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Abstract This chapter shows how Estimation of Distribution Algorithms (EDAs) 
can benefit from data clustering in order to optimize both discrete and 
continuous multimodal functions. To be exact, the advantage of incor
porating clustering into ED As is two-fold: to obtain all the best solu
tions rather than only one of them, and to alleviate the difficulties that 
affect many evolutionary algorithms when more than one global opti
mum exists. We propose the use of Bayesian networks and conditional 
Gaussian networks to perform such a data clustering when EDAs are 
applied to optimization in discrete and continuous multimodal domains, 
respectively. The dynamics and performance of our approach are shown 
by evaluating it on a number of symmetrical functions, some of them 
highly multimodal. 
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1. Introduction 
Many optimization problems present several global optima. However, most 

evolutionary algorithms are essentially developed to capture only one of the 
set of best solutions in the problem domain considered. For instance, given a 
multimodal function with several equally sized global peaks, the simple genetic 
algorithm (GA) can converge to only one of them. Moreover, this peak is 
randomly chosen due to the well-known genetic drift (De Jong, 1975): the 
simple GA has no means to decide among the different global peaks, and only 
the stochastic variations due to the genetic operators can make the population 
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drift to one of these peaks. Unfortunately, this behaviour is shared by most 
evolutionary algorithms. This is a drawback as we are interested in obtaining 
all the global optima of both discrete and continuous multimodal functions. 

Furthermore, this interest is not only quantitative but also qualitative. That 
is, the existence of several global peaks is a major source of difficulties for many 
evolutionary algorithms. Basically, the problems appear because combining 
good solutions coming from different parts of the search space or basins often 
results in poor solutions. If this is the case, convergence may be very slow 
until the population drifts to one of the basins or, even worse, the algorithm 
may get stuck in a local optimum. Apparently, these problems are aggravated 
in algorithms based on building and simulating probabilistic graphical models 
(EDAs) (Pelikan and Goldberg, 2000). 

Consequently, we propose taking advantage of data clustering in order to 
effectively and efficiently discover all the global optima of a given optimiza
tion problem by using EDAs. The work presented in this chapter is clearly 
inspired by the research of Pelikan and Goldberg (2000). In that work, the 
authors introduce for the first time data clustering as a tool to alleviate the 
problems derived from the existence of several optima in symmetrical discrete 
domains when EDAs are applied to perform the optimization. Roughly speak
ing, their motivation is to process separately, at each generation, the comple
mentary parts of the solution space. Unlike Pelikan and Goldberg (2000), our 
proposal does not divide explicitly the solution space into different parts but 
it takes advantage of probabilistic graphical models that are able to represent 
the complexity of the solution space. The models considered in this chapter 
are Bayesian networks (BNs) for discrete domains (Pearl, 1988; Peiia et aI., 
2000; Peiia et aI., 2001a), and conditional Gaussian networks (CGNs) for con
tinuous domains (Lauritzen, 1992; Lauritzen, 1996; Lauritzen and Wermuth, 
1989; Peiia et aI., 2001b; Peiia et aI., 2001d; Peiia et aI., 2001a). Thus, we 
present a unified framework to tackle both discrete and continuous multimodal 
function optimization problems that extends the idea behind Pelikan and Gold
berg (2000) . 

The remainder of this chapter is organized as follows. Section 2 is a presen
tation of the motivation and objectives of our proposal to combine EDAs with 
data clustering via BNs and CGNs to optimize multimodal functions. Section 3 
introduces BNs and CGNs applied to data clustering. Section 4 deals with some 
practical issues related to our proposal. We present some experimental results 
of the performance achieved by our approach in Section 5. Finally, we draw 
conclusions in Section 6. 
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2. Data clustering in evolutionary algorithms 
for multimodal function optimization 

The combination of data clustering and evolutionary algorithms has proven 
to be very successful as evidenced by the large body of research conducted in 
this direction. However, the purpose of this combination varies from work to 
work. According to our aims, two of the most relevant works that propose the 
use of clustering inside the evolutionary algorithms framework are Hocaoglu 
and Sanderson (1997), and Pelikan and Goldberg (2000). Whereas the au
thors of the first paper focus on discovering all peaks of multimodal functions, 
the authors of the second paper emphasize the goodness of data clustering 
to overcome the difficulties that appear when optimizing symmetrical discrete 
functions. We are interested here in a combination of the goals of these two 
papers. 

The paper by Hocaoglu and Sanderson (1997) presents the minimal rep
resentation size cluster GA (MRSC_GA) , previously introduced in Hocaoglu 
and Sanderson (1995), applied to multimodal function optimization and path 
planning. Using minimal representation size clustering (Segen and Sander
son, 1981), the initial population is clustered into multiple subpopulations that 
evolve separately for a number of iterations. The aim is that each subpopula
tion converges to one of the different peaks of the given multimodal function . 
Moreover, minimal representation size clustering ensures that no two subpop
ulations achieve the same optimum. Occasionally, the different subpopulations 
are merged to obtain a new population by applying an operator similar to 
the crossover operator to individuals selected from different subpopulations. 
The process is repeated with the multiple separated subpopulations resulting 
from the clustering of this new population. According to the results reported, 
the MRSC_GA exhibits good behaviour when applied to multimodal function 
optimization without being provided with a priori knowledge of the solution 
space. 

On the other hand, Pelikan and Goldberg (2000) motivate the use of data 
clustering in evolutionary algorithms in general and in ED As in particular, as 
a means to overcome the disrup';ing effects that symmetry creates. Some other 
works that study the problem of symmetry in the search space are Collard 
and Aurand (1994), Naudts and Naudts (1998), Van Hoyweghen (2000), Van 
Hoyweghen and Naudts (2000). Whereas the last three works focus on the 
negative influence on the dynamics of GAs that symmetry has, the former 
paper demonstrates how to take advantage of symmetry to reach the optima 
more quickly. However, in many cases, the GA proposed in Collard and Aurand 
(1994) is not a realistic approach as it needs to be provided with a priori 
knowledge about the function to optimize. 
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Among the different types of symmetry described by Van Hoyweghen and 
Naudts (2000), the work by Pelikan and Goldberg (2000) deals with what it 
is known as symmetry on the alphabet or spin-flip symmetry. An objective 
function contains spin-flip symmetry when every pair of bit-complementary 
individuals has identical objective function values. Some functions suffering 
from spin-flip symmetry are graph partitioning problems, random number par
titioning problems, graph coloring problems and two-max functions. Thus, the 
work by Pelikan and Goldberg (2000) is limited to combinatorial optimization 
where the individuals are strings of binary variables. The difficulties that spin
flip symmetry creates are due to the fact that combining promising solutions 
coming from complementary parts of the solution space often results in poor 
solutions. This fact may slow down convergence or even make the algorithm 
get stuck in a local optimum. 

The purpose of Pelikan and Goldberg (2000) is to distinguish, at each gen
eration, the complementary parts of the solution space in order to break the 
symmetry by treating each part separately. To be exact, they propose cluster
ing the genotypes of the selected individuals of each generation. Then, each 
cluster is processed separately in the learning and simulation steps to obtain 
some offspring that are incorporated into the original population. The process 
is repeated until convergence is reached. Working in such a way avoids com
bining solutions that belong to complementary basins of the search space and 
results in an improvement of performance. As a side effect, multiple optima 
are discovered. According to results reported for the UMDA (Muhlenbein, 
1998) using the Forgy algorithm (Forgy, 1965) to carry out the clustering, this 
approach works very well on spin-flip symmetrical functions of considerable 
dimension. 

Although it is not discussed by Hocaoglu and Sanderson (1997), the use of 
multiple separated subpopulations in the MRSC_GA also helps to avoid the 
harmful effects that the existence of several peaks involves. These undesirable 
effects are similar to those addressed above in the context of spin-flip symmetry. 

2.1 Estimation of Mixture of Distributions Algorithm 

The primary goal of this chapter is the proposal and evaluation of an en
hancement of EDAs able to deal effectively and efficiently with both discrete 
and continuous multimodal function optimization problems. In the remainder 
of this chapter, this new EDA is referred to as Estimation of Mixture of Dis
tributions Algorithm (EMDA). In order to achieve our objective, the EMDA 
combines the benefits derived from the incorporation of data clustering into 
evolutionary algorithms that motivate Hocaoglu and Sanderson (1997) with 
those that motivate Pelikan and Goldberg (2000). These benefits are: 
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• data clustering has proven to be an effective approach for overcoming the 
difficulties that multimodal function optimization involves for evolution
ary algorithms in general and EDAs in particular, and 

• data clustering is a reliable tool for obtaining all the global optima of mul
timodal functions. It should be noted that we aim to discover only global 
optima instead of local and global peaks as in Hocaoglu and Sanderson 
(1997). 

Unlike the work by Pelikan and Goldberg (2000), the EMDA does not rely on 
either the well-known Forgy algorithm or alternative techniques to carry out 
data clustering. Our proposal is true to the EDA paradigm as it is the model 
elicited from the selected individuals of each generation itself which encodes a 
probabilistic clustering of these individuals. Thus, the selected individuals are 
not explicitly divided into clusters to break the symmetry. On the contrary, the 
EMDA accepts the symmetry of the solution space because it takes advantage 
of probabilistic graphical models that are able to represent the complexity of 
the selected individuals. As a result, every model learnt at each iteration of the 
EMDA reveals the structure of the multimodal function that is being optimized, 
restricted to the selected individuals. 

The models that we propose using are BNs when dealing with combinato
rial optimization and CGNs when facing optimization problems in continuous 
domains. These two classes of probabilistic graphical models have been suc
cessfully applied to data clustering (Pefia et al., 2000; Pefia et al., 2001b; Pefia 
et al., 2001d; Pefia et al., 200la). Thus, the EMDA consists of the iteration of 
the same main steps as the generic EDA (Figure 4.1): selection of promising 
individuals from the current population, model learning from the selected indi
viduals, and model sampling to obtain the offspring that are somehow incorpo
rated into the current population to create the new population. Unsupervised 
learning of the BN or CGN should be provided with the number of clusters that 
we assume exist in the set of selected individuals. Ideally, this number should 
be the number of global optima of the function that we aim to optimize. If this 
is unknown, then it should be determined before starting the learning process 
involved in each iteration of the EMDA. 

3. BNs and CGNs applied to data clustering 
One of the basic problems that arises in a great variety of fields , including 

pattern recognition, machine learning and statistics, is the so-called data clus
tering problem (Anderberg, 1973; Hartigan, 1975; Kaufman and Rousseeuw, 
1990). Despite the different interpretations and expectations it gives rise to, 
the generic data clustering problem involves the assumption that, in addition 
to the observed variables (or predictive attributes), there is a hidden variable. 
This last unobserved variable would reflect the cluster membership for every 
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case in the database. Thus, the data clustering problem is also referred to as an 
example of learning from incomplete data due to the existence of such a hidden 
variable. Incomplete data represents a special case of missing data where all 
the missing entries are concentrated in a single variable: the hidden cluster 
variable. That is, we refer to a given database as incomplete when all the cases 
are unlabeled. 

The fundamental data clustering problem aims to discover groups in data. 
Each of these groups is called a cluster, a region in which the density of objects 
is locally higher than in other regions. From the point of view adopted in this 
section, the data clustering problem may be defined as the inference of the 
joint generalized probability distribution for a given database. In the context 
of the EMDA, this database groups the selected individuals of the current 
iteration. Alternatively, data clustering can be viewed as a data partitioning 
problem. Given data, we can ask ourselves how the data can be split into 
different partitions dependent on a quality criterion (Pelikan and Goldberg, 
2000). 

3.1 Notation 

We follow the usual convention of denoting variables by upper-case letters 
and their states by the same letters in lower-case. We use a letter or letters 
in bold-face upper-case to designate a set of variables and the same bold-face 
lower-case letter or letters to denote an assignment of a state to each variable in 
a given set. The joint generalized probability distribution of X is represented 
as p(x). Additionally, p(x I y) denotes the generalized conditional probability 
distribution of X given Y = y. If all the variables in X are discrete, then 
p(x) = p(x) is the joint probability mass function of X. Thus, p(x I y) denotes 
the conditional probability mass function of X given Y = y. If all the variables 
in X are continuous, then p(x) = f(x) is the joint probability density function 
of X. Thus, f(x I y) denotes the conditional probability density function of X 
given Y = y. 

When facing a data clustering problem, we assume the existence of a (n+ 1)
dimensional random variable X partitioned as X = (Y, C) into a n-dimensional 
observed variable Y and a unidimensional discrete hidden variable C. In the 
particular case of every component Yi of Y is discrete, the probabilistic graph
ical models that we aim to learn are called BNs. On the other hand, if every 
component Yi of Y is continuous and follows a Gaussian distribution, then the 
probabilistic graphical models that we want to learn are called CGNs. 

3.2 BNs for data clustering 

Given a discrete random variable X = (Y, C) = (Y1 , ... , Yn , C), a BN for X 
(Pearl, 1988; Pefia et al., 2000; Pefia et al., 2001a) is a graphical factorization 
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of the joint probability distribution of X . When applied to data clustering, 
a BN is defined by a directed acyclic graph s (model structure) determining 
the conditional (in)dependencies among the variables of Y and a set of local 
probability distributions. The model structure yields to a factorization of the 
joint probability distribution for X as follows: 

n 

p(x) =p(c)p(y I c) =p(c) IIp(Yi I pa(s)i'c) ( 4.1) 
i=l 

where pa(s)i is the state of the parents of Yi in s, Pa(s)i' consistent with x. 
The local probability distributions of the BN are those in Equation 4.1 and 

we assume that they depend on a finite set of parameters Os E 8s. Moreover, 
let sh denote the hypothesis that the conditional (in)dependence assertions 
implied by s hold in the true joint probability distribution of X. Therefore, 
Equation 4.1 can be rewritten as follows: 

n 

p(c I (}s,sh) IIp(Yi I pa(s)i,OLsh) (4.2) 
i=l 

where O~ = (OJ. , . . . ,O~J denotes the parameters for the local probability dis
tributions when C = c. 

We limit our discussion to the case in which the local probability distribu
tions of each variable of the BN consist of a set of multinomial distributions, 
one for each configuration of the parents and the cluster variable C. 

3.3 CGNs for data clustering 

A random variable X = (Y, C) = (Y1 , ... , Yn , C), where Y is continuous and 
C is discrete, is said to have a conditional Gaussian distribution (Lauritzen, 
1992; Lauritzen, 1996; Lauritzen and Wermuth, 1989) if the distribution of Y, 
conditioned on each state of C, is a multivariate normal distribution: 

f(y I C = c) == N(y; lL(c), ~(c)) (4.3) 

whenever p(c) = p(C = c) > O. Given C = c, 1L(c) is the n-dimensional mean 
vector, and :E(c), the n x n variance matrix, is positive definite. 

We define a CGN for X (Lauritzen, 1992; Lauritzen, 1996; Lauritzen and 
Wermuth, 1989; Pella et al., 2001b; Pella et al. , 2001d; Pella et al., 200la) as a 
probabilistic graphical model that encodes a conditional Gaussian distribution 
for X. Thus, a CGN is defined by a directed acyclic graph s (model structure) 
determining the conditional (in)dependencies among the variables of Y, a set 
of local probability density functions and a multinomial distribution for the 
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variable C. The model structure yields to a factorization of the joint general
ized probability density function for X as follows: 

n 

p(x) = p(c)f(y I c) = p(c) II f(Yi I pa(s)i' c) ( 4.4) 
i=l 

where pa(s)i is the state of the parents of Yi in s, Pa(s)i' consistent with x. 
The local probability density functions and the multinomial distribution of 

the CGN are those in the previous equation and we assume that they depend 
on a finite set of parameters Os E e s . Moreover, let sh denote the hypothesis 
that the conditional (in)dependence assertions implied by s hold in the true 
joint generalized probability density function of X. Therefore, Equation 4.4 
can be rewritten as follows: 

n 

p(c I Os,sh) IIf(Yi I pa(s)i,O~,sh) (4.5) 
i=l 

where 0; = (01 , ... ,O~) denotes the parameters for the local probability density 
functions when C = c. 

In order to encode a conditional Gaussian distribution for X , each local 
probability density function of the CGN should be a linear-regression model. 
Thus, when C = c: 

f(Yilpa(s)i,O~,Sh)=N(Yi;m~+ L bji(Yj-mj),vf) (4.6) 
Yi Epa(s)i 

where N(y; f,l, 0'2) is a univariate normal distribution with mean f,l and standard 
deviation 0' (0' > 0). Given this form, a missing arc from Yj to Yi implies that 
bji = 0 in the linear-regression model. When C = c, the local parameters are 
Of = (mf, bf,vf), i = 1, .. . ,n, where bf = (b1i , ... ,bf_li)t is a column vector. 

The interpretation of the components ofthe local parameters Of, i = 1, ... ,n, 
is as follows: given C = c, mf is the unconditional mean of Yi, vi is the 
conditional variance of Yi given Pa(s)i' and bji' j = 1, ... , i-I, is a linear 
coefficient reflecting the strength of the relationship between Yj and Yi . 

3.4 Unsupervised learning of BNs and CGNs 

One of the methods for learning BNs and CGNs from incomplete data is the 
well-known Bayesian Structural EM (BS-EM) algorithm developed by Fried
man (1998) . Due to its good performance, this algorithm has received special 
attention in the literature and has motivated several variants of itself (Meila 
and Jordan, 1998; Pefia et al., 1999; Pefia et al., 2000; Pefia et al., 2001c; Thies-
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EMDA 
Generate M individuals at random to create the initial population (do) 
1=0 
Repeat until the stopping criterion is met 

1++ 
Let dr":l group the N (N ~ M) individuals selected from dl - 1 

according to the selection method 
Let PI(X) represent the joint generalized probability distribution of x 
encoded by a BN or CGN learnt from dr":l via the BS-EM algorithm 
Generate the offspring by sampling M individuals from PI (x) 
Let d l be the new population created by replacing part of d l - l 

with part of the offspring by using the replacement method 

where the BS-EM algorithm is as follows: 

BS-EM algorithm 
loop I = 0,1, ... 

Run the EM algorithm to get the MAP parameters OSI for Sl given ° 
Perform search over model structures, evaluating each one by 

Score(s : Sl) = E[log p(h, 0, sh) I 0, OSI' sf] 
~ h h 

= Lh p(h I 0, OS/l Sl ) log p(h, 0, S ) 

Let SIH be the model structure with the highest score 

if Score(sl : Sl) = Score(slH : st) then return (SI, OSI) 

Figure 4.1 Schematics of the EMDA (top) and the BS-EM algorithm (bottom). 

son et al., 1998). We use the BS-EM algorithm for explanatory purposes as 
well as in our experiments presented in Section 5. 

When applying the BS-EM algorithm in a data clustering problem, we as
sume that we have a database of N cases, d = {Xl, .. . ,XN }, where every case 
is represented by an assignment to n of the n + 1 variables involved in the 
problem domain. So, there are (n + I)N random variables that describe the 
database. The N cases of the database correspond to the selected individuals 
at each iteration of the EMDA. Let 0 denote the set of observed variables, 
that is , the nN variables that have assigned values. Similarly, let H denote the 
set of hidden or unobserved variables, that is, the N variables that reflect the 
unknown cluster membership of each case of d. 
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For learning BNs and CGNs from incomplete data, the BS-EM algorithm 
performs a search over the space of models based on the well-known EM al
gorithm (Dempster et aI., 1977; McLachlan and Krishnan, 1997) and direct 
optimization of the Bayesian score. This results in an attempt to maximize the 
expected Bayesian score at each iteration instead of the true Bayesian score. 
As shown in Figure 4.1 (bottom), the BS-EM algorithm is comprised of two 
steps: an optimization of the BN or CGN parameters, usually by means of the 
EM algorithm, and a structural search for model selection. 

To completely specify the BS-EM algorithm, we have to decide on the struc
tural search procedure (the second step of the BS-EM algorithm of Figure 4.1). 
The usual approach is to perform a greedy hill-climbing search over BN or 
CGN structures considering all possible additions , removals and reversals of 
a single arc at each point in the search. This structural search procedure is 
desirable as it exploits the decomposition properties of BNs and CGNs, and 
the factorization properties of the Bayesian score for complete data. However, 
any structural search procedure that exploits these properties can be used. The 
log marginal likelihood of the expected complete data is usually chosen as the 
score to guide the structural search. 

Direct application of the BS-EM algorithm as it appears in Figure 4.1 (bot
tom) may result in a unrealistic and inefficient solution because the computation 
of Score(s : st) implies a huge computational expense as it takes account of ev
ery possible completion of the database. It is common to use a relaxed version 
of the presented algorithm that only considers the most likely completion of the 
database to compute Score(s : sd instead of considering every possible com
pletion. Thus, this relaxed version of the BS-EM algorithm is comprised of the 
iteration of a parametric optimization for the current model , and a structural 
search once the database has been completed with the most likely completion 
by using the best estimate of the joint generalized probability distribution of 
the data so far (current model). The completion is achieved by calculating 
the posterior probability distribution of the cluster variable C for each case of 
the database, p(c I Yi, OSI' s?). The case is assigned to the cluster where the 
maximum of this posterior probability distribution of C is reached. We use this 
relaxed version in our experiments. 

It should be noted that the learnt model does not provide us with an explicit 
partition of the selected individuals into clusters but with an encoding of the 
joint generalized probability distribution of these individuals. Thus, the clusters 
determined by the learnt BN or CGN should be understood as probabilistic 
clusters. Instead of belonging to a particular cluster, each selected individual 
Yi implies a probability distribution for C, p( c I Yi, OSI' s?), that represents a 
probabilistic clustering of the individual. 
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4. Further considerations about the EMDA 

4.1 Sampling the learnt model 

In order to generate the offspring to create the new population, the learnt 
model must be sampled. By doing this, the number of offspring produced by 
each probabilistic cluster is determined by the marginal probability distribution 
of the cluster variable C in the learnt model. This implies that the number of 
offspring sampled by each probabilistic cluster is somehow proportional to its 
size. 

According to preliminary experiments, a decisive factor in performing effi
cient and effective multimodal function optimization is to keep in the popu
lation a reasonable number of individuals representing each of the basins of 
the global optima in order to avoid losing any of them as the optimization 
progresses. Based on these preliminary results, the model that the EMDA 
samples to generate the offspring in our experimental evaluation is not exactly 
the model learnt but a slightly modified one. As we are interested in discov
ering all global optima and they are equally sized peaks, the EMDA samples 
the same number of individuals from each of the probabilistic clusters encoded 
by the learnt model. This is equivalent to modifying the marginal probability 
distribution of C in the learnt model to be a uniform distribution. The ef
fects of other sampling alternatives on the performance of the EMDA need to 
be studied. For instance, we could explore sampling a number of individuals 
from each probabilistic cluster proportional to its average fitness. Sampling 
a number of offspring from each probabilistic cluster inversely proportional to 
its size or to its average fitness could also be an alternative to consider. This 
last option aims to sample more individuals from the clusters with the least 
number of representatives or with the representatives with the worst average 
fitness, resulting in a positive discrimination of these probabilistic clusters that 
can aid their recovery. 

4.2 Members of the EMDA family 

The EMDA relies on unsupervised learning of BNs and CGNs in order to 
obtain all the global optima while avoiding the harmful effects of multimodality. 
However, the reader should be aware of the existence of other probabilistic 
graphical models that could also provide us with the same benefits as BNs 
and CGNs when considered under the EMDA paradigm. For intance, Perra et 
al. (2001b) and Thiesson et al. (1998) present some probabilistic graphical 
models for data clustering that are more flexible than BNs and CGNs. Thus, 
the EMDA leads us to a family of EMDAs where the difference between the 
distinct members of this family consists of the class of probabilistic graphical 
models used to perform the clustering of the selected individuals. 
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It should be noted that the structure of a learnt BN or CGN for data clus
tering is independent of the value of the cluster variable C, and so, the model 
structure is the same for all values of C. However, the parameters of the lo
cal probability distributions depend on the value of C and they may differ for 
different values of C. It is interesting to note that the constraint of having 
a single model structure for every value of C can be relaxed by considering 
models more flexible than BNs and CGNs. An example is the class of what are 
known as mixtures of DAG (MDAG) models (Thiesson et al., 1998). Roughly 
speaking, MDAG models represent a generalization of BNs and CGNs applied 
to data clustering where different model structures for the different values of 
the variable C are allowed. 

Despite having received less attention than BNs and CGNs in the recent 
literature, MDAG models appear to be more appropriate than BNs and CGNs 
under the EMDA paradigm for the optimization of multimodal functions. The 
explanation is straightforward. The advantage of EMDA over other members 
of the EDA paradigm is that the model learnt from the selected individuals, 
a BN or a CGN, is able to capture the multimodality of the function being 
optimized. Ideally, each probabilistic cluster of the learnt model corresponds 
to one of the several global optima that the function has. However, every prob
abilistic cluster involve the same set of conditional (in)dependence assertions 
as the rest, independently of the global optimum that is being modeled by that 
particular probabilistic cluster. This is because BNs and CGNs when applied 
to data clustering have a single model structure for all the values of C. On the 
other hand, MDAG models offer enough flexibility to encode a different set of 
conditional (in)dependencies for each probabilistic cluster. This fact together 
with the possibility of having different parameters for each probabilistic cluster 
make MDAG models desirable paradigms for multimodal function optimization. 
However, many of these problems lead us to make use of the EMDA whilst dis
carding the consideration of more flexible models such as MDAG models. That 
is, the solution space of many problems restricted to the selected individuals 
can be perfectly modeled by unsupervised learning of BNs or CGNs. Thus, the 
use of models more flexible than these would not contribute to an improvement 
in the performance of the algorithm. See, for instance, the 14 problems that we 
use in our experimental evaluation of Section 5 (most of these are taken from 
the existing literature). 

Finally, another example of an evolutionary algorithm that may be seen as a 
member of the EMDA family is the Adaptive Mixture Model Algorithm (AMix) 
(Gallagher et al., 1999). The enhancement that this algorithm proposes con
sists of the use of a Gaussian mixture to model the joint probability distribution 
of the selected individuals of each generation. Moreover, the number of compo
nents in the mixture is allowed to vary during the execution of the algorithm as 
new data points are available. This is based on whether the Mahalanobis dis-
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tance between the existing model and these new points is greater or not than a 
prespecified threshold. Gallagher et al. (1999) factorize each component of the 
Gaussian mixture into univariate Gaussian distributions, and then correlations 
among the different variables are not modeled. As far as we know, the AMix 
algorithm has not been studied in multimodal function optimization problems. 
However, it can be easily applied to them by simply considering that every 
component in the Gaussian mixture models the probability distribution of the 
selected individuals that belong to the basin of one of the global optima. 

For the sake of conciseness, the remainder of this chapter considers the 
EMDA as it appears in Figure 4.1, i.e. the models learnt from the selected 
individuals are BNs for combinatorial optimization and CGNs for optimization 
in continuous domains. It is beyond the scope of this chapter to compare the 
different instances of what we have named the EMDA family. Moreover, BNs 
and CGNs are well-established classes of probabilistic graphical models that 
have been studied in depth. Besides, the use of models more flexible and, thus, 
more complex than BNs and CGNs to perform the clustering of the selected 
individuals (e.g. MDAG models) would also imply enlarging the optimization 
process as their unsupervised learning is usually computationally more expen
sive. 

5. Experimental results 
This section is devoted to the experimental evaluation of the EMDA for 

combinatorial optimization as well as optimization in continuous domains. For 
this purpose, we use the UMDA (Miihlenbein, 1998) and the EBNA (Larraiiaga 
et al., 2000b) as benchmarks for combinatorial optimization, and the UMDAc 
and the EGNA (Larraiiaga et al., 2000a) for optimization in continuous do
mains. The comparison between the results achieved by the EMDA and those 
achieved by the benchmarks allows us to draw some conclusions about the 
efficiency and effectiveness of the EMDA. 

Whereas the UMDA and the UMDAc are classic EDA instances, the EBNA 
and the EGNA have shown good performance on discrete and continuous op
timization problems. Moreover, these two last algorithms are close in spirit to 
the EMDA as they are also based on learning and simulation of probabilistic 
graphical models. However, neither the EBNA nor the EGNA use probabilis
tic graphical models to perform data clustering, but they carry out supervised 
learning of them instead. The EBNA and the EGNA instances considered in 
this section make use of the B algorithm (Buntine, 1991) together with the 
BIC score (Schwarz, 1978) for the former and the BGe score (Geiger and Heck
erman, 1995) for the latter, in order to perform learning of the probabilistic 
graphical models at each generation. They will be denoted as EBNABIc and 
EGNABGe respectively. We refer the interested reader to the original works for 
more details. 
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In order to keep the cost of the optimization process carried out by the 
EMDA as low as possible, we propose limiting the BS-EM algorithm to learn
ing Tree Augmented Naive Bayes (TANB) models (Friedman and Goldszmidt, 
1996; MeiUi, 1999; Pefia et al., 2000; Pefia et al., 2001d). This is a sensible as 
well as usual decision to reduce the otherwise large search spaces of BNs and 
CGNs. TANB models constitute a class of compromise BNs and CGNs defined 
by the following condition: predictive attributes may have at most one other 
predictive attribute as a parent. Thus, TANB models represent an interesting 
trade-off between efficiency and effectiveness, that is, a balance between the 
cost of the learning process and the quality of the learnt models (Pefia et al., 
2000; Pefia et al., 2001d). 

It is well-known that TANB models are able to solve efficiently data clus
tering problems of considerable size. Moreover, they avoid the difficulties of 
learning densely connected BNs and CGNs, and the painfully slow probabilis
tic inference when working with these. Also, generation of the offspring from 
the learnt model is accelerated when this is a TANB model as few conditional 
dependencies among the variables are allowed. 

5.1 General considerations 

In this subsection we discuss some decisions that are common to the EDA 
instances used in our experimental comparison (UMDA, UMDAc , EBNABIC , 

EGNABGe and EMDA): selection method, population replacement method and 
stopping condition. 

The five algorithms considered use truncation selection as the selection method, 
i.e the best individuals of the current population according to their objective 
function values are selected. The way in which the new population is created 
consists of the replacement of the worst individuals of the current population 
by all the offspring. 

The algorithms are stopped when the relative difference between the sum 
of the objective function values of all the individuals of the populations of two 
successive generations is less than a fixed value here referred to as precision. 

The particular values for the population size, the number of selected indi
viduals, the number of generated offspring and the precision may vary from 
objective function to objective function. We find it convenient to use a regular 
grammar to clearly identify these values. Thus, each of the objective functions 
used has an optimization scheduling represented as (a, {3, ,,(, J) where a is the 
size of the population, {3 is the number of selected individuals, "( is the size of 
the offspring and J is the precision. 

As noted earlier, unsupervised learning of the BN or CGN should be pro
vided with the number of clusters that we assume exist in the set of selected 
individuals. In our experiments, this number is set to the number of global 
optima of the function that we aim to optimize. 
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All the experiments are run on a Pentium 550 MHz computer. 

5.2 Combinatorial optimization 

This subsection evaluates the EMDA as applied to combinatorial optimiza
tion. Most of the problems considered can be found in Pelikan and Goldberg 
(2000) and Pelikan et al. (2000). All the problems are defined in {O, l}n, i.e. 
the set of binary individuals of length n. 

We limit our current evaluation to multimodal functions that show spin-flip 
symmetry in the solution space. This class of multimodal functions represents 
a set of challenging problems for many EDAs and GAs (Naudts and Naudts, 
1998; Pelikan and Goldberg, 2000; Van Hoyweghen, 2000; Van Hoyweghen and 
Naudts, 2000). 

5.2.1 Problems. 

Two-max problems. These are two simple spin-flip symmetrical func
tions: 

(4.7) 

D ( ) _ { Ftwo-max(x) - 5 if Ftwo-max(x) > 5 
I'two-max2 X - D ( ) h. 

I'two-max X ot erWlse 
( 4.8) 

where u is the sum of the bits in x and n is the length of x. The objective is 
to maximize the functions. For both functions, there are two global optima: 
xi=(O, ... , 0) and x z=(l, ... , 1) with fitness equal to ~ for Ftwo-max, and 
equal to ~ - 5 for Ftwo-max2. In our case, n = 50. The optimization scheduling 
for both functions is (2000, 1000, 1999, 0). Ftwo-max2 is considered more 
difficult than Ftwo-max as it has two local optima in addition to the two global 
optima. 

Graph bisection problems. Graph bisection problems aim to split the 
set of nodes of a given graph structure into two equally sized subsets so that the 
number of edges between the two subsets is minimized. We use two grid-like 
graph structures cut in halves and connected by two edges, with sizes n = 16,36 
resulting in the problems Fgrid16 (x) and Fgrid36 (x), respectively. Also, we 
consider three so-called caterpillar graph structures with sizes n = 28,42,56 
that result in Fcat28 (x), Fcat42 (x) and Fcat56 (x), respectively. Figure 4.2 shows 
the graph structures for Fgrid16 (x) and Fcat28 (x). 

Each bit of a given individual represents one node of the graph structure. 
The value of the bit classifies the corresponding node into one of the two subsets. 
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Figure 4.2 Graph structures for Fgr id16(X) (left) and FCat28(x) (right). Dashed lines 
indicate the optimal cuts. 

1200,--------, 1200,.--------, 1200,--------, 

600 600 600 
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Figure 4.3 Dynamics of the EMDA in the Ftwo-max problem. The horizontal axis 
represents the number of ones in a solution whereas the vertical axis denotes the 
number of corresponding solutions in the population of the generation indicated. 

It should be noted that only individuals with equal numbers of zeroes and ones 
represent feasible solutions. Thus, some individuals may need to be repaired. 
Although more specialized repair operators might be considered, we make use 
of a simple randomized repair operator: a unfeasible solution is converted into 
a feasible one by randomly picking a number of the bits that are in the majority 
and changing them to their complementary values. 

The fitness of a given individual is calculated as the size of the graph struc
ture minus the number of edges connecting the two subsets of nodes encoded 
in the individual. Thus, the objective is to maximize. The global optima have 
an objective function value equal to n - 2 for Fgrid16 (x) and Fgrid36 (x), and 
equal to n - 1 for Fcat28 (x), Fcat42 (x) and Fcat56 (x). It is easy to see that these 
five problems are spin-flip symmetrical problems and, thus, the global optima 
are represented by complementary individuals. The optimization scheduling is 
(2000, 1000, 1999, 0) for the five graph bisection problems. 

In addition to the difficulties derived from their symmetrical nature, these 
graph bisection problems present another source of problems for GAs and EDAs 
due to the fact that there are many local optima and only two global optima 
(Pelikan and Goldberg, 2000; Pelikan et aI., 2000; Schwarz and Ocenasek, 1999). 
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Table 4.1 Performance of the UMDA, EBNABIC and EMDA in the discrete domains 
considered. The numbers of evaluations and runtimes are average values over 10 
independent runs. The numbers of times that each optima is reached summarize the 
final results of these 10 runs. 

Problem UMDA EBNABIc EMDA 

Ftwo-max 35183 eval. 31185 eval. 25988 eval. 
20 sec. 160 sec. 107 sec. 
(5, 5) (7,3) (10, 10) 

Ftwo-max2 49176 eval. 40181 eval. 27987 eval. 
33 sec. 207 sec. 194 sec. 
(6,4) (4,6) (10, 10) 

F grid16 57972 eval. 60971 eval. 23989 eval. 
59 sec. 46 sec. 39 sec. 
(5, 5) (4, 6) (10, 10) 

Fgrid36 81560 eval. 120941 eval. 38182 eval. 
68 sec. 336 sec. 161 sec. 
(5,4) (9, 1) (10, 10) 

Fcat28 50776 eval. 53374 eval. 25988 eval. 
34 sec. 80 sec. 82 sec. 
(1, 8) (4,6) (10, 10) 

Fcat42 66968 eval. 96953 eval. 33184 eval. 
58 sec. 310 sec. 189 sec. 
(2, 3) (4,4) (10, 10) 

Fcat56 87957 eval. 120741 eval. 39981 eval. 
91 sec. 776 sec. 359 sec. 
(3,4) (1, 2) (10, 10) 

5.2.2 Results. Figure 4.3 shows the dynamics of the EMDA in the 
Ftwo-max problem. The histograms summarize the number of solutions (verti
cal axis) in the populations of generations 0, 6 and 12 with the number of ones 
denoted by the horizontal axis. As previously stated, the two global optima are 
complementary and are on the left-most and right-most sides of the histograms. 
It is clear that, as the optimization progresses, the population drifts to both 
sides as the BN learnt at each iteration of the EMDA is able to capture this 
division of the selected individuals. Finally, both global optima are discovered 
and seen in the population of the last generation of the EMDA. Moreover, the 
individuals of this last population are almost equally distributed between both 
global peaks. 
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Table 4.1 summarizes the results achieved when applying the EMDA to each 
of the 7 combinatorial problems presented in the previous subsection. Addition
ally, this table reports the results reached by the UMDA and the EBNABIC 
in these problems for comparison. For each problem and each evolutionary 
algorithm three results are given: the number of evaluations of the objective 
function until the stopping criterion is met, the runtime of the optimization 
process (in seconds), and the number of times that each of the global optima 
of the objective function is discovered. The first two results are average values 
over 10 independent runs, but the third result summarizes these 10 runs by a 
pair ("7, ~), where "7 and ~ are the number of times that xi and x:;; are obtained 
respectively. Obviously, the UMDA and the EBNABIC are able to reach at 
most one global optima per run while the EMDA could reach both optima in 
each run. 

From Table 4.1 we can conclude that the EMDA shows a more effective and 
efficient behaviour than the other two algorithms for the problems chosen. It is 
specially appealing that, for all the objective functions, the EMDA needs less 
evaluations of the objective function than the UMDA and the EBNA B1C to 
reach convergence without degrading the quality of the obtained solutions (the 
two global optima of every function are obtained in every run). Except in the 
two-max problems, the EBNAB1C needs more evaluations than the UMDA to 
converge. 

As expected, the number of evaluations has a decisive influence on the run
time of the optimization process measured in seconds. Here, the optimization 
process using the EBNAB1C is the slowest of the three. On the other hand, 
the UMDA is the quickest although the number of evaluations that it needs to 
converge in any of the 7 problems is much larger than the number of evaluations 
needed by the EMDA. Obviously, this is due to the unsupervised learning of 
BNs that the EMDA performs which is known to be a difficult and, sometimes. 
computationally expensive process. However, the runtime of the EMDA in this 
set of problems is considered reasonable. 

Looking at Table 4.1 we discover that to converge and obtain the two com
plementary global optima of any of the 7 functions using the EMDA involves 
less evaluations than to converge and obtain only one using the UMDA or the 
EBNABIC. Thus, these results confirm what we already proposed: the incor
poration of probabilistic clustering into EDAs is not only interesting because 
it allows all the global optima to be obtained, but also because it deals with 
symmetry in a natural way. That is, it avoids the combination of good so
lutions coming from complementary parts of the solution space which often 
results in poor solutions that slow down convergence. We categorized this dual 
interest in developing the EMDA as quantitative and qualitative, i.e. a gain in 
effectiveness together with a gain in efficiency. 
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From the point of view of effectiveness measured as the number of global 
optima recovered by each algorithm for each function, the EMDA outperforms 
the two benchmarks. This is not surprising as this was part of the motivation 
that led us to propose it. Specifically, the EMDA always discovers the global 
optima independently of the actual problem. Moreover, the individuals of the 
last population of every run of the EMDA for any of the 7 domains are equally 
distributed between the two global optima. On the other hand, the UMDA and 
the EBNABIC suffer the effects of the symmetry and the existence of several 
peaks, specially in the caterpillar graph bisection problems. Their harmful 
effects can be observed in the fact that, for the 7 functions chosen, the UMDA 
and the EBNABIC need a larger number of evaluations to converge and discover 
at most one global optima per run, than the EMDA for reaching convergence 
and discover both global optima. In addition to this, it can be appreciated 
from Table 4.1 that the caterpillar graph bisection problems are extremely 
difficult for the UMDA and the EBNAB1C . These two algorithms exhibit a 
poor performance in those problems as they get stuck in local optima in 9 out 
of the 30 runs performed for the three caterpillar graph bisection problems. 
The EMDA exhibits a unbeatable behaviour in these particular problems. 

These results prove the goodness of the EMDA in particular and the com
bination of EDAs and probabilistic clustering in general, in alleviating the 
disrupting effects of spin-flip symmetry and in obtaining all the global optima 
in the objective function. 

5.3 Optimization in continuous domains 

This subsection evaluates the EMDA as applied to optimization in contin
uous domains. We limit our current evaluation to multimodal functions that 
show symmetry in the solution space. Specifically, we consider that a func
tion F(x) exhibits symmetry in the solution space with respect to a when 
F(a + x) = F(a - x) for all x in the domain. As in the discrete case, this class 
of multimodal functions represents a set of challenging problems since they 
involve the same harmful effects on many evolutionary algorithms as spin-flip 
symmetrical functions. 

5.3.1 Problems. 

Two-max problems. These are two simple symmetrical functions similar 
to the discrete two-max problems introduced in the evaluation of the EMDA 
in combinatorial optimization problems: 

n 

Ftwo-max (x) = I L Xi I 
i=1 

- 5 ~ Xi ~ 5 i=1, ... ,n (4.9) 
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() { 
Ftwo-max(x) - 30 if Ftwo-max(x) > 30 

Ftwo-max2 x = ( ) 
Ftwo-max x otherwise 

-10:::; Xi :::; 10 i = 1, ... ,n (4.10) 

where the objective is to maximize these functions. For both functions, there 
are two global optima: x~=(-5, ... , -5) and x2=(5, ... , 5) for Ftwo-max with 
fitness equal to 5n, and x~=(-10, ... , -10) and x2=(1O, ... , 10) for Ftwo-max2 

with fitness equal to IOn - 30. In our case, n = 10. The optimization scheduling 
for both functions is (2000, 1000, 1999, 1). FLwo-max2 is considered more 
difficult than Ftwo-max as it has two local optima in addition to the two global 
optima. 

Mixture of normal distributions problems. The first example of 
this class of problems that we consider can be defined as the joint probability 
density function of a mixture of two normal distributions with different mean 
vectors: 

Fmix1 (x) = 0.5 N(x; 1-'1,:E) + 0.5 N(x; 1-'2,:E) (4.11) 

where N(x; I-',:E) is a multivariate normal distribution with n-dimensional 
mean vector I-' and n x n variance matrix:E. In our problem, 1-'1 = (-1, ... , -1) 
and 1-'2 = (1, ... , 1). Moreover, we consider that the variance matrix is di
agonal with all the elements of the diagonal equal to 1. There are two global 
optima: xr=(-l, ... , -1) and x2=(1, ... , 1). 

We also use two more examples of the mixture of normal distributions prob
lems here denoted as Fmix2 and Fmix3. They are similar to F mix1 but in these 
cases the non-zero elements of the variance matrix are equal to 4 for F mix2 

and equal to 9 for F mix3 ' The two global optima of Fmix2 are approximately 
xr=(-0.99, ... , -0.99) and x2=(0.99, ... , 0.99). For F mix3 the global optima 
are around xr=(-0.52, ... , -0.52) and x2=(0.52, ... , 0.52). 

The objective for the three functions is maximization, and -3 :::; Xi :::; 3 
for i = 1, ... , n. In our case n = 10. The optimization scheduling is (2000, 
1000, 1999, 10-8 ) for the first function and (2000, 1000, 1999, 10-1°) for the 
other two. It is easy to see that the three functions have been introduced in an 
increasing order of difficulty. 

Shekel's foxholes problems. We consider two instances of the well
known multimodal Shekel's foxholes problem (De Jong, 1975). The first in
stance is as follows: 
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Figure 4.4 Dynamics of the EMDA in the continuous Ftwo-max problem. The hor
izontal axis represents the sum of the genes of a solution whereas the vertical axis 
denotes the number of corresponding solutions in the population of the generation 
indicated. 

m 1 

FShekel1(X) = - L Ilx - x*112 + c· 
)=1 ) ) 

(4.12) 

where m is the number of global optima and Cj, j = 1, ... , m, is a coeffi
cient that determines the height of each of the global peaks. The objective 
is minimization. In our case, m = 2, C1 = C2 = 0.001, xr=(l, ... , 1) and 
xz=(3, ... , 3). Thus, the value of the objective function in the global minima 
is equal to -1000. Moreover, 0 ~ Xi ~ 4 for i = 1, . . . ,n. The dimension of the 
problem is n = 5. The optimization scheduling is (2000, 1000, 1999, 50). 

We refer to the second instance of the Shekel's foxholes problem as FShekel2. 

In this case m = 3, C1 = C2 = C3 = 0.001, xr=(l, ... , 1), xz=(4, ... , 4) and 
x3=(7, ... , 7). The value of the objective function in the global minima is 
equal to -1000, and 0 ~ Xi ~ 8 for i = 1, ... ,n. The dimension of the problem 
is n = 5. The optimization scheduling is (5000, 1000, 500, 50). The objective 
is also minimization. 

5.3.2 Results. Figure 4.4 shows the dynamics of the EMDA in the 
continuous Ftwo-max problem. The histograms summarize the number of solu
tions (vertical axis) in the populations of generations 0, 10 and 57 whose sum 
of genes is equal to the value denoted by the horizontal axis. The two global 
optima are on the left-most and right-most sides of the histograms. Thus, it is 
clear that, as the EMDA progresses, the population drifts to both sides since 
the CGN learnt at each iteration is able to capture this division of the selected 
individuals. Finally, both global optima are discovered and seen in the popula
tion of the last generation of the EMDA. Moreover, the individuals of this last 
population are almost equally distributed between both global peaks. 

Table 4.2 summarizes the results achieved when applied the EMDA to each of 
the 7 optimization problems presented in the previous subsection. Additionally, 
this table reports the results reached by the UMDAc and the EGNABGe in these 
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Table 4.2 Performance of the UMDAc , EGNABGe and EMDA in the continuous 
domains considered. The numbers of evaluations and runtimes are average values over 
10 independent runs. The numbers of times that each optima is reached summarize 
the final results of these 10 runs. 

Problem UMDAc EGNA BGe EMDA 

Ftwo-max 104149 eval. 161120 eval. 115343 eval. 
36 sec. 104 sec. 152 sec. 
(4, 6) (5, 5) (10, 10) 

Ftwo-max2 169516 eval. 185108 eval. 141130 eval. 
84 sec. 142 sec. 172 sec. 
(2, 8) (6,4) (10, 10) 

Fmixl 90556 eval. 92955 eval. 78962 eval. 
58 sec. 58 sec. 80 sec. 
(7, 3) (5, 5) (10, 10) 

Fmix2 77562 eval. 88357 eval. 63769 eval. 
53 sec. 105 sec. 61 sec. 
(8, 2) (4,6) (10, 10) 

F mix3 50776 eval. 57972 eval. 44179 eval. 
20 sec. 47 sec. 50 sec. 
(0, 0) (3, 7) (10, 10) 

FShekell 77162 eva!. 102750 eva!. 56773 eva!. 
30 sec. 49 sec. 37 sec. 
(5, 5) (5, 5) (10, 10) 

FShekel2 40000 eva!. 39900 eval. 42850 eval. 
7 sec. 18 sec. 85 sec. 

(0, 10,0) (0, 10,0) (10, 10, 10) 

problems for comparison. For each problem and each evolutionary algorithm 
three results are given: the number of evaluations of the objective function 
until the stopping criterion is met, the runtime of the optimization process 
(in seconds), and the number of times that each of the global optima of the 
objective function is discovered. The first two results are average values over 
10 independent runs. The third result is encoded using the same system as in 
Section 5.2.2. 

Roughly speaking, the results achieved for the continuous domains repeat the 
patterns that appear for combinatorial optimization. Let us analyze in detail 
the results summarized in Table 4.2. Except in Ftwo-max (only for UMDAc) 
and FShekel2, the EMDA needs a smaller number of evaluations of the objective 
function than the UMDAc and the EGNABGe to achieve convergence. Thus, 
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the EMDA exhibits a more efficient behaviour than the other two evolutionary 
algorithms. Despite this, the EMDA usually takes a larger runtime than the 
other two algorithms. Again, the reason is the unsupervised learning of CGNs 
performed by the EMDA. However, its runtime is considered reasonable. 

In addition to being the most efficient, the results of Table 4.2 confirm that 
the EMDA is also the most effective of the three algorithms considered: it 
always discovers all the global optima that exist in the 7 functions chosen. 
Moreover, except for Ftwo-max (only for UMDAc) and FShekel2, the EMDA is 
able to converge to all the global optima in all the runs in a number of evalu
ations smaller than the UMDAc and the EGNABGe whereas these algorithms 
discover at most just one of the existing optima. Thus, the EMDA reveals once 
again its benefits for multimodal function optimization from a qualitative as 
well as a quantitative point of view. To reinforce the effective behaviour shown 
by the EMDA, we should add that the individuals of the last population of ev
ery run of the EMDA for any of the 7 domains are equally distributed between 
the existing global optima. On the other hand, the UMDAc suffers the effects 
of the symmetry of the solution space when dealing with Fmix3 and it is unable 
to achieve any of the global optima of this function in the 10 runs carried out. 

Finally, we should conclude that, as seen in the combinatorial optimization 
problems previously considered, the EMDA when applied to optimization in 
continuous domains fulfills all its objectives. 

6. Conclusions 
The main contribution of this chapter has been the introduction of a new 

member of the EDA family: the EMDA (Estimation of Mixture of Distribu
tions Algorithm). The motivation that has led us to the EMDA was two-fold. 
First, we wanted to obtain all the global optima when facing both discrete and 
continuous multimodal function optimization problems. Second, the optimiza
tion process needed to be efficient in addition to effective, i.e. it had to be able 
to overcome the difficulties derived from the existence of several global peaks 
in the function to optimize. 

The main steps of the EMDA are the same as in any other EDA: selection of 
promising individuals, model learning and model sampling to generate a new 
population. The improvement of the EMDA over other EDAs is the model to be 
learnt at each iteration. This model is intended to capture the multimodality of 
the function to be optimized by clustering the selected individuals according to 
their genotypes. This avoids the harmful effects of multimodality as individuals 
from different parts of the search space are treated separately. Furthermore, 
each cluster should ideally evolve to a different global peak. 

Unlike other works that divide the set of selected individuals of each genera
tion into a set of clusters, the EMDA does not perform such an explicit partition 
of the selected individuals. The EMDA makes use of two well-known classes of 
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probabilistic graphical models to cluster the selected individuals: BNs for com
binatorial optimization and CGNs for continuous optimization. This makes the 
EMDA fit ED As in a natural way as well as representing a unified framework 
for combinatorial as well as continuous multimodal function optimization. 

Empirical evaluation of the EMDA for combinatorial as well as continuous 
optimization has been limited to some symmetrical functions. The functions 
chosen are known to be difficult problems for many evolutionary algorithms. 
This point has been confirmed by the results reported: the EMDA has out
performed the UMDA, UMDAc , EBNABIc and EGNABGe in the number of 
evaluations of the objective functions needed to converge and all the global 
optima were discovered for all the problems considered. This proves that the 
EMDA is able to deal with multimodal functions and discover all existing global 
optima while alleviating the harmful effects that the existence of several global 
peaks implies for many other evolutionary algorithms. 
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