evidence set E = ∅, (3) can be directly converted
into our target

x∗ = arg max
x

p(x|θ̂, Ŝ) (4)

where Ŝ is the structure of the model which has been learned
from the population by using the BIC score and θ̂ repre-
sents the parameters of the probabilistic model estimated by
maximum likelihood. In our context of EDAs, x∗ is called
the most probable solution (MPS). As is proven in [29], this
kind of inference is an NP-hard problem. Therefore, its exact
resolution is only feasible in problems of limited length.

In this paper, the point with the highest probability is cal-
culated using probability propagation in junction trees [30] or
variable elimination techniques [31], as they are implemented
in Bayes Net Toolbox [32].

III. Experimental Design

The experiments were mainly designed with the aim of
shedding light on the questions and assumptions mentioned
in Section I. Specifically, at each generation of EBNA, we
record the probability and fitness values of distinguished
solutions of the search space: the optimum, the most probable
solution, and the best individual in the population. By varying
the problem size, using different structural modes and different
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population sizes, we create different scenarios to complete the
analysis.

In order to show the relation between the probabilities of
our distinguished solutions and the diversity of the population,
we hereby introduce additional information that is not obtained
from the probabilistic model but directly from the population
itself. Particularly, at each step of the algorithm, we calculate
the accumulated entropy of the population by means of adding
the entropy of each variable belonging to the function

H(X) = −
n∑

i=1

ri∑
j=1

p(xj
i ) · log2p(xj

i ). (5)

This metric shows how the population managed by the
algorithm loses diversity and converges. Some works have
already studied these types of measurements in EDAs [33],
[34].

In the following section, we will explain the different
problems, structural models, and parameters used for the
experiments. In [35], the necessary tools to reproduce the
experiments or to carry out similar analysis are implemented.

A. Problems

The whole set of problems is based on additively decom-
posable functions (ADFs) defined as

f (x) =
m∑
i=1

fi(si) (6)

where Si ⊆ X. With the aim of covering a wide spectrum of
applications and observing the behavior of EDAs in different
scenarios, we chose the following four test problems: Trap5,
Gaussian Ising, ±J Ising, and Max-SAT. The exact details of
each problem will be introduced in the following sections.
These problems are selected for several reasons. First, in
order to investigate the influence of multimodality in the
behavior of EDAs, we deal with problems that have different
numbers of optimal solutions. The first two problems have
just one optimal solution and the last two problems have
several optimal solutions. Second, all of them are optimization
problems which have been widely used to analyze EDAs [15],
[36], [37]. Finally, all the problems have a different nature.
Trap5 [38] is a deceptive function designed in the context of
genetic algorithms [39] aimed at finding their limitations. It is
a separable function and in practice it can be easily optimized
if the structure is known. Gaussian Ising and ±J Ising come
from statistical physics domains and are instances of the Ising
model proposed to analyze ferromagnetism [40]. The variables
are disposed on a grid and the interactions do not allow us
to decompose the problem into independent subproblems of
bounded order [41]. It is a challenge in optimization [15],
[36] and in its general form is NP-complete [42]. Max-SAT is
a variation for optimization of a classic benchmark problem
in computational complexity, the propositional satisfiability
or SAT. In fact, SAT was the first problem proven to be
NP-complete [43] in its general form. An instance of this
problem can contain a very high number of interactions among
variables and in general, it cannot be efficiently divided into
subproblems of bounded size in order to reach the optimum.

With the exception of the function Trap5, we have dealt with
100 instances for each type of problem.

Regarding the information stored at each generation, when
the functions with just one optimum are optimized, we only
record our three distinguished solutions. However, in the
functions with several optimal solutions, EBNA reaches a
subset of those optima and the analysis of the probability of
the optimum is extended. Thus, we calculate the probabilities
during the search for all optima reached by EBNA in the
last generation. It leads us to see how the probability is
distributed when there are different optimal solutions. In order
to gain clarity in the results, we only show the maximum and
minimum probabilities assigned by the probability distribution
to the reached optimal solutions at each generation.

B. Structural Models

In the literature, several works have discussed the influence
of the structure of the probabilistic model in the behavior of
EDAs [14], [22] and the impact of using a priori knowledge
of the problem in the search [15], [24]. In this paper, we also
take into account these important issues. Therefore, in addition
to traditional learning techniques, we propose to include some
structures related with the problem to analyze the changes
produced in the internal behavior of EDAs.

Specifically, we use the following two approaches as regards
the structural models. On the one hand, we use an approximate
structural learning algorithm (B algorithm) to obtain a new
structure from the selected individuals at each generation.
On the other, we use two fixed structures related to the
nature of the function, and thus, only parametric learning is
carried out. Since all the functions are ADFs, an intuitive and
straightforward way to create a related structural model is by
means of linking variables belonging to the same subfunction
with arcs. In order to analyze the influence of the information
accuracy introduced in the structural model, two structures
have been used. The first structure tries to reproduce all inter-
actions among variables that can be directly observed from the
formulation of the problem. As a general method, we connect
two variables (representing nodes in the graph) by an edge
in the structure if the corresponding variables are contained
in the same sub-function. Then, by taking a directed acyclic
version of this undirected graph, we obtain a Bayesian network
structure which will be called dense structure. The second
structure also reproduces interactions among the variables of
the function but only considers bivariate dependences. This
structure has less information but is always related with the
nature of the problem. It will be called bivariate structure.

It must be pointed out that our aim is to study the influence
that the different approaches have over the probability values
rather than demonstrating their quality and accuracy.

C. Parameter Configuration

The sample size is very important in order to learn Bayesian
networks [44] and, hence, in the behavior of EDAs based
on this type of models. Thus, we deal with two different
population sizes in order to analyze their influence in the
algorithm. First, we use the bisection method [3] to determine
an adequate population size to reach the optimum (with high
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probability). This size is denoted by m. The stopping criterion
for bisection is to obtain the optimum in 10 out of 10
independent runs. The final population size is the average over
20 successful bisection runs. Due to computational restrictions,
the maximum population size has been limited to 214. The
population size m is always obtained from EBNA executions
with B algorithm. The second population size is half of the
bisection, m/2. With this size we try to create a more realistic
scenario in which achieving the optimum is less likely. This
also allows us to analyze in detail the probability of the
optimum when it is not reached.

In addition to population size, different problem dimen-
sions have also been taking into account. Particularly, we
have used n ∈ {50, 75, 100} for Trap5 and Max-SAT, and
n ∈ {8 × 8, 9 × 9, 10 × 10} for both types of Ising. The
upper bound has been set to 100 variables due to the high
memory requirements needed to calculate the most probable
solution. Increasing the number of variables would require
the use of approximate inference techniques [45], spoiling the
correctness of the results.

The stopping criterion for EBNA is a fixed number of iter-
ations and is independent of obtaining the optimum. Each ex-
ecution will run n generations, that is, as many as the number
of problem variables. This number of generations is enough
to observe the convergence of the analyzed probability values.

D. Details of the Experiments

The analyzed probability values are reported in logarithmic
scale in order to smoothen the probability slopes and better
observe their behavior from the beginning of the run. The
number of runs which have reached the optimum at each
generation is indicated with bars on the top of the charts, where
the probability values are shown. Although we have made runs
with a fixed number of generations, the charts presented were
cut when all runs have reached the optimum or the curves are
stabilized.

Concerning the total number of executions, for each
Bayesian network learning approach and population size, we
carried out 50 independent runs for Trap5 and 5 independent
runs for each of the 100 instances in the rest of the problems.
All the runs belonging to 100 different instances of a given
problem are put together and analyzed as a whole in order to
provide a general view of the behavior of EDAs.

Analyzing the wide set of results collected throughout the
experiments, we have observed that EDAs show the same
patterns of behavior independently of the problem dimension.
Therefore, we will focus on problem sizes of 100 variables.
For the sake of simplicity, in this paper we only present the
most relevant results. However, for the interested reader, the
complete analysis is available on the website of the Intelligent
Systems Group.1

IV. EDA Behavior Solving Trap5

A. Trap5 Description

Our first function, Trap5 [38], is an additively separable
(non overlapping) function with a unique optimum. It divides

1Available at http://www.sc.ehu.es/ccwbayes/members/carlos/edamps.

Fig. 1. Fixed structural models related to the dependences among the
variables in Trap5. (a) Dense structure. (b) Bivariate structure.

the set X of n variables into disjoint subsets XI of 5 variables.
It can be defined using a unitation function u(y) =

∑p
i=1 yi

where y ∈ {0, 1}p as

Trap5(x) =

n
5∑

I=1

trap5(xI) (7)

where trap5 is defined as

trap5(xI) =

{
5, if u(xI) = 5
4 − u(xI), otherwise

(8)

and xI = (x5I−4, x5I−3, x5I−2, x5I−1, x5I) is an assignment to
each trap partition XI . This function has one global optimum
in the assignment of all ones for X and a large number of
local optima, 2n/5 − 1.

Trap5 function has been used in previous works [15] to
study the structure of the probabilistic models in EDAs based
on Bayesian networks, as well as studying the influence of
different parameters [16]. It is important to note that this
function is difficult to optimize if the probabilistic model is
not able to identify interactions between variables [23].

B. Structures Related to the Problem

In this section, we propose two fixed structures related to the
Trap5 function. The dense structure is created by linking all
the variables in each sub-function trap5. Thus, by providing
direction to the arcs without creating cycles, we obtain the
Bayesian network structure shown in Fig. 1(a). With this
structure, there are no independences between variables of
the same subgroup and variables in different partitions are
independent. For this type of separable functions, this intuitive
method to introduce information of the problem into the
structural model, provides exact factorizations [41]. However,
this is not the case for the rest of the problems. In general, the
construction of exact factorizations could require additional
techniques [46] and the resulting conditional probabilities
would also require the estimation of a prohibitive number of
parameters that would be unmanageable in practice.

As regards the bivariate structure, it is formed by a chain
for each subgroup of 5 variables. As can be seen in Fig. 1(b),
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Fig. 2. Probability values and function values when EBNA is applied to Trap5 using Algorithm B. We have 49 out of 50 successful runs with population size
m and 4 out of 50 with population size m/2. (a) Successful runs with population size m. (b) Unsuccessful runs with population size m. (c) Successful runs
with population size m. (d) Successful runs with population size m/2. (e) Unsuccessful runs with population size m/2. (f) Successful runs with population
size m/2.

Fig. 3. Accumulated entropies of the population when EBNA is applied to
Trap5.

the graph contains the minimum number of arcs necessary to
connect all the variables belonging to each partition.

C. Using Structural Learning

In this section, we present and discuss the results obtained
when EBNA, using Algorithm B, tries to optimize the Trap5
function.

In Fig. 2(a), we show the probability values for successful
runs when the population size m (given by bisection) is used.
In this case, EBNA reaches the optimum in 49 out of 50
runs. Theoretically, a convergence of the algorithm to the
global optimum implies an increase in its probability value as
the generations advance. This fact is reflected in the results.
The probability values for the optimum and the MPS grow
simultaneously, and very closely, when the executions are
successful.

When a population size of m/2 [Fig. 2(d)] is used, the re-
sults change drastically and only four runs reach the optimum.
Although the behavior of the probability values in this case
is analogous to Fig. 2(a), we can observe that the probability

curves for the MPS and the optimum with population size
m/2 are clearly more distant than with size m. This analysis
shows the impact that the population size has in the EDA
behavior. Another important observation is that the growth
of the probability values is slower for m/2. Thus, with this
population size, the optimum is reached for the first time, a
few generations later than with size m [bars on the top of
Fig. 2(a) and (d)]. Nevertheless, with both population sizes,
the executions starts to reach the optimum when its probability
is approximately −10 in logarithmic scale.

The results of the probability values for the executions
where the optimum was not reached are shown in Fig. 2(b)
and (e). In these figures, we can see the joint growth of
the probability values for the MPS and the optimum at the
beginning of the run. However, after a certain generation, both
values start to diverge and the optimum is no longer obtained.
In unsuccessful runs, there are also differences between the
runs with population size m and m/2. For this last population
size, the probability of the optimum reaches lower values both
before decreasing and in the last generations. Even at the
beginning of the run, the probability of the optimum is further
from the highest probability in the distribution with population
size m/2 than with m.

Concerning the fitness function value, Fig. 2(c) shows the
results when the population size m, given by bisection, is
used in EBNA. The value of the MPS increases at each
generation and it is better than the best individual in almost all
generations. However, by looking at Fig. 2(f), it can bee seen
that the MPS has a lower growth with population size m/2.
Moreover, the best individual of the population is better than
the MPS after generation 12. Therefore, the analysis of the
function values also reflects the impact of the population size
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Fig. 4. Successful runs when EBNA is applied to Trap5 using the dense structure with population size m. The optimum is reached for the 50 executions.

Fig. 5. Probability values and function values when EBNA is applied to Trap5 using the bivariate structure with population size m. We have 42 out of 50
successful executions. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

in the algorithm. In all the experiments, the curves of function
values are similar in successful and unsuccessful runs.

Finally, in Fig. 3 we present the accumulated entropies of
the population during the search. Only the first four curves
shown in the legend correspond to EBNA with Algorithm B.
These curves show the close relation of this measure with the
exponential growth of the probability values. Moreover, we
can observe how the population converges to a unique solution
since the entropy tends to 0.

D. Using Fixed Structures

In this section, we show the behavior of the algorithm
when a different amount of information is introduced in the
structural model. As previously mentioned, throughout this
paper we only show and comment on those results that provide
relevant information, avoiding excessive and redundant infor-
mation. So, when the structures are fixed, we have observed
a low influence of the population size in the results. In these
cases, we only show the analysis for the size m.

Fig. 4 shows the probability and fitness values when the
dense structure is introduced in EBNA. In this case, we
obtain an ideal behavior for an optimization process since
the optimum has the highest probability during the whole run
and is reached in all executions. Furthermore, in Fig. 4(b)
we observe that the function values for MPS are close to the
optimum from the very beginning of the search. In this case,
through a sampling based on inference, the optimum could be
reached in the first generations.

The behavior of the algorithm changes drastically when
the bivariate structure [Fig. 1(b)] is introduced. Although
EBNA shows a good performance because it reaches the
optimum in 42 out of 50 runs, the evolution of the probability

values [see Fig. 5(a)] in particular. The probability of the
optimum decreases at the beginning of the run and when the
algorithm seems to converge to a local optimum, it suddenly
recovers. This fact also occurs for the unsuccessful executions
[Fig. 5(b)] where the probability of the optimum increases
in the last generations. In this case, the optimum has a high
probability at the end of the run, which supports the belief that
the algorithm would be able to reach the optimum provided
that more generations are allowed.

The reason for such an uncommon behavior is the following.
In the first part of the run, when the probability of the optimum
decreases, the algorithm is deceived by the function and most
of the individuals in the population become the local optimum.
This local optimum is the assignment of zeros for all the set
of variables X because it is the suboptimal value that trap5

function gives to each trap partition XI . Fig. 3 shows how the
curve of entropy for the bivariate model (Succ. m, biv) tends to
0 when the probability of the optimum is minimum in Fig. 5(a)
and (b). After this stage, the algorithm recovers and the proba-
bility of the optimum begins to increase. The curve of entropy
for the bivariate model indicates that different individuals are
included in the population just when the algorithm seems to
converge to the local optimum. It shows that the algorithm
samples better individuals and is reflected in the fitness func-
tion values in Fig. 5(c). This can be explained through the
Laplace correction and the fixed structure of chain subgraphs.
This quantitative analysis justifies why it is possible to reach
the optimum for this function with a simple bivariate structure.

While several works have analyzed EDA behavior using
entropy measures [33], [34], [47], the joint analysis of the
relationship between the type of model structure, the prob-
ability values and the entropy should support a more com-
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Fig. 6. 3 × 3 grid structure L showing the interactions between spins for a
2-D Ising spin glass with periodic boundaries. Each edge has an associated
strength Jij .

plete perspective about the EDA dynamics. For instance, the
phenomenon we have described in Fig. 3, where the entropy
initially tends to zero but later recovers, indicates that stopping
criteria based on the entropy (e.g., [34]) should take this type
of behavior into account to avoid early termination of the EDA.

V. EDA Behavior Solving Gaussian Ising

A. 2D Ising Spin Glass Description

Ising spin glass is an optimization problem which has been
solved and analyzed in different works related to EDAs [15],
[36], [48]. A classic 2-D Ising spin glass can be simply
formulated. The set of variables X is seen as a set of n spins
disposed on a regular 2-D grid L with n = l × l sites and
periodic boundaries (see Fig. 6). Each node of L corresponds
to a spin Xi and each edge (i, j) corresponds to a coupling
between Xi and Xj . Thus, each spin variable interacts with its
four nearest neighbors in the toroidal structure L. Moreover,
each edge of L has an associated coupling strength Jij between
the related spins.

The target is, given couplings Jij , to find the spin configu-
ration that minimizes the energy of the system computed as

E(x) = −
∑

(i,j)∈L

xiJijxj −
∑
i∈L

hixi (9)

where the sum runs over all coupled spins. In our experiments
we take hi = 0 ∀i ∈ L. The states with minimum energy are
called ground states.

Depending on the range chosen for the couplings Jij we
have different versions of the problem. For the Gaussian Ising
problem, the couplings Jij are real numbers generated follow-
ing a Gaussian distribution. A specified set Jij of coupling
defines a spin glass instance. We generated 100 Gaussian
Ising instances using the spin glass ground state server.2 The
minimum energy of the system is also provided by this server.

B. Structures Related to the Problem

In order to create a dense structure for this problem, we re-
produce the undirected graph L in the model, which represents
all the interactions among the variables in the function, and
direct the edges without creating cycles to obtain a Bayesian
network. Starting from the first spin (variable X1) we give a

2Available at http://www.informatik.uni-koeln.de/ls juenger/index.html.

Fig. 7. Fixed structural models for 2-D Ising spin glass. (a) Dense structure.
(b) Bivariate structure.

westward and southward direction to the edges as can be seen
in Fig. 7(a).

We are aware that for this problem, the directions given
to the arcs could modify the behavior of EBNA, due to the
different independence relations introduced in the Bayesian
network [30]. However, as previously mentioned, the infor-
mation introduced in the structural model is directly obtained
from the formulation of the problem. In this sense, the
direction of the arcs do not follow a specific criterion.

The second structure is a simple model which connects all
variables using a chain. This structure introduces very few
interactions related to the problem, as can be seen in Fig. 7(b).

C. Using Structural Learning

The evolution of the probability values in different situations
is presented in Fig. 8. First of all, we note that when the
population size given by bisection (m) is used, EBNA reaches
the optimum in 470 runs out of 500, while with population
size m/2 it decreases to 272. The proportion of successful
runs with m/2 indicates that, in order to reach the optimum,
the population size is less decisive in Gaussian Ising than in
Trap5 (4 out of 50 successful runs with m/2).

Fig. 8(a) and (c) shows the probability values for successful
runs with population sizes m and m/2, respectively. We
can observe that the probabilistic behavior follows the same
patterns as that in Trap5: 1) the probability of the optimum
increases during the search, being the most probable solution
at the end of the run, and 2) for the population size given
by bisection, the curves for the MPS and the optimum are
closer than for m/2. Nonetheless, it can be seen that the
population size had a larger impact in Trap5 [Fig. 2(a) and
(c)]. In that problem, the difference between the probability
of the optimum and the highest in the distribution had a more
emphasized change when the population size was varied (it
was reflected in the number of successful runs). Moreover,
while in Trap5 the probability of the optimum was very close
to the highest from the first generations with population size
m, in Gaussian Ising both probability curves keep a visible
distance throughout the generations. Last, for Gaussian Ising,
the runs do not reach the optimum [bars on the top of the
charts in Fig. 8(a) and (c)] until their probability value exceeds
approximately the threshold of −20 in logarithmic scale. We
note that for Trap5, this threshold was much higher (−10).
These particular differences in the probability values between
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Fig. 8. Successful runs when EBNA is applied to Gaussian Ising using Algorithm B. We have 470 out of 500 successful runs with population size m and
272 out of 500 with population size m/2. (a) Population size m. (b) Population size m. (c) Population size m/2. (d) Population size m/2.

both problems could be due to the characteristics of the
respective landscapes.

The analysis of the function values shown in Fig. 8(b)
and (d) supports the previous discussion. As in Trap5, the
difference in function value between the MPS and the best
individual was bigger with population size m than with m/2.
However, in this case, since the population size is less influ-
ential, the difference between curves is less marked than in
the previous problem.

D. Using Fixed Structures

As in the previous problem, in this section we present the
results for the population size m given by bisection. First of
all, we note that the dense structure does not always reach the
optimum as in Trap5. In particular, we achieved 283 out of 500
successful runs. Although the behavior of this structure does
not outperform the behavior of EBNA with Algorithm B, its
introduction in the algorithm has considerable consequences.

In Fig. 9(a), we report results of the analysis of the proba-
bility values and function values. In this case, the probability
of the optimum is not the highest in the distribution during the
search as in Trap5 [Fig. 4(a)]. However, the distance between
both probability curves is smaller than with structural learning
except for the last generations. This behavior is probably
influenced by the criterion for directing the arcs. Depending
on the instance, one selected direction could have important
effects in the probability of the optimum. An example of this
can be seen in Fig. 11.

In Fig. 9(c), we report the probability values when EBNA
does not reach the optimum. We observe that the probability of
the optimum is close to the highest in the distribution during
the first generations and reaches values up to −20 before de-
creasing. In general, when the dense structure is introduced in

the algorithm, the probability of the optimum in unsuccessful
runs has higher values during the search than in previous sce-
narios. This knowledge about the probability of the optimum
is important to understand EDAs and improve them.

Regarding the function values, as can be seen in Fig. 9(c),
the MPS is close to the optimum from the beginning as in
the case of Trap5. Moreover, this behavior remains constant
in all of the instances analyzed. Again, this fact shows that
using structures related with the interactions of the problem
presents promising properties that deserve a specific study.

When we reduce the amount of information in the structural
model, the effects in the algorithm are not only seen in the
number of successful runs but also in the analysis. In this prob-
lem, when the bivariate structure of the chain is introduced, we
only obtain 29 out of 500 successful runs. Looking at Fig. 10
we can see that, both in successful and unsuccessful runs,
respectively, the probability of the optimum is more distant
than in the corresponding previous scenarios from the highest
probability. The low accuracy of the information about the
problem that the probabilistic models contain is also reflected
in the function values shown in Fig. 10(c). Although the MPS
has a slightly higher function value than the best individual at
the beginning of the run, the MPS is lower than best individual
in the rest of the run.

To conclude this part of this paper, we would like to point
out an interesting relationship between the probability and
function values. In unsuccessful runs, the probability of the
optimum always starts to decrease a few generations after the
function values of the best individual reaches the values of
the MPS. As the behavior of the function values is similar in
successful and unsuccessful runs, this could suggest that the
cross between both curves indicates a critical moment in the
search.
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Fig. 9. Probability values and function values when EBNA is applied to Gaussian Ising using the dense structure with population size m. We have 283 out
of 500 successful executions. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

Fig. 10. Probability values and function values when EBNA is applied to Gaussian Ising using the bivariate structure with population size m. We have 29
out of 500 successful executions. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

Fig. 11. Logarithm of the probabilities in successful runs when EBNA is
applied to a particular instance of Gaussian Ising using the dense structure.
For this instance, we have 10 out of 50 successful runs.

VI. EDA Behavior Solving ±J Ising

A. ± J Ising Description

As explained in Section V, the main difference between both
versions of 2-D Ising spin glass is the range of values chosen
for the couplings Jij . In the present problem, the couplings
Jij are randomly set to either +1 or −1 with equal probability.
This version, that will be called ±J Ising, could have different
spin configurations that reach the ground state (lowest energy)
and therefore many optimal solutions may arise. As in the
previous case, 100 ±J Ising instances were generated using
the spin glass ground state server.3 This server also provided
the value of the minimum energy of the system. As far as
the fixed structural models are concerned, we use the same
structures as in Gaussian Ising.

3Available at http://www.informatik.uni-koeln.de/ls juenger/index.html.

B. Using Structural Learning

The analysis of problems with several optima reveals im-
portant changes in the internal behavior of the algorithm.
Although the number of successful runs both with population
size m (466 out of 500) and m/2 (226 out of 500) is very
similar to Gaussian Ising, clear differences appear in the
probability values. Fig. 12(a) shows that the probabilities
assigned to the reached optima increase together during the
generations. We have observed that the probability of the MPS
does not tend to 1 (0 in logarithmic scale) as in unimodal
problems. These facts indicate that the probability distribution
is shared out among different optimal solutions in the last
generations. This is verified by the accumulated entropy of
the population (Fig. 14) which is greater than 0 at the end
of the run. In Fig. 13, we illustrate the specific probability
values of the MPS. We have seen that the MPS converges to
higher probability values with m/2 because in this case, the
average number of optimal solutions at the end of the run is
lower than with m. In the same figure, we can see that this
situation is repeated for unsuccessful runs [analysis shown in
Fig. 12(b)]. This indicates that, although the optimum is not
found, the algorithm reaches different solutions at the end of
the run. The results for the accumulated entropy (see Fig. 14)
confirm this behavior. An interesting behavior in this problem
is that the MPS reaches higher probability values in successful
runs than in unsuccessful ones (see Fig. 13). This is another
issue that would deserve a specific analysis.

In Fig. 12(c), we show the function values for the MPS
and the best individual. We can see how the best individual
clearly exceeds the MPS after generation 12. This marked
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Fig. 12. Probability values and function values when EBNA is applied to ±J Ising using Algorithm B with population size m. We have 466 out of 500
successful runs with population size m and 226 out of 500 with population size m/2. On average, EBNA has reached 126 different optimal solutions at the
end of the run with m and 55 with m/2. (a) Successful runs. (b) Unsuccessful runs. (c) Successful runs.

Fig. 13. Different curves of probability for the MPS when EBNA is applied
to ±J Ising using Algorithm B. The curves correspond to successful runs
with population size m (Succ. m), successful runs with m/2 (Succ. m/2),
unsuccessful runs with m (Unsucc. m), and unsuccessful runs with m/2
(Unsucc. m/2).

Fig. 14. Accumulated entropies of the population when EBNA solves ±J

Ising.

fluctuation of the MPS occurs in the same generations when
the probabilities of the optima slightly separate from the
highest in the distribution in successful runs [Fig. 12(a)].
Moreover, the probabilities of the optima start to decrease
in unsuccessful runs after the cross between the curves of
function values. This supports the idea that this phase of the
search is critical in order to reach the optimum.

C. Using Fixed Structures

In Fig. 15(a), we report the analysis of the probability values
when the dense structure is introduced and the population size
given by bisection is used. In the first generations, we can
observe that the probabilities for the optima and the MPS are
especially close. We also note that the maximum probability
assigned to the set of optima is very close to the MPS during

the search. According to the experiments, in this problem, the
influence of the selected direction for the arcs is less dramatic
than in Gaussian Ising. In fact, EBNA reaches the optimum
in 463 out of 500 runs against 283 out of 500 in Gaussian
Ising. This indicates that, depending on the problem, the same
amount of information introduced in the structural model can
have a different impact both on the probability values and the
performance of the algorithm. It could depend on properties
of the search space such as multimodality.

In Fig. 15(b) and (c), we show the results obtained when
EBNA uses the bivariate structural model. In this case, we
have 105 out of 500 successful executions. This is a clear
improvement in the performance of the algorithm with regard
to Gaussian Ising in this same scenario. This enhanced per-
formance is reflected in the analysis of the function values
[Fig. 15(c)]. In the first generation the MPS is clearly better
than the best individual in the population. Moreover, at the
beginning of the run, its difference is even more noticeable
than in the case of EBNA using Algorithm B.

VII. EDA Behavior Solving Max-SAT

A. Max-SAT Description

The last problem in our analysis is the maximum satisfi-
ability or Max-SAT problem, which has been often used in
different works about EDAs [36], [37]. Put simply, given a
set of Boolean variables X and a Boolean expression φ, SAT
problem asks if there is an assignment x of the variables such
that the expression φ is satisfied. In a Boolean expression,
we can combine the variables using Boolean connectives such
as ∧ (logical and), ∨ (logical or), and ¬ (negation). An
expression in the form xi or ¬xi is called a literal.

Every Boolean expression can be rewritten into an equiva-
lent expression in a convenient specialized style. In particular,
we use the conjunctive normal form (CNF) φ =

∧q

i=1 Ci. Each
of the q Cjs is the disjunction of two or more literals which
are called clauses of the expression φ. We work with clauses
of length k = 3. When k ≥ 3, the SAT problem becomes NP-
Complete [43]. An example of a CNF expression with five
Boolean variables X1, X2, X3, X4, X5 and three clauses would
be φ = (x1 ∨ ¬x3 ∨ x5) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (x1 ∨ ¬x4 ∨ ¬x2).

The Max-SAT problem has the same structure as SAT, but
the result, for an assignment x, is the number of satisfied
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Fig. 15. Probability values and function values when EBNA is applied to ±J Ising using fixed structures with population size m. (a) Probability values
for the dense structure. We have 463 out of 500 successful runs and, on average, EBNA has reached 138 different optimal solutions at the end of the runs.
(b) Probability values for the bivariate structure. We have 105 out of 500 successful runs and, on average, EBNA has reached 47 different optimal solutions
at the end of the runs. (c) Function values for the bivariate structure.

Fig. 16. Structures for MAX-SAT given a SAT expression φ. (a) Related
undirected graph. (b) Related Bayesian network where σ1 is the ancestral
order. (c) Related tree structure where σ2 is an order to add edges in the tree.

clauses instead of a truth value. In order to solve Max-SAT,
the assignment for X that maximizes the number of satisfied
clauses must be found. Thus, the optimization function can be
written as

fMax−SAT (x) =
q∑

i=1

φ(Ci) (10)

where each clause Ci of three literals is evaluated as a Boolean
expression that returns 1 if the expression is true or 0 if it is
false. Since Ci is a disjunction, it is satisfied if at least one of
its literals is true. The variables of X can overlap arbitrarily
in the clauses.

Particularly, we work with the Uniform Random-3-SAT
problems obtained from the SATLIB [49] repository. All the
instances used are satisfiable. The presented results comprise
100 instances of 100 variables and 430 clauses. It is important
to note that there could be several assignments for X that
satisfy all clauses and therefore, this problem could have
different optimal solutions.

B. Structures Related to the Problem

As different Max-SAT instances have different interactions
among variables, a particular structure for each instance is
needed. In order to create the dense structure, we join the
variables belonging to the same clause Ci with edges. This step
is illustrated in the example of Fig. 16(a) where a SAT formula
is proposed. Now, in order to create a Bayesian network
structure, we must direct the edges without creating cycles.

In order to do this, we use an ancestral order which tries
to minimize the number of parents per variable. Thus, the
variables are ordered from the highest to the lowest number
of overlaps in the clauses of the SAT instance. This type of
structure is illustrated in Fig. 16(b) where σ1 is the defined
ancestral order. However, obtaining the MPS for such dense
Bayesian network would be unfeasible due to the size of
the cliques (up to 70 variables). Therefore, we were forced
to reduce the complexity of the structure by deleting some
edges. The high density of the interactions between variables
in Max-SAT only allows us to work with two parents per
variable. Thus, for each variable we select the two parents
that correspond with the most frequent interactions with the
child obtained from the clauses.

To create the bivariate structure, in this case a tree, we have
followed a procedure similar to the Chow-Liu algorithm [50].
In Fig. 16(c), we illustrate a possible final result for a particular
SAT formula. First, we create an order σ2 for pairs of variables,
related to the number of times that each couple of variables
appear together in the SAT clauses, from the highest to the
lowest. This is the scoring criterion for the arcs. Starting with
an empty structure and following such an order, at each step
we add an undirected edge without creating cycles. If there
are ties, the selection is random. At the end of the procedure,
the root of the tree is the most over-lapped variable in the SAT
formula taken from the most frequent couple.

C. Using Structural Learning

In general, the analysis of EBNA when it is applied to Max-
SAT shows similar behavior patterns to ±J Ising. However,
as we previously discussed, each problem provides particular
nuances to the analysis. For Max-SAT, we only show the
results when EBNA uses the population size given by bisection
because this parameter has a lower impact on the algorithm.
In this problem, EBNA is only able to obtain bisection sizes
for 20 out of 100 instances. In those instances where we do
not have a bisection size, we use the maximum population
size allowed in the experimentation (214). In order to analyze
unsuccessful runs in instances for which EBNA is not able to
reach the optimum, we introduced 350 optimal configurations
obtained by a specific solver4 for Max-SAT.

4Available at http://minisat.se.
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Fig. 17. Probability values and function values when EBNA is applied to Max-SAT using Algorithm B with population size m. We have 95 out of 500
successful executions. On average, EBNA has reached 1452 different optimal solutions at the end of the runs. (a) Successful runs. (b) Unsuccessful runs. (c)
Successful runs.

As we can see in Fig. 17(a), the probability assigned to
the set of optima is far from the highest in the distribution
and this is reflected in the number of successful runs, in this
case, 95 out of 500. Throughout this paper, we have seen
that the more distant the MPS and the optima are, the lower
the performance in terms of ratio of successful runs is. In this
problem, the curves of probability indicate a lower exponential
growth than in the rest of the problems. In fact, the different
optimal solutions start to be reached in later generations [bars
on the top of Fig. 17(a)]. We also note that the MPS reaches
low probability values at the end of the runs (approximately,
0.05 for Max-SAT against 0.15 for ±J Ising in the same
scenario). This is due to the high number of optima that EBNA
is finding. Particularly, on average, we have 1452 different
optimal solutions at the end of the runs.

In unsuccessful runs [Fig. 17(b)], the probabilities of the
optima reach much lower maximum values than in the rest
of the problems in the same scenario. Regarding the function
values [Fig. 17(c)], although the MPS slightly outperforms the
values of the best individual at the beginning of the run, this
last solution is better than the MPS during a noticeable number
of generations. Once again, the probabilities assigned to the
optima start to decrease in unsuccessful runs some generations
after the curve of the best individual crosses the curve of the
MPS. The high number of optimal solutions, the great distance
in probability between the MPS and the optima and the low
quality of the function values of the MPS, reflect the hardness
of this problem for EBNA.

D. Using Fixed Structures

In Fig. 18, we provide the probability values for successful
runs. Although the dense structures only have a maximum
of two parents per node, we can see the influence of this
type of structure in the analysis. If we compare the dense
structure with Algorithm B, we see that not only the maximum
probability assigned to the set of optima is closer to the
highest probability in the distribution, but also there is a
lower difference in probability among the curves shown in
the chart. Nevertheless, in all cases the optimum starts to be
reached when the maximum probability of the optima has
the value of âˆ’20 approximately. In contrast with structural
learning, with fixed structures, EBNA reaches a lower number
of optimal solutions at the end of the run, and this fact is
also reflected in the final probability values. In this problem,

Fig. 18. Successful runs when EBNA is applied to Max-SAT using the
dense structure with population size m. We have 31 out of 500 successful
runs. On average, EBNA has reached 400 different optimal solutions at the
end of the run.

the analysis shows a very similar behavior for both fixed
structures.

VIII. Related Work

In [41], an analysis of the probability assigned by EDAs to
the optimum solution is carried out for the Boltzmann EDA
(BEDA) and factorized distribution algorithms that use valid
and invalid factorizations. The analysis of the probabilities,
which was carried out for a toy example, served to illus-
trate that, under the infinite population assumptions made by
BEDA, the use of a valid factorization is a sufficient but not
necessary condition for a steady increase, until convergence,
of the probability given by BEDA to the optimum. Our work
can be seen as an extension of the work presented in [41] in
the sense that we investigate the probabilities of EDAs that
apply in structural and parametric learning of a more complex
class of models and across a range of different problems. We
also provide a method to exactly determine the most probable
solution given by the model.

Most of the research done concerning the models learned by
EDAs based on Bayesian networks [19], [20], [51] has focused
on structural descriptors of the networks, and specifically on
the type (i.e., correct or spurious) and number of the network
edges [11], [14]–[16], [22], [52]. The analysis of the Bayesian
network edges learned by EDAs has allowed us to study
the effect of the selection and replacement procedures [15],
[16] as well as the learning method [14], [22], [52] in the
accuracy of the models learned by EDAs and the efficiency
of these algorithms. A more recent work [52] considers the
likelihood given to the selected set during the model learning
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step as another source of information about the behavior of the
algorithm. In this case, not only the structure but also the
probabilities are taken into consideration when computing
the model descriptor. Nevertheless, none of the previously
mentioned papers uses the probabilities given by the models to
some distinguished solutions (e.g., most probable explanation,
known optimum, and so on) as a means to reveal information
about EDAs. In no case are there references to the most likely
solution that could be sampled from the learned model.

For EDAs that use Markov models [53]–[55], different
issues related to the relationship between the fitness function
and the probabilistic models learned by EDAs have been
investigated. Relevant to the work presented in this paper, is
the use of the models learned by the distribution estimation
using Markov network algorithm (DEUM) [53], [55], [56] as
predictors of the fitness function.

In [13], the product moment correlation coefficient between
the Markov model learned by DEUM and the fitness function
is used to measure the quality of the model as a fitness function
predictor. For a given solution, the prediction is the value
given by the Markov model to the solution. The quality of
the model is measured using the correlation computed from
samples of the search space. Furthermore, the prediction
accuracy of Markov models with different structural
complexity is investigated for different selection strategies
and population sizes.

A substantial difference between the work presented in
[13] and the results introduced in this paper is that the
analysis of the prediction given by the models is constrained
to the solutions taken from the selected population or random
samples. The most probable explanation given by the model
is not computed. Another difference is that the evolution of
the models throughout the generations is not analyzed. By
computing the most probable individual given by the model
at each generation, we are able to obtain a dynamic view of
the quality of the probability model.

IX. Conclusion

In this paper, we analyzed EDAs from a quantitative point
of view in order to better understand their internal behavior.
Through the recording of probability and function values for
a set of distinguished solutions during the search, we directly
studied the probability distributions generated by this type
of algorithms. More specifically, the proposed analysis has
allowed us to investigate basic open issues raised in Section I,
whose study entails a deeper understanding and development
of EDAs. Now, we return to these questions, providing the
new knowledge that we obtained throughout this paper.

1) How does the probability assigned to the optimal solu-
tion by the probability distributions evolve during the
search?

We can distinguish different scenarios depending on the
number of optimal solutions of the function to be optimized
and the success of the search. In general, in order to reach an
optimal solution, its probability must exceed a certain thresh-
old which can vary depending on the intrinsic characteristics
of the problem. On the one hand, when EBNA is applied to

unimodal problems (Trap5 and Gaussian Ising) and the optimal
solution is found, its probability continuously increases until
it reaches the value of 1. One exception is function Trap5 and
the bivariate structure where the probability of the optimum
decreases at the beginning of the run and it increases in the
last generations.

On the other hand, when EBNA successfully solves mul-
timodal problems (±J Ising and Max-SAT), it is able to
reach a subset of the optimal solutions and their probability
values also increase during the search. In these problems, the
probability is distributed among different solutions at the end
of the run (note that the number of generations is limited).
Thus, the non-convergence to 1 of the probability values of the
MPS or the best individual of the population (both probability
curves always rise simultaneously) reflects the multimodality
of the function. Moreover, these probability values are lower
when the algorithm reaches a higher number of optima. This
finding can be used to detect multimodality when an unknown
problem needs to be faced.

In unsuccessful runs, the probability of the optimum always
has a similar pattern. At the beginning of the run, it increases
together with the probability of the MPS and the best indi-
vidual of the population. However, after a certain generation,
before reaching a specific probability threshold, it decreases
rapidly.

Both the probability of the MPS and the best individual of
the population in logarithmic scale, accurately show how that
the algorithm converges as the generations advance. Therefore,
by monitoring the probability of the best individual, it would
be possible to know the speed of convergence of the algorithm
and bring forward a premature convergence. According to
this, modifications in the replacement technique could be
performed in order to regulate the diversity of the population.
This information could also be useful in order to distinguish
between exploration and exploitation phases. Thus, we could
stop the search at the right time (before the probability of
the optimum starts to decrease) and take advantage of the
information contained in the probabilistic model by using
exploitation techniques.

The population size also influences the probability assigned
to the optimum during the search and this is reflected in the
number of successful runs. When the population size given by
bisection is used, the probability values for the optimum tend
to be closer to the highest in the distribution and, in most of
the cases, this is beneficial in order to solve the problem.

2) How does the accuracy of the information about the
problem contained in the structural model influence the
internal behavior of EDAs?

The results support the conclusion obtained in [15] regard-
ing the difficulty of creating adequate probabilistic models by
hand even with complete knowledge of the problem structure.
However, the quantitative analysis of the models reveals that
the use of information about the problem has an important
impact in the internal behavior of the algorithm.

In particular, we provide two clear conclusions. First, when
we are able to introduce all the interactions between the
variables of the problem, the probability of the optimum tends
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to be closer to the highest probability in the distribution. Sec-
ondly, when we introduce this information, the function value
for the MPS is very close to the optimum from the beginning
of the run. However, despite these favorable properties, these
types of models do not always perform satisfactorily. The
experimental results indicate that the PLS sampling method
(one of the most widely used) does not extract all the valuable
information contained in the probabilistic models. For this
reason, in order to take advantage of both the high probability
assigned to the optimum and the high quality function values
of the MPS, the use of a sampling based on exact or even
approximate belief propagation techniques [57], [58] could be
beneficial. Another reason we point out for such non-constant
behavior is the direction assigned to the arc, which conditions
the order the variables will be sampled by the PLS technique.
A possible solution for this issue could be to, according to a
given score, look for the best direction for the arcs at each
step of the algorithm.

When the information about the problem that the probabilis-
tic model contains is reduced, the probability of the optimum
is more distant from the highest in the distribution. Moreover,
the function value of the best individual is closer to the MPS in
the first generations. These facts justify the poor performance
of the algorithm in these cases.

3) How does the function value for the most probable
solution evolve during the search?

The function value for the MPS always increases during
the search until it stabilizes in the last generations. At the
beginning of the run, it is usually better than the best individual
in the population.

As we previously said, the difference between the function
values of the MPS and the best individual increases when a
dense structure is used. Another interesting observation is that
this difference also reflects the impact that the population size
has on a particular problem. Thus, when we increase the popu-
lation size in order to solve Trap5, both the difference between
the function values analyzed and the number of successful
runs clearly increases. However, for Max-SAT, increasing the
population size hardly influences the curves of function values
and the performance of the algorithm. Therefore, by analyzing
the MPS and the best individual with different population
sizes, we can predict, without additional information about the
problem, if increasing this parameter will be useful in order to
obtain better results or if we need to look for other solutions
to improve the performance of the algorithm.

By using these function values, we believe that it is also
possible to identify different phases of the search. According
to the results, in unsuccessful runs, the probability of the
optimum starts to decrease shortly after the function value of
the best individual outperforms the function value of the MPS.
Moreover, the optimum is never reached before this event. It
could be used to identify the end of the exploration stage and
avoid a premature convergence.

In summary, the difference in function value between the
MPS and the best individual could be used: 1) to improve
the setup of EDA parameters; 2) to measure the quality of
the information introduced about the problem in the model;

3) to measure the quality of sampling methods; and 4) to
detect critical phases in the search. Finally, the analysis carried
out in this paper has become useful in order to learn about
different aspects of the algorithm and propose improvement
solutions. We believe that similar approaches to analyze EDAs
can be especially useful for other EDA practitioners both in
fundamental research and in real problem applications.

X. Future Work

There are a number of trends where it is worth extending
the results presented in this paper.

A direct extension of this paper is to reproduce the proposed
analysis in problems with different characteristics as, for
example, non-binary discrete problems. Another line of future
research is to study the influence, in the descriptors of the
probabilistic models introduced in this paper, of different
selection operators or replacement strategies. Particularly, the
influence of techniques to avoid loss of diversity such as
niching [59] or restricted tournament selection [60] deserves a
deep study. Similarly, the influence on our descriptors of the
model learning algorithm used (e.g., exact versus approximate
learning of Bayesian networks [14]) as well as the scoring
metric to estimate the quality of the networks (e.g., Bayesian-
Dirichlet metric [61] or Bayesian information criterion [26])
is worth further investigation. The introduction of alternative
descriptors of the EDA behavior such as the entropy of the
Bayesian networks would be interesting.

Some of the ideas collected in the conclusions can be used
in the development of adaptive EDAs [62]. For example:
1) by using the probability value of the best individual of
the population to measure the convergence of the algorithm
and make online decisions about the replacement technique,
and 2) by using the relation between the MPS and the best
individual in order to self-adjust the population size or to use
an adequate sampling method during the search. Furthermore,
we could study the use of approximate techniques such as
loopy belief propagation [18] to calculate the MPS, because in
general, its exact computation is constrained by the size of the
problem.

Finally, taking into account the constant patterns observed in
the behavior of the probabilities, we think it could be possible
to theoretically model the relation between probability curves
and parameters such as the number of variables and the popu-
lation size. In summary, we believe that these experimental re-
sults will help to further develop this type of theoretical model.
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Images, Ecole Nationale Supérieure des Télécommunications, Paris,
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