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Parallel Implementation of EDAs Based on
Probabilistic Graphical Models

Alexander Mendiburu, Jose A. Lozano, and José Miguel-Alonso

Abstract—This paper proposes new parallel versions of some es-
timation of distribution algorithms (EDAs). Focus is on mainte-
nance of the behavior of sequential EDAs that use probabilistic
graphical models (Bayesian networks and Gaussian networks), im-
plementing a master–slave workload distribution for the most com-
putationally intensive phases: learning the probability distribution
and, in one algorithm, “sampling and evaluation of individuals.” In
discrete domains, we explain the parallelization ofEBNABIC and
EBNAPC algorithms, while in continuous domains, the selected
algorithms are EGNABIC and EGNAEE.

Implementation has been done using two APIs: message passing
interface and POSIX threads. The parallel programs can run ef-
ficiently on a range of target parallel computers. Experiments to
evaluate the programs in terms of speed up and efficiency have
been carried out on a cluster of multiprocessors. Compared with
the sequential versions, they show reasonable gains in terms of
speed.

Index Terms—Cluster computing, estimation of distribution al-
gorithms (EDAs), evolutionary computation, performance evalua-
tion, probabilistic graphical models.

I. INTRODUCTION

I N RECENT YEARS, great improvements have been made
in the development and use of heuristic techniques for opti-

mization. Different algorithms have been proposed and applied
to optimization problems, usually with very good results. How-
ever, there is still a significant drawback, which, in many situ-
ations, makes the use of such algorithms prohibitive in real en-
vironments: computation time. That is, the algorithms are able
to solve a complex problem but not as quickly as we need, with
execution times lasting hours or even days. One approach to re-
duce computation time is the use of parallelization techniques.

Some of the algorithms that have received much attention
from researchers are those included in the field of evolutionary
computation. Such techniques include genetic algorithms
(GAs), evolutionary strategies, evolutionary programming, and
genetic programming. A number of interesting proposals for
parallel evolutionary computation can be found in the litera-
ture. Efforts in the design of parallel evolutionary algorithms
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have focused on two areas: 1) looking for algorithms where
many populations evolve in parallel and 2) parallelization of
the evaluation of the objective function. A good summary of
different ideas for designing parallel evolutionary algorithms
can be found in [1] and [2].

Recently, a new group of algorithms has been proposed in
the field of evolutionary computation: estimation of distribution
algorithms (EDAs) [3], [4]. Like most evolutionary computa-
tion heuristics, EDAs maintain at each step a population of in-
dividuals but, instead of using crossover and mutation operators
to evolve the population, EDAs learn a probability distribution
from the set of selected individuals and sample this distribution
to obtain the new population.

One drawback of these algorithms is that the estimation of
the joint probability distribution can easily become a computa-
tional bottleneck. To lessen this problem, several authors have
proposed simplifying assumptions on the probability model to
be learnt at each step, related to the way the model takes into
account relations between variables. Three groups could be dif-
ferentiated: algorithms that assume all the variables are indepen-
dent, those that assume second-order statistics, and those that
consider unrestricted models.

In the field of EDAs, the algorithms that obtain the best results
are those of the last group (probability models with unrestricted
dependencies [4]). In these algorithms, a probabilistic graph-
ical model codifies the probability distribution. Excluding the
computation time of the objective function, the main computa-
tional cost of the algorithms is the time consumed in learning the
probabilistic graphical model at each step. In fact, it ranges from
50% to 99% of the total execution time. Therefore, our effort fo-
cuses on the parallelization of this learning process, proposing
different solutions for certain EDAs that use probabilistic graph-
ical models to learn the joint probability distribution of the se-
lected individuals. There is also another phase that could require
an important amount of time during the execution: sampling. In
this paper, the parallelization of the “sampling and evaluation”
step is presented for the algorithm although it can
easily be adapted to any of the others.

In the field of EDAs, previous parallel implementations can
be found for some algorithms. In [5], two different parallel
proposals for an algorithm that uses probabilistic graphical
models in the combinatorial field are proposed.
These implementations use threads on a multiprocessor with
shared memory, so that all data structures are shared between
the different processes, with each of them computing a piece of
work.

Also interesting is the work done in [6] and [7], where two dif-
ferent parallel versions of the Bayesian optimization algorithm
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(BOA) [8] are proposed using a pipelined parallel architecture
and clusters of computers respectively. Recently, in [9], the par-
allelization of the learning of decision trees using multithreaded
techniques has been proposed.

Another parallelization approach can be found in [10], where
a basic framework that facilitates the development of new mul-
tiple-deme parallel EDAs is presented.

In this paper, we propose new parallel versions of certain
EDAs that use probabilistic graphical models to learn the prob-
ability distribution of the selected individuals in both discrete
and continuous domains. Specifically, we have chosen one al-
gorithm for each different method of learning a probabilistic
graphical model used in EDAs. Our main goal has been to im-
plement different parallel versions for each algorithm, trying to
reduce the execution time, while maintaining exactly the same
behavior of the sequential version. In this way, we provide par-
allel algorithms that are able to be applied on problems that re-
quire an inaccessible execution time for the sequential versions.

Implementation has been carried out mixing two parallel
application programming interfaces: message passing interface
(MPI) [11] and POSIX threads [12].

Concerning the algorithms, and have
been parallelized in the discrete domain. Previous parallel
works can be consulted in this domain, such as the proposal
of [5], where a parallel version of is presented
(using threads). Our work presents a parallel solution that can
be used in a multiprocessor computer (where processes com-
municate via shared variables), in a cluster (where processes
communicate using messages), or any combination of both
scenarios. Also, our work extends [6] and [7] allowing the
learning of the Bayesian network without taking into account
order restrictions. In the continuous domain, parallel versions
of and algorithms are proposed.

The rest of this paper is organized as follows. A description
of EDAs can be seen in Section II, where the main character-
istics of the algorithms will be explained. In Section III, gen-
eral considerations for the parallel proposals are presented. In
Sections IV and V, the parallel solution for the four different al-
gorithms is explained following this schema: a brief explanation
of the algorithm, parallel implementation(s) and an evaluation
of the results obtained. Finally, conclusions, as well as some
ideas for future work are presented in Section VI.

II. ESTIMATION OF DISTRIBUTION ALGORITHMS

EDAs were introduced in the field of evolutionary computa-
tion in [3], although similar approaches can be found in [13].
In EDAs, there are neither crossover nor mutation operators.
Instead, the new population of individuals is sampled from a
probability distribution, which is estimated from a database that
contains the selected individuals from the previous generation.
Thus, the interrelations between the different variables that rep-
resent the individuals are explicitly expressed through the joint
probability distribution associated with the individuals selected
at each generation. In order to better understand the behavior of
this heuristic, a common outline for all EDAs follows.

Step 1) Generate the first population of individuals and
evaluate each of them. Usually, this generation

Fig. 1. EDA approach to optimization.

is made assuming a uniform distribution on each
variable.

Step 2) individuals are selected from the set of , fol-
lowing a given selection method.

Step 3) A (size of the individual) dimensional prob-
ability model that shows the interdependencies
among the variables is induced from the selected
individuals.

Step 4) Finally, a new population of individuals is gen-
erated based on the sampling of the probability dis-
tribution learnt in the previous step.

Steps 2)–4) are repeated until some stop criterion is met (e.g.,
a maximum number of generations, a homogeneous population,
or no improvement after a certain number of generations). A
diagram of this process (for ) can be seen in Fig. 1.

The probabilistic graphical model learnt at each step has a
significant influence on the behavior of the EDA (computing
times and obtained results). Below, we provide a classification
of EDAs that uses as criterion the complexity of this probability
model and the dependencies it considers.

• Without dependencies: It is assumed that the -dimen-
sional joint probability distribution factorizes as a product
of univariate and independent probability distributions.
Algorithms that use this model are, among others, UMDA
[14] or [15].

• Bivariate dependencies: Only the dependencies between
pairs of variables are taken into account. In this way,
estimation of the joint probability can be already done
quickly. This group includes MIMIC [16], [17],
[18].

• Multiple dependencies: All possible dependencies among
the variables are considered without taking into account
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Fig. 2. Structure, local probabilities, and resulting factorization for a Bayesian network with four variables (X , X and X with two possible values, and X
with three possible values).

required complexity. [19], [20], BOA [8],
[21]–[23], learning factorized distribution algorithm
(LFDA) [24], or [17], [18] are some algo-
rithms that belong to this group.

For detailed information about the characteristics and dif-
ferent algorithms that constitute the family of EDAs, see [4]
and [25]. Theoretical results related to convergency and stability
properties of EDAs can be consulted in [26]–[28].

The algorithms of the last group (multiple dependencies) use
different paradigms to codify the probabilistic model. Particu-
larly, we are interested in those that use probabilistic graphical
models based on Bayesian or Gaussian networks and, therefore,
we will explain briefly the main characteristics of both types of
networks.

1) Bayesian Networks: Formally, a Bayesian network [29]
over a domain is a pair that repre-
sents a graphical factorization of a probability distribution. The
structure is a directed acyclic graph which reflects the set of
conditional (in)dependencies between the variables. The factor-
ization of the probability distribution is codified by

(1)

where is the set of parents of (variables from which there
exists an arc to in the graph ). In Fig. 2, for example,

( and are the parents of ). The second part
of the pair, , is a set of parameters for the local probability
distributions associated with each variable. If variable has
possible values, , the local distribution,
is an unrestricted discrete distribution

(2)

where denote the values of and the term
denotes the number of possible different instances of the

parent variables of . In other words, parameter rep-
resents the conditional probability of variable being in
its th value, knowing that the set of its parent variables is
in its th value. Therefore, the local parameters are given by

. An example of a Bayesian
network can be seen in Fig. 2.

The learning phase of EDAs involves the learning of a
Bayesian network from the selected individuals at each gen-
eration, that is, learning the structure (the graph ) and the
parameters (the local probability distribution ). There are
different methods to complete this learning process, including
for example the “score + search” and the “detecting conditional
(in)dependencies” approaches. In the following section (dis-
crete domain), we propose the parallelization of two EDAs that
use these methods: and , respectively.

2) Gaussian Networks: The other particular case of proba-
bilistic graphical model considered in this work is of use when
each variable is continuous and each local density func-
tion is the linear-regression model

(3)

where is a univariate normal distribution with mean
and variance . Given this form, a missing arc from to

implies that in the former linear-regression model.
The local parameters are given by , where

is a column vector. A probabilistic graph-
ical model constructed with these local density functions is a
Gaussian network [30].

The interpretation of the components of the local parameters
is as follows: is the unconditional mean of , is the con-
ditional variance of given , and is a linear coefficient
reflecting the strength of the relationship between and .

It can be seen that there is a bijection between Gaussian
networks and a -dimensional multivariate normal distribution,
whose density function can be written as

(4)

where is the vector of means, is an covariance matrix,
and denotes the determinant of . An example of a Gaussian
network can be seen in Fig. 3.

Like for Bayesian networks, there are also different methods
to complete Gaussian network learning. The ones we point out
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Fig. 3. Structure, local probabilities, and resulting factorization for a Gaussian network with four variables.

TABLE I
TIME MEASUREMENT (%) OF THE LEARNING PHASE FOR

DIFFERENT ALGORITHMS AND PROBLEMS

are “score + search” and “detecting conditional (in)dependen-
cies.” In Sections V-A and V-B, the parallelization of two algo-
rithms that use these approaches are shown: (“score
+ search”) and (edge exclusion tests).

III. GENERAL CONSIDERATIONS FOR PARALLEL PROPOSALS

Before undertaking the implementation of a parallel solution
for an existing sequential algorithm, it is essential to study the
structure and functionality of the sequential solution and find
the parts amenable to parallelization. To this end, we have ex-
ecuted the sequential version of the algorithms with different
individual sizes in order to measure the computation time that
each part of the algorithm requires. As we have said in the intro-
duction and can be seen in Table I (showing the time required to
complete the learning step in percentages), the most time-con-
suming process is the learning phase, which generally accounts
for 50%–99% of total execution time. Our effort will therefore
focus on understanding how the learning process proceeds and
finding a good parallel approach for this phase.

It must also be pointed out that, for particular problems where
the evaluation of an individual is also processor-intensive, the

sampling (creation of new individuals) and evaluation phase
must also be parallelized in order to obtain a good parallel so-
lution. As a preliminary work, in this paper, we introduce the
parallelization of this step for a discrete algorithm .

Before explaining the implementation, two important con-
cepts should be introduced: MPI and POSIX threads.

MPI [11] is an API that can be used by an application process
to communicate over the network with processes that are run-
ning in other computers. It was designed and standardized by
the MPI forum, a group of academic and industrial experts, to
be used in very different types of parallel computers. A wide set
of functions are available for managing, sending and receiving
messages.

In relation to POSIX threads [12], most operating systems
have thread support, that is, they include capabilities to spawn
new “lightweight processes” (actually, threads) that share the
same variable space. With this paradigm, a set of processes
collaborating to perform a common task are implemented as
threads that share the same memory space, so they can commu-
nicate directly using a set of global variables. The advantage of
using this approach is that communication is fast and efficient,
although the synchronization between threads has to be explic-
itly implemented.

For the implementation of the programs, we have chosen a
two-level master–slave scheme (Fig. 4). At the first level (com-
munication between computers), the communication is carried
out using MPI, where a computer acts as a manager that dis-
tributes workload among the remaining computers (workers).
These workers execute orders sent by the manager and return
results to it. In some situations, the manager must stay idle for
a long time, waiting until all the workers finish their work. To
make good use of this time, it is possible to make the manager
act as another worker. At the second level, we present another
master–slave schema (inside each computer), where the MPI
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Fig. 4. Two-level manager–worker schema.

process (one per computer) is the master, and the workers are
the multiple threads that can be created. This is a good choice
when computers are multiprocessors. For reasons that will be
explained later, the implementation of the parallel al-
gorithm is made using a single-level master–slave scheme.

The rationale for the two-level schema is that, in many
environments, machines available for scientific computing are
an assortment of multiprocessors, clusters of single-processor
nodes or even clusters of multiprocessors. Our programs can
be easily adapted to any of these environments by selecting
the right choice of mechanism for internode and intranode
communication and synchronization.

It should be noted that, to simplify the explanations, all the
pseudocodes shown in this paper describe only the first level
(MPI communication between computers). The schemes for the
second level are similar to those of the first, although there are no
send/receive operations because communication is performed
via a shared memory space.

Finally, it is very important to remark that, throughout this
paper, performance results for the parallel implementations (in
terms of efficiency and/or speedup) are compared to an opti-
mized sequential version of the programs, running on a single
processor.

IV. DISCRETE DOMAIN

A. Algorithm [19], [20]

1) Algorithm Description: This algorithm follows the
common schema described for EDAs.

In the learning phase, it uses a “score + search” approach
to learn the structure of the probabilistic graphical model
(Bayesian network). This method assigns a score to each
possible Bayesian network structure, that is a measure of its
performance given a data file of cases. To look for a struc-
ture that maximizes the given score it uses an algorithm that

basically consists of adding or deleting edges to the existing
Bayesian network.

uses the penalized maximum-likelihood score de-
noted by (Bayesian information criterion) [31]. Given a
structure and a dataset (set of selected individuals), the BIC
score can be written as

(5)
where

• is the number of variables of the Bayesian network (size
of the individual);

• is the number of different values that variable can
take;

• is the number of different values that the parent vari-
ables of , , can take;

• is the number of individuals in in which variables
take their th value;

• is the number of individuals in in which variable
takes its th value and variables take their th

value.
An important property of this score is that it is decomposable.

This means that it can be calculated as the sum of the separate
local BIC scores for the variables, that is, each variable has
associated with it a local BIC score

(6)

where

(7)
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The structure search algorithm used in is usually a
hill-climbing greedy search algorithm. At each step, an exhaus-
tive search is made through the set of possible arc modifications.
An arc modification consists of adding or deleting an arc from
the current structure . The arc modification that maximizes the
gain of the BIC score is used to update , provided that it re-
sults in a directed acyclic graph (DAG) structure (note that the
structure of a Bayesian network must always be a DAG). This
continues until there is no arc modification that improves the
score. It is important to bear in mind that if we update with
the arc modification , then only needs to be
recalculated.

The structural learning algorithm involves a sequence of ac-
tions that differs between the first step and all subsequent steps.
In the first step, given a structure and a database , the change
in the BIC is calculated for each possible arc modification. Thus,
we have to calculate terms as there are possible
arc modifications. The arc modification that maximizes the gain
of the BIC score, whilst maintaining the DAG structure, is ap-
plied to . In the remaining steps, only changes to the BIC due
to arc modifications related to the variable need to be con-
sidered (it is assumed that in the previous step, was updated
with the arc modification ). Other arc modifications have
not changed its value because of the decomposable property of
the score. In this case, the number of terms to be calculated is

.
We use four data structures for this algorithm. A vector

, , where stores the local BIC
score of the current structure associated with variable . A
structure , , with the DAG represented as
adjacency lists, that is, represents a list of the immediate
successors of vertex . A matrix , , ,
where each entry represents the gain or loss in score
associated with the arc modification . Finally, a matrix

, , , of dimension that represents
the number of paths between each pair of vertices (variables).
This structure is used to check if an arc modification produces
a DAG structure. For instance, it is possible to add the arc
to the structure if the number of paths between and is equal
to 0, that is, .

A pseudocode for the sequential structure learning algorithm
can be seen in Fig. 5.

2) Parallel Approach—First Version: This first version is
a straightforward parallelization of the sequential algorithm.
That is, the only changes made in the code are those necessary
to implement the parallel version, maintaining the sequential
functionality.

Parallelization is proposed only for the learning phase, thus,
all the other phases of the algorithm are carried out sequentially
by the manager (master). During this learning phase, the man-
ager sends different orders to the workers identifying the work
to be done. To begin, the manager sends some information to
the workers (e.g., size of the individual database, number of
workers) and in the subsequent steps different orders are sent
requesting the computation of the decomposed BIC score and
maintenance of the local structure. Workers need their own
data structures (because are running in different machines) to
store temporary results. Once initialization has been completed,

Fig. 5. Pseudocode for the sequential structural learning algorithm
EBNA .

workers wait for an order. Two different types of orders can be
received: one, to compute the BIC score for their respective set
of variables (as each worker has a unique identifier it is easy to
divide the work that each worker must complete in terms of this
identifier) and return the results to the manager; the second type
of order is to maintain the integrity of the local structure: each
addition or deletion of edge performed at one worker has
to be notified to the remaining workers.

This is mainly the MPI schema but, as mentioned at the be-
ginning of this part, in this implementation we have also added
thread-programming techniques. When combined with MPI, a
variable number of threads can be created at the beginning of
the program execution and, when an order of BIC computation
for a subset of variables arrives to a worker, it can distribute
that workload among the preforked threads. Each of them will
independently compute a BIC value for a variable, and then an-
other one, until all variables have been processed. It can be seen
that in every “MPI worker,” new workers (threads) are locally
created, all collaborating to complete the work assigned to the
“MPI worker.” As they use shared memory, all the changes are
made in the same set of data structures, thus not involving MPI
communication.

The pseudocode for this algorithm is shown in Fig. 6 (man-
ager) and Fig. 7 (workers).

3) Parallel Approach—Second Version: The previous ver-
sion of the parallel program strictly follows the structure of the
sequential counterpart. All the computations are made for each

, even though in the search for the best value, it
must be also verified that the Bayesian network is still a DAG.
This means that workers perform some tasks that can be consid-
ered useless: why must they compute a score if it does not
fulfill the DAG property? This led us to a second version of the
program that reduces this overhead.

The first idea is to send to the workers the data struc-
ture needed for them to check if the DAG property is still
maintained ( ). However, this alternative is not efficient,
because work has been distributed among the workers as

but it is impossible to know
how many BICs must be calculated at each worker (only those
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Fig. 6. Pseudocode for the parallel structural learning phase. First version of
the EBNA algorithm for the manager.

Fig. 7. Pseudocode for the parallel structural learning phase. First version of
the EBNA algorithm for the workers.

that kept the DAG property). Therefore, notable differences
in computational effort could exist between different workers
(unbalanced distribution) and the manager must wait until the
last of them finishes.

For this reason, it is necessary to find out in advance the
number of edges that fulfill the restriction and, therefore, be-
fore sending the work, the manager tests for all the possible
changes that maintain the DAG condition, creating a set with
those. Then, this set is sent to the workers, and each of them

Fig. 8. Pseudocode for the parallel structural learning phase. Second version
of theEBNA algorithm for the manager. Only the steps that differ from the
previous version are shown.

calculates the BIC criterion for its proportional subset, guaran-
teeing an equally distributed workload. Fig. 8 (manager) shows
the changes made for this second version. Code for the workers
is not shown due to its similarity with the first version: the single
difference is that in this version the workers explicitly receive
the set of variables to work with, instead of calculating the set
themselves.

B. Algorithm [19], [20]

1) Algorithm Description: Like the previous algorithm,
also maintains the common schema described for

EDAs, but, unlike , to complete the learning phase a
“detection of conditional (in)dependencies” method is used.

This method tries to detect whether or not there are condi-
tional dependencies between all the variables that constitute the
domain. All the detected dependencies are stored and, in the
final step, a Bayesian network is created based on the detected
dependencies.

receives its name from the fact that the algorithm
used to detect the conditional (in)dependencies is the algo-
rithm, described in [32]. Like most recovery algorithms based
on independence detections, the PC algorithm starts by creating
the complete undirected graph , then “thins” that graph by re-
moving edges with zero-order conditional independence rela-
tions, “thins” again with first-order conditional relations, then
with second-order conditional relations, and so on. The set of
variables conditioned on need only be a subset of the set of vari-
ables adjacent to one of the variables of the pair. The indepen-
dence test is performed based on the distribution. When there
are no more tests to do, the orientation process begins, giving a
direction to each edge in .

The data structures used in this program are: a matrix
to store the undirected graph structure, where is true
when there is an edge connecting and nodes; and a struc-
ture—SepSet—to save the independence relation between two
variables and the set of variables conditioned on.

Fig. 9 shows the pseudocode for the PC algorithm.
represents the set of vertices adjacent to the vertex in the
undirected graph , and indicates that
and are independent given a subset of adjacent variables

. Note that the graph is continually updated, so
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Fig. 9. Pseudocode for the sequential structural learning algorithmEBNA .

TABLE II
TIME MEASUREMENT (%) OF DIFFERENT PHASES

OF THE EBNA LEARNING PHASE

is constantly changing as the algorithm progresses.
A good review for the induction of Bayesian networks by de-
tecting conditional (in)dependencies can be found in [33].

2) Parallel Approach—First Version: We performed a study
of execution times of the sequential algorithm. As shown in
Table I, the learning phase requires nearly 98% of total execu-
tion time, so this is the obvious target for parallelization. As
mentioned earlier, the learning phase can be divided into two
different steps: detection of conditional (in)dependencies, and
orientation. Table II shows that the first step takes about 99% of
the learning time, therefore, our parallel approach focuses only
on this step.

Once we have explained the algorithm, we propose
a parallel implementation. The model induction begins with a
complete undirected graph and, in the first step, all zero-order
conditional independencies are searched. Each computational
node can carry out this process independently. Thus, all the
pairs are equally distributed between the manager and workers
(since the manager must wait for the results it may as well
be used as another worker). If is the number of variables,
the dependencies between pairs must be checked.

Thus, each worker (including the manager) take on a set of
pairs to detect dependencies.

In the subsequent steps, the original algorithm tests sequen-
tially the dependencies between all possible pairs,

and , with all the subsets of cardinality
(from until no subset can be found). The deleted edges
and the state of the executions must be controlled, so the man-
ager needs auxiliary structures where the current state is saved:

• manage_pairs: stores all the pairs that must be calculated
along with each one’s current situation: is being calcu-
lated or not, cardinality value and so on;

• notify_changes: stores for each worker a list with the
edges that must be deleted from the structure.

Note that the parallel version must repeat exactly the same
steps as the sequential algorithm. Starting with zero-order de-
pendencies, the pairs can be distributed between the manager
and the workers without any additional control. When these
computations have finished, the real “challenging” work begins.
The manager waits for requests from workers asking for pairs to
calculate. To determine whether a pair is susceptible
to be calculated, there cannot be another pair being
calculated such that , or . In this
way, we assure that the order followed to distribute the work is
exactly the same as the one used in the sequential algorithm. If
there is no possibility of obtaining a pair, the manager forces
the worker to wait until a pair can be selected. This process is
repeated until no more dependencies can be found.

In these steps (from first order until the end), the manager
will distribute the work to be done among the workers, sending
the next pair to be calculated. As this calculation can change
the and SepSet structures, the manager receives the result of
each worker’s execution (must edge be removed?) and updates
its and SepSet structures when necessary, changing also the
structure used to notify each worker of the changes made in
the graph—notify_changes. This is necessary because each
worker needs to have an updated copy of the structure of the

graph before doing any conditional independence detection,
and it is cheaper in terms of computation and communication to
send the changes than to send the whole structure each time.
The SepSet structure is only needed in the manager because, as
said earlier, the orientation process will be done sequentially.

The pseudocode of this parallel version of the al-
gorithm can be seen in Fig. 10 (manager) and Fig. 11 (workers).

3) Parallel Approach—Second Version: If we observe the
operation mode of the parallel program when computing depen-
dencies with adjacent sets of cardinality greater than zero, we
can see that the manager selects the next pair to calculate, and
then sends it to the worker that has asked for a job, repeating
this process for all the requests. While workers process their
assigned pairs, the manager stays idle, waiting. An evident im-
provement here is to make the manager play also the role of
worker when there are not requests pending: it can take a new
pair and calculate it itself.

In Fig. 12, the modifications made in the manager version of
the parallel program can be seen. The worker’s algorithm is not
repeated again because it is the same of the first version of the

.
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Fig. 10. Pseudocode for the parallel structural learning phase. First version of
the EBNA algorithm for the manager.

C. Experiments for the Discrete Domain

This section reports the different experiments that have been
carried out using different implementations and target computer
combinations.

The results of the experiments are presented from the point
of view of speed up and scalability of the parallel algorithms.
Note that the parallel versions have exactly the same behavior of
the sequential algorithms but run faster, allowing them to solve
harder problems.

With regard to the general steps of EDAs, there is one phase,
evaluation of the individuals, that uses different fitness functions
depending on the particular target problem. Therefore, the time
needed to evaluate all the individuals can vary significantly from
one problem to other.

Trying to give a general view of the parallel approaches, we
have decided to select simple problems (with very simple fit-
ness functions) in order to study the behavior of the parallel al-
gorithms independently of the evaluation phase.

Fig. 11. Pseudocode for the parallel structural learning phase. First version of
the EBNA algorithm for the workers.

Fig. 12. Pseudocode for the parallel structural learning phase. Second version
of the EBNA algorithm for the manager. Only the steps that differ from the
previous version are shown.

For the discrete domain the chosen problem is the well-known
function, that has a very simple objective function.

This problem consists of maximizing

where .
Clearly, is a linear function, which is easy to opti-

mize. The computational cost of evaluating this function is tiny.
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The machine used to carry out the experiments—which is
the same for discrete and continuous domains, is a cluster
of 10 nodes, where each node has two AMD ATHLON MP
2000+ processors (CPU frequency 1.6 GHz), with 256 KB of
cache memory per processor, and 1 GB of RAM per node. The
operating system is GNU-Linux and the MPI implementation
is LAM (6.5.9. version). All the computers are interconnected
using a switched Gigabit Ethernet network.

As we have said in advance, two different paradigms have
been used to implement the parallel algorithms: MPI and
Threads. Both have been used for the experiments.

• pure MPI: All communications (intranode and internodes)
are performed using only MPI.

• MPI&Threads: A MPI process runs at each node. Com-
munication and synchronization between nodes is done
via MPI. Inside each node, the MPI process creates two
threads (one per processor) that use shared variables to
communicate and synchronize.

We have executed several experiments for each algorithm
combining different number of nodes and using for each node
both processors (MPI&Threads) or only one (pure MPI). This
way we obtain efficiency figures for both a cluster of dual-pro-
cessors (MPI&Threads) and a cluster of single-processor ma-
chines (pure MPI).

On the subject of the parameters chosen to test program per-
formance, we have selected a medium–big size of Bayesian net-
work: an individual size of 500 (for both algorithms,
and ). For the remaining parameters, these are the de-
fault values: size of the population is 2000; 1999 new individ-
uals are created each new generation; from those, the best 1000
are selected. The stopping criterion is the completion of a fixed
number of generations: 15 for both algorithms. The reason for
this is that, due to the variable behavior of EDAs, execution
time can vary from one execution to other if the algorithm is
stopped when a particular result is obtained. Therefore, fixing
the number of generations we get easily comparable execution
times for all program versions. As the base algorithms are the
same (the sequential versions), we cannot claim (in fact, we do
not want to do so) any improvement in the quality of the results,
just in the execution time.

Each experiment has been repeated 30 times. Results pre-
sented here are the average of the 30 measurements. These are
very representative, as the observed deviation has been less than
2%.

In the following sections, results are presented from two
different points of view: time-related dimension and perfor-
mance-related dimension.

1) Time-Related Dimension: The main goal of a paralleliza-
tion process is to reduce the computation time required for a
program to complete its work. In the following tables, execution
time and speed up, as well as efficiency are presented. These last
two concepts are defined as the following:

• ;
• .

Tables III and IV summarize the results of the experiments
for the and algorithms, respectively.

TABLE III
TIME-RELATED EXPERIMENTAL RESULTS FOR BOTH VERSIONS OF

THE EBNA PARALLEL ALGORITHM

TABLE IV
TIME-RELATED EXPERIMENTAL RESULTS FOR BOTH VERSIONS OF

THE EBNA PARALLEL ALGORITHM

It can be observed that similar results are obtained using pure
MPI and MPI&Threads, a demonstration of parallel algorithms
being successfully executed over clusters of single-processors,
as well as over clusters of multiprocessors. In particular, it must
be pointed out the excellent efficiency of both versions of the

algorithm, even when using 20 CPUs. As we ex-
pected, the second parallel version reaches shorter computation
times because only the scores actually needed are calculated. It
could be surprising to observe efficiency reaching values over
1, but it must be taken into account that in the parallel execu-
tions more computers are used, meaning that more data fits into
ultrafast cache memories.

With regard to the algorithm, promising results are
obtained using few CPUs, but when ten or more are used the
parallel algorithm results quite inefficient. It must be pointed out
that a lot of communication/synchronization is required in this
algorithm, being necessary a continuous workload distribution,
as well as an update of common data structures. So, the more
workers are used, the more time is needed for communication
nullifying the addition of more CPU power.

There are significant differences between the two parallel ver-
sions when using a small number of CPUs. This is because
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Fig. 13. Detail of the computation time for the first version of the EBNA
algorithm, using a pure MPI implementation—2, 6, and 10 CPUs have been
used.

Fig. 14. Detail of the computation time for the second version of the
EBNA algorithm, using a pure MPI implementation—2, 6, and 10 CPUs
have been used.

in the first version the manager only receives the results from
the workers and sends them new work. Therefore, when few
workers are available, the manager spends a significant portion
of its time waiting for them to finish. In the second version, the
manager makes use of this idle time to act as a worker. Logi-
cally, as the number of CPUs increases, both algorithms obtain
similar efficiencies.

2) Performance-Related Dimension: When a parallel algo-
rithm is proposed, the computational workload must be dis-
tributed correctly between all the nodes that work in parallel.
Otherwise, the program is not scalable because most loaded
nodes become bottlenecks.

In Figs. 13–16, total execution time has been split in parts to
better observe program (master and workers) behavior. Legend
“Sequential” shows the portion of time required by those parts of
the code that have not been parallelized. The remaining legends
differentiate time spent in computation (“Execution”) and time
spent in communication and synchronization (“Comm&Syn”)
for manager and workers. Tables V and VI extend this informa-
tion, presenting actual execution times, with deviations for the

Fig. 15. Detail of the computation time for the first version of the EBNA
algorithm, using a pure MPI implementation—2, 6, and 10 CPUs have been
used.

Fig. 16. Detail of the computation time for the second version of the
EBNA algorithm, using a pure MPI implementation—2, 6, and 10 CPUs
have been used.

case of workers. Some interesting conclusions can be presented
for the algorithm inspecting obtained information.

• Time required by the sequential steps is quite low, al-
lowing a good scalability. The same occurs with the time
needed for communication and synchronization between
the manager and the workers.

• Work distribution can not be always exact
, and this generates a

slight variation in the deviation observed among the
workers for the different CPU combinations.

• In the second version, the communication/synchroniza-
tion time increases with the number of CPUs. This is be-
cause the manager completes an extra work, checking for
those scores that must be computed and indicating to each
worker which of them to compute. Therefore, there can
be more idle times for the workers, while waiting for new
orders.

On the other hand, for the we observe that:

• Time required by the sequential steps is proportionally
larger, but still allows a reasonable efficiency.
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• Communication and synchronization requirements make
this algorithm quite inefficient as the number of CPUs
increases. In the first version, as manager only distributes
the work, when using few CPUs it spends a substantial
time waiting for the workers requesting additional pieces
of work. However, when using too many workers (10 or
more) manager is not able to attend workers fast enough,
so workers waste time just waiting for more to do.

• In the second version, the manager acts also as a worker
making use of idle times and therefore the communica-
tion/synchronization time for the manager reduces drasti-
cally. This works fine for small numbers of workers but,
as occurs with the first version, when this number is larger
blocking situations arise at the worker side.

V. CONTINUOUS DOMAIN

A. Algorithm [4]

1) Algorithm Description: As we have already noted, EDA
algorithms can be used in discrete and also in continuous do-
mains. In this section, we make proposals for the paralleliza-
tion of the algorithm, which is similar to discrete

but modified for their use in continuous domains.
A Gaussian network is created instead of a Bayesian network,
using a “score + search” approach. That is, the main idea under
this approach consists of having a measure for each candidate
Gaussian network in combination with a smart search through
the space of possible structures. All the comments made con-
cerning the learning algorithm in are also valid for
this algorithm.

The score used to verify the performance of the obtained
Gaussian network is the BIC. A general formulation of this cri-
terion follows:

(8)

where

• is the number of variables in the Gaussian network;
• is the number of selected individuals;
• is the conditional variance for the variable given

;
• is the mean of the variable ;
• is the regression coefficient for variable in .
Like for algorithm, this score can also be broken

down to separately calculate the score for each variable. Accord-
ingly, each variable has associated with it a local BIC score

(9)

TABLE V
ALGORITHM PERFORMANCE-RELATED EXPERIMENTAL RESULTS FOR THE

EBNA ALGORITHM. EXECUTION TIMES FOR MANAGER AND WORKERS

TABLE VI
ALGORITHM PERFORMANCE-RELATED EXPERIMENTAL RESULTS FOR THE

EBNA ALGORITHM. EXECUTION TIMES FOR MANAGER AND WORKERS

where

(10)

Consequently, the steps followed to parallelize this algorithm
are like those for , decomposing the BIC criterion and
sending each piece of the score to a different worker.

2) Parallel Approach: As parallel approaches, we maintain
the two proposals made for . The first one, where
workers calculate all possible arc modifications without con-
sidering whether the DAG property is fulfilled; and the second,
where the manager performs a preliminary step to obtain the arc
changes that maintain the DAG property, sending afterwards to
each worker a subset of those possible modifications.

Due to the similarity of this algorithm to the discrete one,
we consider unnecessary to explain the entire

process again. To obtain a complete view of the characteristics
of the algorithm and the parallel solution, see Section IV-A.

B. Algorithm [17], [18]

1) Algorithm Description: In this algorithm, the structure
learning of the Gaussian network follows a “detecting condi-
tional (in)dependencies” method. In particular, this method be-
gins with a complete graph, where there is a connection from
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each variable , to each variable ,
, and then a statistical test is completed for each edge,

deleting the edge if the null hypothesis is fulfilled.
To complete this test, the likelihood ratio test is used–bor-

rowed from [34]. The statistic to exclude the edge be-
tween and from a graphical Gaussian model is

, where is the sample partial
correlation of and adjusted for the remaining variables.
The latter can be expressed [35] in terms of the maximum-like-
lihood estimates of the elements of the precision matrix as

, where the precision matrix is
the inverse of the covariance matrix .

[34] obtain the density and distribution functions of the likeli-
hood ratio test statistic under the null hypothesis. These expres-
sions are of the form

(11)

(12)

where and are the density and distribution func-
tions, respectively, of a variable.

Once the structure has been obtained, its parameters have to
be learnt to complete the Gaussian network. This can be done
using the following formulas:

(13)

(14)

(15)

where is the estimated means, the estimated conditional
variances, and the estimated regression coefficients.

Six major structures are needed to implement this algorithm.
The graph structure is stored as , , where for
each node its parents are represented in an adjacency list. Two

structures and where the covariances matrix and its
inverse are stored, respectively. Two vectors, , ,
and , for means and conditional variances. Fi-
nally, an matrix, , , and ,
where the regression coefficients will be saved.

A pseudocode for the sequential structure learning algorithm
is presented in Fig. 17.

2) Parallel Approach—First Version: Table I (presented in
Section III) tells us that the learning phase is not as time-con-
suming as in previous algorithms. Due to this, a deeper analysis
has been done to know how the computation time is distributed
among the different phases. Table VII shows the most important
procedures that are executed by the present algorithm: learning
and “sampling and evaluation” of new individuals.

As a first parallel approach, the parallelization of the learning
phase is presented. Due to the execution time distribution, this
version will be completed—in the second approach—with the
parallelization of the “sampling and evaluation” phase.

Fig. 17. Pseudocode for the sequential learning algorithm EGNA .

TABLE VII
TIME MEASUREMENT (%) OF DIFFERENT PHASES

OF THE EGNA ALGORITHM

TABLE VIII
TIME MEASUREMENT (%) OF DIFFERENT PHASES

OF THE EGNA LEARNING PHASE

The learning phase has several independent procedures, and
we can descend one level in depth to obtain the exact compu-
tation time spent on each of these processes. As explained for
the sequential algorithm, the learning phase completes the fol-
lowing steps.

Step 1) Calculate means and from the selected individ-
uals.

Step 2) Obtain the precision matrix.
Step 3) Compute the tests.
Step 4) Carry out the parameter learning.
Table VIII shows the time consumed by each of these

processes. Different measures have been obtained taking into
account different individual sizes and, although the percent-
ages vary depending on the size of the individual, it can be
observed that the most computationally expensive steps are
the first (where means and are calculated) and the fourth
(where the parameters are learnt). In the second step—calculate
the inverse of the covariance matrix—the LU decomposition
method is used and execution is very fast. The third step (test)
is also rapidly executed because it uses the values computed
in the previous phases to obtain the values. Therefore, our
parallelizing efforts focus on Steps 1) and 4).

To calculate , it is first necessary to obtain the means for
each variable, so the database of cases is sent to each worker and
the number of means to be calculated (number of variables) is
distributed among all the workers (manager included). If is the
number of variables and the number of workers,
each worker will have variables to compute.
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Fig. 18. Pseudocode for the parallel learning phase. First version of the
EGNA algorithm for the manager.

Once the means have been calculated, all the nodes must send
their results and receive the ones computed by the others. Thus,
all the nodes have an updated means structure, which is needed
for the next step: compute matrix. The idea is the same, where
each worker computes values of
the matrix. Next, each worker sends its results to the manager
and it updates the structure, continuing with the sequential
processes: calculate the precision matrix (inverse of ), and
compute the tests.

Finally, the parameters must be learnt and, again, a workload
distribution must be done. It this case, the distribution is not
as simple as in the previous steps. Due to the initial structure
of the Gaussian network, the variables with larger index have
more dependencies and, therefore, need more time to compute
its respective and values. To solve this, a simple algorithm
has been used: a distribution of the variables in
sets, trying to balance global execution times.

Figs. 18 and 19 show the pseudocode for the parallel version.
3) Parallel Approach—Second Version: In the previous al-

gorithms, we observed that the most time-consuming part of the
programs was the learning phase, and we focused our efforts on
it. However, for , the “sampling and evaluation” phase
also consumes a significant portion of time, and it is compulsory
to work on it if we want an efficient and scalable parallel pro-
gram. In fact, this situation can be observed in all those cases
when solving problems that use a complex fitness function to
evaluate individuals or require a large population and, therefore,
this idea can be adapted to any of the algorithms presented in this
paper.

Following the general structure of EDAs, an initial population
is created, the best individuals are selected, a probabilistic
model is induced (learning phase) and, finally, a new population
is generated based on the induced model. For this last step, an
adaptation of the probabilistic logic sampling (PLS) proposed
in [36] is used. In this method, the instances are generated one
variable at a time in a forward way. That is, a variable is sampled
after all its parents have already been sampled. To do that an

Fig. 19. Pseudocode for the parallel learning phase. First version of the
EGNA algorithm for the workers.

Fig. 20. Pseudocode for the sequential sampling algorithm EGNA .

ancestral ordering of the variables is given ,
where parent variables are before children variables. Once the
values of have been assigned, we simulate a value for

, using the distribution . For the simulation
of a univariate normal distribution, a simple method based on
the sum of 12 uniform variables is applied [37].

A pseudocode for this sampling process can be seen in
Fig. 20.

The parallelization approach is as follows: if is
the amount of new individuals to be created and
is the number of workers, the manager sends to each worker
the order to create new individ-
uals (the manager also creates new individuals). Once all these
new individuals have been created, they are evaluated (taking
advantage of the parallelism), and finally returned to the man-
ager, which adds them to the population and continues with the
algorithm.

In Fig. 21 (manager) and Fig. 22 (workers), the parallel pro-
posal for the sampling phase can be seen.

C. Experiments for the Continuous Domain

The scenario used for the continuous domain is the same used
for the discrete one, so detailed information can be obtained in
Section IV-C.
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Fig. 21. Pseudocode for the parallel sampling phase.EGNA algorithm for
the manager.

Fig. 22. Pseudocode for the parallel sampling phase.EGNA algorithm for
the workers.

As for the discrete domain, we have chosen a very simple,
well-known problem: the Sphere model. With problems like
this, the evaluation of the individuals (fitness function) does not
require a large portion of computation time and, therefore, the
efficiency of the parallel algorithm can be measured without
taking into account the execution time of this function. How-
ever, it is important to note that the conclusions might change
if more complex functions were used. In these cases, in order
to improve the general performance of the algorithm, it would
be necessary to parallelize also the evaluation of the individ-
uals (we have followed this approach in the next algorithm

).
The Sphere model is a simple minimization problem. It is

defined so that , and the fitness
value for an individual is as follows:

(16)

As the reader can see, the fittest individual is the one whose
components are all 0, which corresponds to the fitness value 0.

Regarding the individual and population sizes, different
values have been selected for each algorithm, such that the
execution times of the sequential algorithms are large enough
to take into consideration their parallel execution.

• : The size of the individual is 100. The pop-
ulation size is 2000, 1999 new individuals are created in
each generation, and the best 1000 are selected. Execution
is stopped when the tenth generation is reached.

• : 1500 has been selected as individual size, the
population has 6000 individuals, and 5999 new ones being
created in each generation. Then, the best 3000 are se-
lected. Execution is stopped when the 15th generation is
reached.

1) Time-Related Dimension: In Tables IX and X, the execu-
tion times, speed up, and efficiency are presented.

Results on show good levels of speed up. Scal-
ability maintains an acceptable level even when 20 CPUs are

TABLE IX
TIME-RELATED EXPERIMENTAL RESULTS FOR THE

TWO EGNA PARALLEL VERSIONS

TABLE X
TIME-RELATED EXPERIMENTAL RESULTS FOR THE

TWO EGNA PARALLEL VERSIONS

used. However, compared with the discrete version, as evalu-
ating the BIC score requires more time, the fact that work divi-
sions are not exactly identical do reflect in an unbalanced work-
load distribution: more waiting times in manager and workers,
and larger deviations.

For the first version of , it can be observed that par-
allelizing only the learning phase is not enough to obtain an effi-
cient parallel algorithm. As the “sampling and evaluation” phase
requires around the 30% of the total execution time, when six
or more CPUs are used, this phase becomes an obvious bottle-
neck. In the second version, the mentioned “sampling and eval-
uation” phase is also parallelized, and the efficiency improves
noticeably.

2) Performance-Related Dimension: Performance results
are summarized in Figs. 23–26 and Tables XI and XII. They
show detailed information about execution times, exposing
the percentage that each different section requires, as well as
absolute timing values and deviations for workers.

As can be observed, the behavior of the algo-
rithm is similar to algorithm and, therefore, con-
clusions are the same. This conclusions can be consulted in
Section IV-C2.

For both versions of algorithm, we could reach to
these conclusions.
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Fig. 23. Detail of the computation time for the first version of the EGNA
algorithm, using a pure MPI implementation—2, 6, and 10 CPUs have been
used.

Fig. 24. Detail of the computation time for the second version of the
EGNA algorithm, using a pure MPI implementation—2, 6, and 10 CPUs
have been used.

Fig. 25. Detail of the computation time for the first version of the EGNA
algorithm, using a pure MPI implementation—2, 6, and 10 CPUs have been
used.

• In the first version, where the “sampling and evaluation”
phase has not been parallelized, the efficiency decreases

Fig. 26. Detail of the computation time for the second version of the
EGNA algorithm, using a pure MPI implementation—2, 6, and 10 CPUs
have been used.

TABLE XI
ALGORITHM PERFORMANCE-RELATED EXPERIMENTAL RESULTS FOR THE

EGNA ALGORITHM. EXECUTION TIMES FOR MANAGER AND WORKERS

TABLE XII
ALGORITHM PERFORMANCE-RELATED EXPERIMENTAL RESULTS FOR THE

EGNA ALGORITHM. EXECUTION TIMES FOR MANAGER AND WORKERS

notably when more CPUs are used, as it could be ex-
pected from the distribution of execution times for the
different phases of the sequential algorithm. This is the
reason why the second version (where this phase has been
parallelized) performs better.

• In general, the scalability of the algorithm is quite poor.
This is due to the high communication requirements—dif-
ferent calculations that require continuous synchroniza-
tion—and to the portion of the algorithm that has not been
parallelized (the sequential part), which becomes more
prominent when the number of processors grows.
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VI. CONCLUSION AND FUTURE WORK

In this paper, several parallel solutions have been proposed for
different EDAs. For each one, a previous study of the execution
times of the procedures that conform the sequential algorithm
was made. In most of the cases, the step that requires the most
substantial part of the total execution time is the learning phase,
where a probabilistic graphical model is induced from the data-
base of individuals. In the final section, we have seen that, de-
pending on the algorithm, there may be other steps that also take
up much computational time: for example, the sampling and cre-
ation of new individuals once the structure has been learnt.

The experiments have been made using a cluster of ten dual-
processor computers, changing the number of nodes from two to
ten (MPI communication). Two different parallel implementa-
tions have been presented (pure MPI and MPI&Threads), using
one or two CPUs per node, showing in this way the ability of
the algorithms to run in different target computers.

Looking at the obtained results, it can be seen that paralleliza-
tion of the learning phase notably improves the performance
of the algorithms. This suggests that applying parallelization
techniques to EDAs to solve complex problems can bring them
nearer to practical use. However, it is important to realize that
for problems with complex fitness functions (evaluation of the
individuals), it could be necessary to parallelize also the “sam-
pling and evaluation” phase.

In terms of future work, we want to carry out these tasks.

• Improvements of the presented algorithms, taking advan-
tage of the knowledge acquired during this work. For ex-
ample, for the algorithm, a workload distri-
bution using independent sets of pairs could be applied
avoiding sending/receiving operations for each pair. Ad-
ditionally, for the second version of the algo-
rithm, we are looking for methods to reduce the sequential
part, using parallel libraries to solve some large matrix-re-
lated computations.

• Complete a deeper study over the possible advantages of
using multiple threads per node (intranode communica-
tion) versus using a pure MPI implementation.

• Analyze the viability of this parallel algorithms when
used to solve more complex problems. Particularly, we
plan to apply to feature subset selection
(FSS) problems, parallelizing also the “sampling and
evaluation” phase of this algorithm following the schema
presented for algorithm.

• Make use of the ideas and conclusions obtained from
this work to parallelize other algorithms in the family of
EDAs.
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