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Abstract Partial abductive inference in Bayesian networks is intended as the pro
cess of generating the J( most probable configurations for a distinguished 
subset of the network variables (explanation set), given some observa
tions (evidence). This problem, also known as the Maximum a Poste
riori Problem, is known to be NP-hard, so exact computation is not 
always possible. As partial abductive inference in Bayesian networks 
can be viewed as a combinatorial optimization problem, Genetic Algo
rithms have been successfully applied to give an approximate algorithm 
for it (de Campos et al., 1999). In this work we approach the problem 
by means of Estimation of Distribution Algorithms, and an empirical 
comparison between the results obtained by Genetic Algorithms and 
Estimation of Distribution Algorithms is carried out. 

Keywords: Abductive inference, most probable explanation, maximum a posteri
ori problem, probabilistic reasoning, Bayesian networks, Evolutionary 
Computation, Genetic Algorithms, Estimation of Distribution Algo
rithms 

1. Introduction 

As stated in Chapter 2, Bayesian networks (BNs) (Pearl, 1988; Jensen, 1996) 
exploit independence properties of probability distributions to give a compact 
and natural representation. BNs also allow us to calculate probabilities by 
means of local computation, i.e. probabilistic computations are carried out 
over the initial pieces of information rather than using a global distribution. 

Most work in probabilistic reasoning has been devoted to evidence propaga
tion and total abductive inference. However, in this chapter we focus on partial 
abductive inference, a type of diagnostic reasoning that can be viewed as a 
generalization of total abductive reasoning. Although this problem seems to 
be more useful in practical applications than total abductive inference, it has 
received much less attention from the BNs community. 

The chapter is organized as follows: In Section 2 the basic query types in 
probabilistic expert systems are introduced. In Section 3 we briefly survey how 
these queries are solved. In Section 4 we describe how this problem has been 
approached using Genetic Algorithms (GAs), and in Section 5 we present how 
to approach the problem using Estimation of Distribution Algorithms (EDAs). 
Section 6 is devoted to experimental evaluation, and finally, in Section 7, we 
give our conclusions. 

2. Query types in probabilistic expert systems 

Assume that we have a n-dimensional variable X = {X1, ... ,Xn } whose 
probability distribution can be obtained by the factorization provided by a 
BN. Reasoning in a BN is performed by updating the various probabilities in 
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the light of specific knowledge (evidence or observations). The basic type of 
queries in BNs are: 

• Evidence propagation. In this type of query, given a set of observations 
(Xo = xo), our task is to compute: 

p(xilXo = xo) (16.1) 

for all non observed variables Xi in the network. 

• Total Abductive Inference, also known as the Most Probable Explanation 
(MPE) problem (Pearl, 1987). Here, our task is to find the most prob
able state of the network given a set of observations (Xo = xo). More 
formally, if Xu = X \ Xo is the set of unobserved variables, then we 
aim to obtain the configuration Xu of Xu such that: 

Xu = argmaxp(xulXo = xo). 
Xu 

(16.2) 

• Partial Abductive Inference, also known as the Maximum a Posteriori 
Problem (MAP). In this problem, our goal is to obtain the most probable 
configuration only for a subset of the network variables known as the 
explanation set (Neapolitan, 1990). More formally, if X E C Xu is the 
explanation set, then we aim to obtain the configuration xi; of X E such 
that: 

Xi; = argmaxp(xEIXo = xo) = argmax LP(XE, xRlxo) (16.3) 
XE XE XR 

where XR = Xu \ XE. It is important to note that, in general, xi; is 
not equal to the configuration obtained from Xu by removing the liter
als not in X E , so we have to obtain xi; directly from Equation 16.3. 
Example 16.1 illustrates this situation. 

Example 16.1 Consider the network specified in Figure 16.1, where D I , 

D2 and S are propositional variables with two possible states each (OD, = 
{dl,...,dd, OD2 = {d2 ,...,d2 }, Os = {s,...,s}). 

If we observe that S is present, that is, S = s, then the most probable ex
planation is (DI = ...,d1 , D2 = d2) . However, if variable D2 is selected as 
the explanation set, then partial abductive inference produces (D2 = ...,d2 ) 

as the most probable explanation, which is different to the configuration 
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p(dl) = 0.1 

p(d2) = 0.4 

p(sldl,d2)=1.0 

p(sldl,-,d2) = 0.8 

p(sl-,dl,d2) = 0.75 

p(sl-,dl,-,d2) = 0.5 

Figure 16.1 A small Bayesian network. 

obtained by removing the literal corresponding to Dl from the configura
tion obtained by total abductive inference. 

In (total and partial) abductive inference, in general, we are interested in 
obtaining the K most probable configurations and not just the best one. 

3. Solving queries 

In principle, we can answer all the queries presented in the previous section 
by "simply" generating the joint distribution, and then taking it as our starting 
point, summing out (in the case of evidence propagation), searching for the 
configuration with maximum probability (in the case of total abduction), or 
applying both of the previous operations (in the case of partial abduction). 
However, this approach is intractable even for networks with a small number 
of variables. 

In recent years many algorithms have been proposed to solve the problem of 
evidence propagation by taking advantage of the conditional (in)dependencies 
among the variables given by the graphical structure. Nowadays, the most prac
tical inference methods for Bayesian networks are those based on the clique tree 
algorithm (Jensen et al., 1990; Lauritzen and Spiegelhalter, 1988; Shenoy and 
Shafer, 1990). This class of propagation algorithms are based on the transfor
mation (see Figure 16.2) of the Bayesian network into a secondary structure 
called a clique tree (or join/junction tree), in which the calculations are car
ried out. This method is based on the use of two operations: marginalization 
(addition) and combination (multiplication); and is divided into two phases: 
collectEvidence (messages are passed from leaves to root) and distributeEvi
dence (messages are passed from root to leaves). See Jensen (1996) and Shafer 
(1996) for details. 

Although the propagation problem is NP-hard (Cooper, 1990) in the worst 
case, the clique tree algorithms work efficiently for moderately size networks, 
with their efficiency being strongly related to the size of the clique tree l ob
tained from the Bayesian network. For example, the same algorithm will per
form better with the clique tree depicted in Figure 16.2(c) than with the clique 
tree depicted in Figure 16.2(b). 
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® @ 
(a) (b) (c) 

Figure 16.2 Two possible clique trees for the same network. 

Dawid (1992) has shown that the MPE can be found using evidence propaga
tion methods but replacing summation with maximum in the marginalization 
operator (due to the distributive property of maximum with respect to multipli
cation). Therefore, the process of searching for the most probable explanation 
has the same complexity as probability propagation. However, searching for 
K MPEs is a more complex problem, and to obtain K MPEs more intricate 
methods have to be used (Nilsson, 1998; Seroussi and Goldmard, 1994). 

In partial abductive inference, the process of finding the configuration x E 
is more complex than that of finding xu' because not all clique trees obtained 
from the original BN are valid. In fact, because summation and maximum 
have to be used simultaneously and these operations do not have commutative 
behaviour, the variables of X E must form a sub-tree of the complete tree. The 
problem of finding a valid clique tree for a given explanation set XE is studied 
in de Campos et al. (2000). From that study it can be concluded that the size 
of the clique tree obtained for partial abductive inference grows (in general) 
in an exponential way with respect to the number of variables included in the 
explanation set, with the worst case being when X E contains around half of 
the variables in the network. After that, it decreases with the size of the tree 
when X E contains all the variables being the same as when X E contains a 
single variable. Therefore, the computer resources (time and memory) needed 
can be so high that the problem becomes unsolvable by exact computation, 
even for medium-size networks. 

4. Tackling the problem with Genetic 
Algorithms 

As we have seen in Chapter 1, Genetic Algorithms (GAs) are now a popu
lar technique for approaching difficult combinatorial problems. GAs have been 
previously used for solving NP-hard problems related to Bayesian networks, 
including: triangulation of graphs (Larraiiaga et al., 1997), imprecise proba-
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bilities propagation (Cano and Moral, 1996), estimation of a causal ordering 
for the variables (de Campos and Huete, 2000; Larraiiaga et al., 1996a), and 
learning (Larraiiaga et al., 1996b). Given the success of these applications, the 
NP-hardness of the abductive inference problem, and the fact that abductive in
ference in BNs can be viewed as a combinatorial optimization problem, several 
authors have used GAs to solve (in an approximate way) both types of ab
ductive inference problems: total (Gelsema, 1995; Rojas-Guzman and Kramer, 
1996) and partial (de Campos et al., 1999). 

In Rojas-Guzman and Kramer (1996) a chromosome is represented as a 
copy of the graph included in the BN, but in which every variable has been 
instantiated to one of its possible states. This representation makes it pos
sible to implement the crossover operator as the interchange of a subgraph 
with center in a variable Xi, with Xi selected randomly for each crossover. 
In Gelsema's algorithm, a chromosome is a configuration of the unobserved 
variables (Xu = X \ Xo), i.e. a string of integers. In this case, crossover is 
implemented as the classical one point crossover. 

The common feature of both GAs for total abductive inference is the way in 
which the fitness of an individual is calculated. Although we want to maximize 
p( Xu Ixo), this expression is proportional to p( Xu, xo), so we can use this in
stead as the fitness for the chromosome Xu. As (xu, xo) represents a complete 
instantiation of all the variables in the network, then we can use the factoriza
tion of the joint distribution as expressed in Eq. (16.4) to calculate p(xu, xo). 
Therefore, the evaluation of a chromosome requires n multiplications: 

n 

p(X = x) = p(Xu = Xu, Xo = xo) = IIp(xilpai). (16.4) 
i=l 

Dealing with partial abductive inference using GAs appears easier than that 
of dealing with total abductive inference, because the size of the search space 
in the partial case is considerably smaller than in the total abductive inference 
problem. However, this is not the case, because of the increasing complexity 
of the evaluation function. In fact, in the partial case, (XE,XO) does not 
represent a configuration of all the variables in the network, so Eq. (16.4) 
cannot be applied directly. In this case, the variables not observed and not in 
the explanation set, XR = X \ (XE U Xo), have to be removed by addition. 
Therefore, to evaluate an individual XE using Eq. (16.4), we have to apply 

p(xElxo) ex: p(XE, xo) = LP(XE, Xo, XR), 
XR 

(16.5) 

that is, Eq. (16.4) has to be applied In X R I times, where n X R is the set of 
possible configurations of X R. For example, if we have a network with 50 
propositional binary variables, IXEI = 15, IXRI = 30 and IXol = 5, then Eq. 
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(16.4) has to be applied 230 times. Clearly, this is computationally intractable 
given the large number of evaluated individuals in the execution of a GA. 

For this reason, in de Campos et al. (1999) the fitness p(XE' xo) of a 
chromosome XE is computed by using probability propagation over a clique 
tree. Below, we describe this evaluation function and some other details of a 
slightly modified version of the GAs described in de Campos et al. (1999), 
which will be used for the experiments in this chapter. 

4.1 A Genetic Algorithm for partial abductive inference 

We briefly describe the representation, the evaluation function and the struc
ture of the GA used in de Campos et al. (1999). 

• Representation. In our algorithm, a chromosome will be a configuration 
of the variables in the explanation set, that is, a string of integers of 
length IXEI. 

• The evaluation function. The fitness of a chromosome XE is computed by 
the process described below, where T = {C1 , ... , Cd is a rooted clique 
tree, with root C1 . 

1. Enter the evidence Xo in T. 

2. Enter (as evidence) the configuration XE in T. 

3. Perform CollectEvidence from the root (Cd (Le., an upward propa
gation). 

4. p( x E, xo) is equal to the sum of the potential stored in the root 

(Cd· 

Therefore, to evaluate a configuration an exact propagation is carried 
out, or more correctly half propagation, because only the upward phase 
is performed and not the downward one (see Jensen (1996) for details of 
clique tree propagation). Furthermore, for this propagation we can use a 
clique tree obtained without constraints and so its size is much smaller 
than the clique tree used for exact partial abductive inference (de Campos 
et al., 2000). In addition, in de Campos et al. (1999) it is shown how the 
tree can be pruned (for a concrete explanation set) in order to avoid the 
repetition of unnecessary computations when a new chromosome is being 
evaluated. 

• Structure of the GA. The GA used in de Campos et al. (1999) is based 
on the modified GA (modGA) proposed by Michalewicz (1996). This GA 
falls into the category of preservative, generational and elitist selection, 
and enjoys similar theoretical properties to the classical GA. The main 
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modification with respect to the classical GA is that in modGA we do not 
perform the classical selection step, but instead we select independently T 

distinct chromosomes (usually those that fit best) from P(t) to be copied 
to P(t + 1). In de Campos et al. (1999) the parameters used are the 
following: 

Select the best 50% chromosomes from P(t) and copy them to P(t+ 
1). In this way we ensure the population diversity and the premature 
convergence problem is avoided. 

- 35% of the new population is obtained by crossover. One parent is 
selected from P(t) with a probability proportional to its rank and the 
other in a random way. The crossover operator used is the classical 
two-point crossover, and the two children obtained are copied to 
P(t + 1). 

- 15% of the new population is obtained by mutation. Mutation is car
ried out by selecting a chromosome from P(t) and modifying one of 
its components, then copying the resulting chromosome to P(t + 1). 
So, we apply genetic operators on whole individuals as opposed to 
individual bits (classical mutation). As Michalewicz (1996) points 
out, this would provide a uniform treatment of all operators used 
in the GA. The parents for mutation are selected from P(t) with a 
probability proportional to their rank, except for the best chromo
some, which is always selected as a parent (thus, the neighbourhood 
of the best chromosome is explored). 

The numbers 50, 35 and 15 have been selected by experimentation. Notice 
that in P(t + 1) only half of the population is new, and so only those 
chromosomes are candidates to be evaluated in each generation. This fact 
is important in our problem because of the evaluation function complexity. 
In addition, a hash table is used to avoid the reevaluation of previously 
seen individuals. When a new chromosome is evaluated, it is tested for 
whether it must be included in Kbest, an array which contains the K 
best individuals obtained so far. 

5. Tackling the problem with Estimation of 
Distribution Algorithms 

As described in Chapter 3, ED As constitute a new approach for Evolu
tionary Computation, where the crossover and mutation operators have been 
replaced in each generation by the estimation of a probability distribution and 
its posterior simulation. 
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As far as we know, this is the first time that the partial abductive inference 
in Bayesian networks has been tackled by means of EDAs. The characteristics 
of the proposed approach are as follows: 

• Representation. An individual in EDAs is equal to a chromosome of 
the GA: a configuration of the explanation variables, i.e. the Bayesian 
network used to generate populations will have as variables the set X E . 

• Evaluation function. This has been described in Section 4.1 in this chap
ter. 

• Adaptation of EDAs in order to search the K MAPs. Although we are 
aware that one ad- hoc approach to the K MAPs problem would imply 
that the length of the individuals would be K x I X E I, in this case we 
have decided to adapt ED As in a more general way, that is related to their 
meta-heuristic character. In this way, we impose in the simulation phase 
of ED As the constraint that the generated individuals must be different 
from the individuals previously simulated, both in the same generation 
and also in previous generations. Where this condition is not verified af
ter 50 attempts, the repeated individual is added to the population. Once 
the simulated phase is finished we select the N best individuals from the 
combined pool of individuals generated in this generation and the indi
viduals used to induce the probabilistic model in the previous generation. 
From the individuals selected in this manner, a new probabilistic model 
will be induced (see Section 2 in Chapter 3 for details about the general 
scheme of EDAs). 

• Types of EDAs used. For the experiments we have selected three types of 
ED As which present an increasing complexity in the factorization of the 
probability distribution of the selected individuals: 

UMDA (Miihlenbein, 1998), without dependencies, 

MIMIC (De Bonet et al., 1997), bivariate dependencies, and 

EBNA (Etxeberria and Larrafiaga, 1999), multiple dependencies. 

More information about these algorithms can be found in Section 3 in 
Chapter 3 of this book. 

6. Experimental evaluation 
In order to perform the empirical comparison among the proposed algo

rithms, we have carried out five experiments. Three of these experiments have 
been carried out on the well known Alarm network (Beinlich et al., 1989), and 
the others on two artificially generated Bayesian networks: randoml00 and 
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randoml00e. The networks randoml00 and randoml00e have been generated 
using the same procedure for their structure, but different procedures for their 
probability tables. In randoml00, the probabilities were generated using uni
form random numbers, but in randoml00e the process is more complex: two 
uniform random numbers, x and y were generated, and the probability of the 
two values (marginals for root nodes and conditionals for the rest) of a variable 
are determined by normalizing x 5 and y5, which give rise to extreme probabili
ties. Table 16.1 gives some information about these networks, where min, max 
and mean refer to the size of the probability table attached to each node. 

Table 16.1 Some characteristics of the networks used in the experiments. 

Network nodes arcs states min max mean 

Alarm 37 46 {2,3,4} 2 108 20.3 
randoml00 100 122 2 2 32 5.88 
randoml00e 100 128 2 2 64 6.54 

Table 16.2 shows a brief description of each experiment. Column IXEI gives 
the number of variables included in the explanation set, while column X E 

shows the way that these variables were selected for inclusion in the explanation 
set. In all the experiments, the variables to be included in the explanation set 
were selected in a pseudo-random way, that is, several sets containing IXEI 
variables were randomly generated, and the most difficult one to be solved by 
exact computation was chosen. The difficulty of a problem was measured as a 
function of the time and space needed to solve the problem exactly. To solve 
the problem exactly we have used software implemented in Java and running 
on an Intel Pentium III (600 MHz) with 384 MB of RAM, a Linux operating 
system, and the JDK 1.2 virtual machine. The time needed to exactly solve 
experiments 1, 2 and 3 was between one and one and a half hours, while solving 
a total abductive inference problem using this software takes less than 0.5 
seconds. For experiments 4 and 5, we have not been able to solve the problem 
exactly because of memory requirements, i.e. the "out of memory error" was 
obtained in both cases. This error is due to the enormous size of the clique 
trees obtained from these networks, by means of a compilation constrained by 
the selected explanation sets. In these networks, total abductive inference takes 
less than 9 seconds. 

In all the experiments five variables have been selected as evidence, and 
have been instantiated to their "a priori" least probable state. In the five 
experiments we have taken K = 50, that is, we look for the 50 MAPs. 
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Table 16.2 Description of the experiments. 

#exp. IXEI network XE IOxEI 
1 18 Alarm pseudo-random 143,327,232 
2 19 Alarm pseudo-random 214,990,848 
3 20 Alarm pseudo-random 382,205,952 
4 30 mndomiOO pseudo-random 1,073,741,824 
5 30 mndomiOOe pseudo-random 1,073,741,824 

The data we have collected during execution of the algorithms is related to 
the probability mass of the K MAPs found. Thus, massi, massiO, mass25 and 
mass50 represent the probability mass of the first 1, 10, 25 and 50 MAPs found 
by the exact algorithm, and massi', massi (j, mass25' and mass5(j represent 
the probability mass of the first 1, 10, 25, and 50 MAPs found by the proposed 
algorithms. For experiments 1, 2 and 3, we present the percentage of probability 
mass obtained with respect to the exact algorithm (%massX' = ma;.:-;~~lOO). 
For experiments 4 and 5, because of the absence of exact results, we present 
massX' directly. In order to test the anytime behaviour of the algorithms, 
results are presented for (approximately) every 500 different evaluated individ
uals. Finally, all the algorithms have been run 50 times, so all the results are 
averages. 

Finally, the experimentation has consisted of applying the four algorithms 
presented in this chapter (UMDA, MIMIC, EBNA, and GA) to the five exam
ples shown. In each experiment we have considered 8 different population sizes 
(50, 100, 150, 200, 250, 300, 400 and 500), but due to space limitations we only 
present for each algorithm the results related to one selected size (that for which 
the best results -on average- were obtained). In all cases, the initial popula
tion has been generated randomly, and the algorithm stops when the number 
of different evaluated individuals is greater than 5000. Note that the algorithm 
cannot stop when exactly 5000 individuals have been evaluated, because the 
current generation has to be finished. The same applies to the intermediate 
points selected to study the anytime behaviour (500, 1000, ... ). Tables 16.3 to 
16.7 show the obtained results for (%)massl', (%)masslO', (%)mass25', and 
(%)mass50' in each experiment, where the entries are interpreted as average ± 
standard deviation. Figures 16.3 to 16.7 show the anytime behaviour of the 
four algorithms with respect to (% )mass 1'. 
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Figure 16.3 A plot of %massl' for experiment 1. 
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Figure 16.4 A plot of %massl' for experiment 2. 
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Table 16.3 Results for experiment 1. Population size was 300 for UMDA, 500 for 
MIMIC, 250 for EBNA and 100 for GA. 

%massl' %masslr1 %mass25' %mass5r1 

UMDA 80.77 ± 10.32 75.16 ± 12.25 71.07 ± 12.52 68.25 ± 12.43 
MIMIC 85.21 ± 12.20 80.43 ± 15.22 76.66 ± 17.07 74.19 ± 17.91 
EBNA 95.56 ± 9.57 93.62 ± 12.74 92.44 ± 14.95 91.75 ± 16.21 
GA 97.04 ± 0.81 89.63 ± 1.38 85.16 ± 1.88 83.19 ± 2.09 

Table 16.4 Results for experiment 2. Population size was 400 for UMDA, 400 for 
MIMIC, 200 for EBNA and 200 for GA. 

%massl' %masslr1 %mass25' %mass5r1 

UMDA 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 98.95 ± 0.25 
MIMIC 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 98.99 ± 0.28 
EBNA 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.62 ± 0.46 
GA 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.38 ± 0.05 

Table 16.5 Results for experiment 3. Population size was 500 for UMDA, 500 for 
MIMIC, 500 for EBNA and 300 for GA. 

UMDA 
MIMIC 
EBNA 
GA 

%massl' %masslr1 %mass25' %mass5r1 

88.07 ± 29.04 81.32 ± 34.75 77.62 ± 35.81 74.54 ± 36.35 
87.14 ± 30.28 81.06 ± 34.01 76.67 ± 35.49 73.26 ± 36.02 
97.76 ± 12.62 96.79 ± 13.12 95.19 ± 14.86 93.80 ± 16.98 
99.37 ± 0.21 97.36 ± 0.47 93.00 ± 1.5 87.55 ± 5.33 

6.1 Experimental conclusions 

As we can see from Tables 16.3 to 16.7 the results obtained by the four 
algorithms are similar in experiments 2, 4 and 5, while significant differences 
can be observed in the other two experiments. As an explanation of this fact 
we conjecture that the problems considered in experiments 2, 4 and 5 give rise 
to less complex search spaces than those generated by the problems considered 



Partial Abductive Inference in BNs Using GAs and EDAs 337 

Table 16.6 Results for experiment 4. Population size was 100 for UMDA, 100 for 
MIMIC, 100 for EBNA and 100 for GA . 

massl' massl(j mass25' mass5(j 

UMDA 0.000010 ± 0 0.000077 ± 0 0 .000167 ± 0 0.000295 ± 0 
MIMIC 0.000010 ± 0 0.000077 ± 0 0 .000167 ± 0 0.000295 ± 0 
EBNA 0.000010 ± 0 0.000077 ± 0 0.000167 ± 0 0.000295 ± 0 
GA 0.000010 ± 0 0.000076 ± 0 0 .000166 ± 0 0.000297 ± 0 

Table 16.7 Results for experiment 5. Population size was 500 for UMDA, 500 for 
MIMIC, 300 for EBNA and 200 for GA. 

massl' massl (j mass25' mass5(j 

UMDA 0.014197 ± 0 0.090864 ± 0 0.164966 ± 0.002 0.237114 ± 0.006 
MIMIC 
EBNA 
GA 

1 

0.014197 ± 0 
0.014197 ± 0 
0.014197 ± 0 

0.016 

0.014 

0.012 

0.01 m , 

0.008 

0.006 

0.004 

0.002 

0.090848 ± 0 0.163928 ± 0.002 0.232105 ± 0.007 
0.091064 ± 0 0.168794 ± 0.003 0.247711 ± 0.008 
0.091073 ± 0 0.168202 ± 0.003 0.244589 ± 0.008 
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Figure 16.7 A plot of massl' for experiment 5. 

in experiments 1 and 3. From analysis of Tables 16.3 and 16.5 (experiments 1 
and 3) we obtain the following conclusions: 
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• Among the three ED As used in the experimental evaluation, EBNA 
clearly outperforms UMDA and MIMIC. This fact is not surprising be
cause EBNA can deal with unconstrained probability distributions, while 
UMDA and MIMIC have to deal, in general, with approximations. 

• The performance of the GA is superior to UMDA and MIMIC in all the 
cases. 

• The comparison between the GA and EBNA needs to be more detailed. 
With respect to %mass1' the GA seems to have a better behaviour than 
EBNA, although it is outperformed by EBNA in the search of the K most 
probable explanations. 

• It is interesting to analyze the variability shown by the four algorithms. 
Thus, from the point of view of the standard deviations we can clearly 
establish the following pattern: MIMIC> UMDA > EBNA » GA. 

• As we have mentioned before, we have experimented with eight different 
population sizes, and from the results obtained (and not shown here due to 
space limitations) it is observed that the behaviour of the EDA approach 
with respect to changes in the population size is more robust than the 
one shown by the GA. 

With respect to the anytime behaviour of the proposed algorithms (see Fig
ures 16.3 to 16.7), it is clear that the number of evaluations required by EDAs 
in order to get good solutions is smaller than the number required by the GA, 
which shows a slower convergence. 

7. Concl uding remarks 
In this chapter we have studied the problem of partial abductive inference 

in Bayesian networks. The problem has been approached using a previously 
known GA (de Campos et al., 1999) and three different algorithms (UMDA, 
MIMIC and EBNA) based on the novel approach of EDAs. 

From the empirical comparison carried out we can conclude that UMDA and 
MIMIC are clearly outperformed by GA and EBNA, while differences between 
GA and EBNA are small and dependent on the parameter being considered 
(searching for the best explanation or for the K best). Anyway, given the 
obtained results, both algorithms (GA and EBNA) constitute a good choice 
for approaching the problem considered here. 

Regarding future work, as it seems that GAs and ED As outperform each 
other with respect to different parameters ((%)mass(1', lfJ, 25', 5fJ), standard 
deviation, convergence speed) we plan to experiment with the hybridization of 
both types of algorithm in order to ascertain whether the joint approach is an 
improvement on these individual approaches. Furthermore, we plan to perform 
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a deeper study of the adequate population size for each algorithm. Another 
interesting starting point for future work could be to take advantage of the 
initially known structure of the Bayesian network in order to constrain the 
graphical model to be learnt during the search. 
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Notes 
1. The size of a clique tree is the sum of the sizes associated with each of its cliques. The 

size of a clique is the product of the number of different states that each variable within the 
clique can take . 
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