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Abstract This chapter shows experimental results of applying continuous Estima
tion of Distribution Algorithms to some well known optimization prob
lems. For this UMDAc , MIMICc , EGNABIC, EGNABGe, EGNAee , 

EMNAglobal, and EMNAa algorithms were implemented. Their perfor
mance was compared to such of Evolution Strategies (Schwefel, 1995). 
The optimization problems of choice were Summation cancellation, Grie
wangk, Sphere model, Rosenbrock generalized, and Ackley. 

Keywords: Estimation of Distribution Algorithms, Gaussian networks, function op
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1. Introduction 
The aim of this chapter is to show the results of applying Estimation of 

Distribution Algorithms (EDAs) in continuous domain on some well known 
optimization problems. Evolution Strategies (ESs) (Schwefel, 1995) were also 
applied to the same functions in order to compare the performance of continuous 
EDAs. 
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The outline of this chapter is as follows: Section 2 describes the optimization 
problems that will be used and Section 3 explains which algorithms will be 
applied. Section 4 is a brief description of the experiments, and Section 5 
shows the results obtained. Finally, Section 6 is the conclusion. 

2. Description of the optimization problems 
In order to test the performance of continuous EDAs and ESs , some standard 

functions broadly used on the literature for optimization techniques comparison 
have been chosen. The functions are as follows: 

Summation cancellation: This is a maximization problem introduced in Baluja 
and Davies (1997). For any individual x= (X1, ... ,Xn ), the range of 
the components is -0.16 :S Xi :S 0.16, i = 1, ... , n. The fitness function 
is computed as follows: 

F(x) _ 1 
- (10-5 + L:~l IYil) 

(8.1) 

where Y1 = Xl, Yi = Xi + Yi-1, i = 2, ... , n . The fittest individual 
is the one whose variables have all components equal to 0, and this 
corresponds to a fitness value of 100000. 

Griewangk: This is a minimization problem proposed in Torn and Zilinskas 
(1989). The fitness function is as follows: 

n ? n () 
F(x) = 1 + 2: 4~~0 - II cos Xq . 

t=l t=l VI 

(8.2) 

The range of all the components of the individual is -600 :S Xi :S 600, 
i = 1, ... ,n, and the fittest individual corresponds to a value of 0, that 
only can be obtained when all the components of the individual are O. 

Sphere model: This other problem is a broadly known simple minimization one. 
It is also defined so that -600 :S Xi :S 600, i = 1, . .. , n, and the fitness 
value for each individual is as follows: 

n 

(8.3) 
i=l 

The reader can easily appreciate that the fittest individual is the one 
whose all components are 0, which corresponds to the fitness value O. 

Rosenbrock generalized: This problem proposed in Rosenbrock (1960) is a min
imization one. The originally proposed problem was thought for only 2 
dimensions, and this problem has been generalized to n dimensions (Sa
lomon, 1998). It is defined as: 

n-1 

F(x) = 2: [100 · (Xi+1 - xr)2 + (1 - Xi)2] . (8.4) 
i=l 
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The optimum value is 0, which is obtained again for the individual 
whose components are all set to O. The range of values is of -10 :S 
Xi :S 10, i = 1, ... ,n. 

Ackley: This optimization problem was proposed in Ackley (1987), and it is 
again a minimization problem which best value is O. This fitness valup 
is obtained by the individual whose components are all set to O. Origi
nally this problem was defined for two dimensions, but the problem has 
been generalized to n dimensions (Back, 1996). The fitness function is 
computed as follows: 

F(x) -20· exp (-0.2 
+20 + exp(l). 

1 n) (1 n ) ~ . LX; - exp ~. L COS(27rXi) 

t=l t=l 

(8.5) 

Figure 8.1 shows a graphic of each of the problems explained so far for the 
particular case of n = 2. 

3. Algorithms to test 
For each of the optimization problems in continuous domains introduced in 

the previous section, the behavior of 8 evolutionary computation algorithms 
has been compared to each other. From these 8 algorithms, 7 correspond to 
examples of continuous EDAs, while the other is an ES. 

In particular, the 8 algorithms tested have been the following: 

• Evolutionary strategy, (J.L + A)-strategy with recombination. 

• UMDAc , in which the factorization of the joint density function is com
puted as the product of univariate normal densities. 

• MIMICc , where in this case the joint density is factorized by means of a 
chain-like model using statistics of first and second order. 

• EGNABIc , in which the factorization is given by a Gaussian network. 
The search of a model in every generation is based on the penalized 
maximum-likelihood criterion, and the heuristic that looks for the best 
structure is reduced to a local search that is initialized as the model 
obtained in the previous generation. 

• EGNABGe, its characteristics are similar to the previous algorithm except 
for the evaluation criterion, which in this case we make use of a Bayesian 
metric. 

• EGN Aee , induces Gaussian network models starting from the results of 
hypothesis tests applied to each of the arcs in the structure of a Gaussian 
network. 
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Figure 8.1 Plots of the problems to be optimized with continuous EDAs and ES 
techniques (n = 2). 

• EMN Aglobal, in this algorithm the model induced corresponds to a mul
tivariate normal distribution. 

• EMNAa , in which, similarly as in the previous algorithm, the model is a 
multivariate normal distribution. In this case, the distribution is adapted 
every step following the same philosophy as a steady state genetic algo
rithm (Whitley and Kauth, 1988). 
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This last algorithm has only been applied to a dimension of 10, but the rest 
of the algorithms have been tested to dimensions of both 10 and 50. 

For more details about ESs the reader is referred to Schwefel (1995). Algo
rithms UMDAc , MIMICc , EGNABGe and EGNAee are described in Larraiiaga 
et a1. (2000), and algorithms EGNABIC, EMNAglobal, and EMNAa are further 
described in Larraiiaga et a1. (2001). 

4. Brief description of the experiments 
This section describes the experiments and the results obtained. Continu

ous EDAs were implemented in ANSI C++ language, and the ES techniques 
were obtained from Schwefel (1995). Some of the selected problems were not 
implemented in the ESs source code, and therefore some changes were made in 
order to include them in the ANSI C program. 

The initial population for both continuous ED As and ESs was generated 
using the same random generation procedure based on a uniform distribution. 

In EDAs, the following parameters were used: a population of 2000 individ
uals (M = 2000), from which a subset of the best 1000 are selected (N = 1000) 
to estimate the density function, and the elitist approach was chosen (that is, 
always the best individual is included for the next population and 1999 indi
viduals are simulated). 

The ES chosen was taken from Schwefel (1995). This is a standard (/-L + 
A)-strategy with discrete recombination in points of the search space and inter
mediary recombination for strategy parameters. The value of the parameters 
was set to /-L = 15, A = 100, lower bound to step sizes (absolute of 1E-30 
and relative of 9.8E-07), parameter in convergence test (absolute of 1E-30 and 
relative of 9.8E-07). 

For all the continuous EDAs the ending criterion was set to reach 301850 
evaluations (Le. number of individuals generated) or when the result obtained 
was closer than 1E-06 from the optimum solution to be found. 

These experiments were all executed in a two processor Ultra 80 Sun com
puter under Solaris version 7 with 1 Gb of RAM. 

4.1 Experimental results 

Results such as the best individual obtained and the number of evaluations 
to reach the final solution were recorded for each of the experiments. 

Each algorithm was executed 10 times, and the null hypothesis of the same 
distribution densities was tested. The results are shown in Tables 8.1 to 8.5. 
In order to check whether the difference behaviour between the algorithms is 
statistically significant the non-parametric tests of Kruskal-Wallis and Mann
Whitney were used. This task was carried out with the statistical package 
S.P.S.S. release 9.00. 
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Table 8.1 Mean values of experimental results after 10 executions for the problem 
Summation cancellation with a dimension of 10 and 50 (optimum fitness value = 
1.0E+5). 

Dimension Algorithm B est fitness value Number of wllalua.tions 

UMDAc 6.23390E+04 ± 1.87E+04 301850 ± 0.0 
MIMICc 5.79875E+04 ± 2.30E+04 301850 ± 0.0 
EGNAB1C 5.50837E+04 ± 1.70E+04 301850 ± 0.0 

10 EGNABGe 9.99991E+04 ± 1.25E-01 190305 ± 1836.9 
EGNAee 9.99992E+04 ± 1.73E-0l 195903 ± 1632.2 
EMNAglobal 9.9999IE+04 ± 1.03E-01 192904 ± 1056.6 
EMNAa 6.40978E+00 ± 6.78E-01 301850 ± 0.0 
ES 3.57871E-03 ± 6.31E-03 43000 ± 8232.7 

UMDAc 6.89860E-01 ± 2.92E-02 301850 ± 0.0 
MIMICc 6.91292E-01 ± 4.73E-02 301850 ± 0.0 
EGNAB1C 7.23125E-01 ± 3.28E-02 301850 ± 0.0 

50 EGNABGe 9.17252E+03 ± 2.89E+04 278861.5 ± 17761.2 
EGNAee 8.62138E+04 ± 8.9IE+03 301850 ± 0.0 
EMNAglobal 8.61907E+04 ± 1.3IE+04 301850 ± 0.0 
ES 5.31544E-08 ± 1.05E-08 193000 ± 27507.6 

Table 8.2 Mean values of experimental results after 10 executions for the problem 
Griewangk with a dimension of 10 and 50 (optimum fitness value = 0). 

Dimension Algorithm Best fitness value Number of evaluations 

UMDAc 6.0783E-02 ± 1.93E-02 301850 ± 0.0 
MIMICc 7.3994E-02 ± 2.86E-02 301850 ± 0.0 
EGNAB1c 3.9271E-02 ± 2.43E-02 301850 ± 0.0 

10 EGNABGe 7.6389E-02 ± 2.93E-02 301850 ± 0.0 
EGNAee 5.6840E-02 ± 3.82E-02 301850 ± 0.0 
EMNAglobal 5.1166E-02 ± 1.67E-02 301850 ± 0.0 
EMNAa 12.9407 ± 3.43 301850 ± 0.0 
ES 3.496E-02 ± 1.81E-02 25000 ± 1699.7 

UMDAc 8.9869E-06 ± 9.36E-07 177912 ± 942.3 
MIMICc 9.0557E-06 ± 8.82E-07 177912 ± 942.3 
EGNABIC 1.7075E-04 ± 6.78E-05 250475 ± 18658.5 

50 EGNABGe 8.6503E-06 ± 7.71E-07 173514.2 ± 1264.3 
EGNAee 9.1834E-06 ± 5.9IE-07 175313.3 ± 965.6 
EMNAglobal 8.7673E-06 ± 1.03E-06 216292 ± 842.8 
ES 1.479E-03 ± 3.12E-03 109000 ± 13703.2 
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Table 8.S Mean values of experimental results after 10 executions for the problem 
Sphere model with a dimension of 10 and 50 (optimum fitness value = 0). 

Dimension Algorithm Best fitness value Number of evaluations 

UMDAc 6.7360E-06 ± 1.26E-06 74163.9 ± 1750.3 
MIMICc 7.2681E-06 ± 2.05E-06 74963.5 ± 1053.5 
EGNAB1C 2.5913E-05 ± 3.71E-05 77162.4 ± 6335.4 

10 EGNABGe 7.1938E-06 ± 1.78E-06 74763.6 ± 1032.2 
EGNAee 7.3713E-06 ± 1.98E-06 73964 ± 16321 
EMNAglobal 7.3350E-06 ± 2.24E-06 94353.8 ± 842.8 
EMNAa 4.8107E+04 ± 1.32E+04 301000 ± 0.0 
ES o ± 0.0 48200 ± 1135.2924 

UMDAc 8.9113E-06 ± 8.41E-07 211495.2 ± 1264.2 
MIMICc 8.9236E-06 ± 9.66E-07 211695.1 ± 1474.9 
EGNABIC 1.2126E-03 ± 7.69E-04 263869 ± 29977.5 

50 EGNABGe 8.7097E-06 ± 1.30E-06 204298.8 ± 1264.2 
EGNAee 8.3450E-06 ± 1.04E-06 209496.2 ± 1576.8 
EMNAglobal 8.5225E-06 ± 1.35E-06 247477.2 ± 1264.2 
ES 1.54IE-45 ± 4.43E-46 173000 ± 4830.4 

Table 8.4 Mean values of experimental results after 10 executions for the problem 
Rosenbrock generalized with a dimension of 10 and 50 (optimum fitness value = 0). 

Dimension Algorithm B est fitness value Number of evaluations 

UMDAc 8.7204 ± 3.82E-02 301850 ± 0.0 
MIMICc 8.7141 ± 1.64E-02 301850 ± 0.0 
EGNAB1C 8.8217 ± 0.16 268066.9 ± 69557.3 

10 EGNABGe 8.6807 ± 5.87E-02 164518.7 ± 24374.5 
EGNAee 8.7366 ± 2.23E-02 301850 ± 0.0 
EMNAglobal 8.7201 ± 4.33E-02 289056.4 ± 40456.9 
EMNAa 3263.0010 ± 1216.75 301000 ± 0.0 
ES 

UMDAc 48.8949 ± 4.04E-03 301850 ± 0.0 
MIMICc 48.8894 ± l.1IE-02 301850 ± 0.0 
EGNABIC 50.4995 ± 2.30 301850 ± 0.0 

50 EGNABGe 48.8234 ± 0.118 275663.1 ± 1750.3 
EGNAee 48.8893 ± l.1IE-02 301850 ± 0.0 
EMNAglobal 49.7588 ± 0.52 296252.8 ± 7287.1 
ES 
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Table 8.5 Mean values of experimental results after 10 executions for the problem 
Ackley with a dimension of 10 and 50 (optimum fitness value = 0). 

Dimension Algorithm Best fitness value Number of evaluations 

UMDAc 7.8784E-06 ± 1.17E-06 114943.5 ± 1413.5 
MIMICc 8.8351E-06 ± 9.01E-07 114743.6 ± 1032.3 
EGNABIC 5.2294 ± 4.49 229086.4 ± 81778.4 

10 EGNABGe 7.9046E-06 ± 1.39E-06 113944 ± 1632.2 
EGNAee 7.4998E-06 ± 1.72E-06 118541.7 ± 2317.8 
EMNAglobal 8.9265E-06 ± 6.89E-07 119141.4 ± 1032.3 
EMNAa 10.8849 ± 1.19 301000 ± 0.0 
ES 20 ± 0.0 18000 ± 7180.2 

UMDAc 9.0848E-06 ± 3.11E-07 296852.5 ± 1053.5 
MIMICc 9.6313E-06 ± 3.83E-07 295653.1 ± 632.1 
EGNABIC 1.9702E-02 ± 7.50E-03 288256.8 ± 29209.4 

50 EGNABGe 8.6503E-06 ± 3.79E-07 282059.9 ± 632.1 
EGNAee 6.8198 ± 0.27 301850 ± 0.0 
EMNAglobal 9.5926E-06 ± 2.39E-07 291255.3 ± 1349.2 
ES 20 ± 0.0 88000 ± 19888.6 

4.2 Comments on the results 

The experimental results shown in Tables 8.1 to 8.5 contain important dif
ferences between the algorithms depending on the optimization problem. Next, 
each of the problems will be analyzed separately, showing for each case which 
appeared to be the most suited algorithms and testing whether the different 
performance is statistically significant. 

Summation cancellation: For the Summation cancellation example the algor
ithms that arrived to the optimum solution for the 10 dimension case 
were EMNAgiobal, EGNABGe and EGNAee . When applying the non 
parametric tests to these algorithms we obtain p = 0.249 for the best 
fitness value and p < 0.001 for the number of evaluation required. This 
means that for this example there are statistically significant differences 
in the number of evaluations required to reach the best solution, but 
the best result obtained is not statistically significant for these three 
algorithms. 

For the 50 dimension case, the algorithms that performed best (that ar
rived to the best solution) were EMNAglobal and EGNAee , as EGNA BGe 
shows a worse results when increasing the complexity of the problem. 
In both algorithms the final results obtained were close to the optimum, 
but in all the cases they arrived to the maximum of evaluations and 
their execution was stopped (they satisfied the ending criterion before 
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reaching the best solution). If we apply the non parametric test to 
these two algorithms we obtain p = 0.191 for the best fitness value and 
p < 0.001 f6r the number of evaluations required, which means that 
the fitness values obtained with these two best algorithms are not sta
tistically significant, but difference in number of evaluations required 
for convergence is statistically significant. 

Griewangk: The Griewangk problem is a very complex problem to optimize due 
to the many local minima it presents, as it can be seen in Figure 8.1b. In 
the 10 dimension case all the mean fitness values of the Table 8.2 appear 
quite similar for all but the EMNAa algorithm. When performing the 
non parametric test for all the results we obtain though that differences 

. are significant for both the fitness value and number of evaluations. The 
algorithm that shows the best behaviour is ESs, closely followed by 
EGNABIC, EMNAglobal, EGNAee , MIMICc and UMDAc algorithms. 
When comparing ESs and these five continuous EDAs we do not obtain 
statistically significant differences in the best fitness value (p = 0.101). 
On the other hand, the differences are significant in the number of 
evaluations required for these algorithms (p < 0.001). 

In the 50 dimension case the differences are bigger, and therefore the 
performance of the different algorithms can be seen more clearly. In 
this case ESs arrived to the ending criterion and stopped the search 
without reaching a solution as well as the obtained with any of the 
EDAs. Differences among all the continuous EDAs are statistically 
significant looking at the results (p < 0.001), and the algorithms that 
quicker arrived to these results were EGNABGe , EGNAee , MIMICc 
and UMDAc, although the difference in fitness value of these was non 
significant (p = 0.505). The fact that EGNABIC did not converge as 
quick as the rest shows that this algorithm is more dependent on the 
complexity of the problem than the others. 

Sphere model: This problem does not have any local minima, and its optimum 
fitness value is O. This is again a very suitable optimization problem 
for the ES method, that obtained the optimum result in practically all 
the executions and for both the 10 and 50 dimensions. 

If we do not consider the EMNAa, differences for the 10 dimension 
case were not significant in the best results obtained (p = 0.197). The 
main differences are in the number of evaluations, which is statistically 
significant when performing the test for all the algorithms (p < 0.001), 
but when performing the same test excluding the EMNAglobal we ob
tain p = 0.125 for the fitness values and p = 0.671 for the number 
of evaluations, which shows clearly that all the non-EMNA algorithms 
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do not require a significantly different number of evaluations to reach 
similar solutions. 

In the 50 dimension these differences appear to be more important, 
and for this case again the EGNABIC algorithm shows a worse perfor
mance when increasing the dimension of the problem from 10 to 50. 
As a result, if excluding the latter algorithm from the non parametric 
test we obtain that differences are not statistically significant between 
all the rest of continuous EDAs (p = 0.719). The number of evalu
ations required for these algorithms (all continuous EDAs except for 
EGNABIc) is still significantly different (p < 0.001). 

Rosenbrock generalized: Rosenbrock is a problem illustrated in Figure 8.1d which 
does not contain many local minima nor maxima. For this reason, the 
ES method is very suitable and shows the best results for both the 10 
and 50 dimension cases. 

Looking at the performance of the continuous EDAs, excluding EMN Aa , 

there are significant differences between all of them for the 10 dimension 
case (p = 0.002). If we perform the test for the algorithms MIMICc, 
EMNAglobal, UMDAc, EGNABGe and EGNAee we obtain that the dif
ference in the best fitness value obtained are not significant (p = 0.074). 
From all of them, the EGNABGe appears to require significantly less 
number of evaluations to converge. 

In the 50 dimension case, the differences in the best fitness value ob
tained are significant between all the continuous EDAs, and the best 
fitness values are obtained with EGNABGe, EGNAee , MIMICc and 
UMDAc. The results of these algorithms were not statistically signif
icant (p = 0.375), but when computing the non parametric test also 
with EMNAglobal differences appear to be important (p < 0.001). The 
faster convergence was achieved with the EGNABGe algorithm. 

Ackley: The Ackley problem has also several local minima as it can appreciated 
in Figure 8.1e. The ES method performed quite worse in both 10 and 
50 dimensions than the rest of the algorithms, that showed much closer 
fitness results to the optimum value of o. 
Following the results shown in Table 8.5 for the 10 dimension case, 
the best results were obtained with EGNAee , UMDAc, EGNABGe, 
MIMICc and EMN Aglobal. However, the non parametric test of Kruskal
Wallis showed that differences were not statistically significant for these 
algorithms in the fitness value (p = 0.085). In the 50 dimension case, 
from the 5 algorithms, EGNAee performed quite worse than the rest. 
The only not statistically significant results in the fitness value is for 
the algorithms UMDAc and EGNABGe (p = 0.151), although there are 
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significant differences for both in the number of evaluations required 
(p < 0.001). This means that EGNABGe behaves better for this prob
lem at a dimension of 50. If we perform the same hypothesis test with 
UMDAc, EGNA BGe and EMNAglobal, the differences in fitness value 
become statistically significant (p = 0.005). 

4.3 The evolution of the search 

As an example to illustrate the difference in the way of reaching the final 
result for all the continuous EDAs, Figure 8.2 shows which is the behaviour of 
all the algorithms for the Summation cancellation problem with dimension of 
10. In this figure appears clear that the algorithms that arrive quicker to the 
optimum solution are EMNAglobal, EGNABGe and EGNAee , which arrive to 
convergence. The rest of the algorithms do not show such a good behaviour, 
and when the maximum number of evaluations is reached their execution was 
stopped. Another important aspect in the figure is that it shows clearly that 
the EMNAglobal converges a bit faster than EGNABGe and EGNAee : if the 
execution had been stopped at about the 50th generation this algorithm would 
have returned the best result. EGNABGe converges also very close, but results 
in Table 8.3 show that when the complexity of the problem increases from 10 
to 50 its relative performance worsens. This fact has also been seen for most 
of the optimization problems in the experiments. 

4.4 The computation time 

The computation time is the CPU time of the process for each execution, and 
therefore it is not dependent on the multiprogramming level at the execution 
time. As an example of the difference in computation time for all the algorithms 
again the example of the Summation cancellation problem was used for both 10 
and 50 dimensions. The results are shown in Table 8.6. This computation time 
is presented as a measure to illustrate the different computation complexity of 
all the algorithms. It is important also to note that all the operations for the 
estimation of the distribution, the simulation, and the evaluation of the new 
individuals are carried out through memory operations. 

As expected, the CPU time of each algorithm is according to the complexity 
of the algorithm for the learning step in the EDA algorithm. Following this 
fact, the shortest algorithm in computation time are in order UMDAc and 
MIMICc . All the EGNA type algorithms show a longer computation time due 
to the calculation of the structure that represents the learning, which has no 
restriction in the number of parents for each variable. 

It is also worth mentioning the computation time of EMN Aglobal, which 
is a bit shorter that the EGNA.type ones. As EMNAglobal is based on the 
assumption of the complete dependence of all variables each other (the structure 
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Figure 8.2 Evolution of the different continuous EDAs for the Summation cancella
tion problem with a dimension of 10. 

Table 8.6 Mean values of the computation time after 10 executions for the problem 
Summation cancellation with a dimension of 10 and 50. 

Dimension 10 Dimension 50 

UMDAc 0:02:36 ± 0:00:00 0:03:23 ± 0:00:01 
MIMICc 0:02:47 ± 0:00:01 0:04:12 ± 0:00:00 
EGNABIC 0:07:15 ± 0:00:01 3:15:31 ± 0:00:04 
EGNABGe 0:03:03 ± 0:00:02 4:03:13 ± 0:13:18 
EGNAee 0:01:59 ± 0:00:01 3:19:37 ± 0:03:42 
EMNAglobal 0:01:55 ± 0:00:00 3:16:07 ± 0:00:10 
EMNAa 0:05:49 ± 0:00:04 
ES 0:00:02 ± 0:00:00 0:00:29 ± 0:00:06 

is a complete graph), no time is required in order to estimate the most suitable 
structure for the learning step. It is also important to note that the other 
EMNA type algorithm (EMNAa) shows a much longer computation time than 
the rest of the algorithms, which made it not suitable for its use with the 50 
dimension example. This fact happened as well in the rest of the optimization 
problems. 
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On the other hand, it is important to note that ESs show a very short 
computation time for this Summation cancellation problem. However, although 
its performance is quite good for some of these problems (e.g. the Sphere 
model), for the case of the Summation cancellation the ending criterion is 
reached too quick to obtain a good solution and its execution is aborted in 
advance. 

5. Conclusions 
At the light of the results obtained in the fitness values, we can conclude 

the following: generally speaking, for small dimension EMNAglobal, and EGNA 
type algorithms perform better that the rest, but when increasing the dimension 
some of the algorithms show a poorer performance as a result of the higher 
complexity to take into account (e.g. the case of EGNAB/c). The EMNAa 
algorithm showed a very poor behaviour for all these optimization problems, 
and its additional computation effort made impossible to apply it to the 50 
dimension cases. 

An important aspect to take into account is that the EMN Aglobal algorithm 
appears to be the method that more quickly approaches to the best results, 
although these results are not always the optima. Nevertheless, once this algo
rithm is nearby the optimum solution it requires more time than algorithms as 
EGNABGe or EGNAee to satisfy the ending criterion. This is the reason why 
in Tables 8.1 to 8.5 this fact is not clear. 

Depending on the problem the ES method showed better results than the 
continuous EDAs, but when the type of problem to optimize presents many lo
cal minima or maxima, continuous EDAs show a more appropriated behaviour. 
The main drawback for continuous EDAs in general is the computation time 
they require, but for some problems the results that can be obtained with them 
are not comparable to methods in the ESs category. 
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