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Abstract In this chapter we present several approaches to the 0-1 knapsack prob­
lem based on Estimation of Distribution Algorithms. These approaches 
use two different types of representation, three methods for obtaining 
the initial population and two different methods for handling the prob­
lem's constraints. Experimental results for problems of different sizes 
are given. 
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1. Introduction 
The knapsack problem can be described as selecting from among various 

items that could be placed in a knapsack those items which are most useful 
given that the knapsack has limited capacity. Knapsack problems have been in­
tensively studied because of their simple structure and because they can model 
many classical industrial problems such as capital budgeting, cargo loading and 
stock cutting (Martello and Toth, 1990) . 

This chapter presents several adaptations of Estimation of Distribution Al­
gorithms (EDAs) for the knapsack problem. These adaptations differ in the 
representation that they used, the way in which they obtain their initial popu­
lations and the manner in which they treat the constraint related to the knap­
sack capacity. Experimental results obtained for problems of different sizes are 
used to compare different approaches based on EDAs. 

The rest of the chapter is structured in the following way. Section 2 in­
troduces the mathematical notation for the knapsack problem. In Section 3 
a binary representation for the problem is presented, as the manner in which 
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Table 9.1 0-1 knapsack problem with 7 items. 

Item 1 2 3 4 5 6 7 
Profit 20 31 17 30 14 52 10 
Weight 30 54 32 16 27 61 7 

discrete and continuous EDAs can be applied to it. The next section has the 
same structure, but the representation used is based on permutations. Section 
5 presents experimental results, while conclusions are given in Section 6. 

2. The 0-1 knapsack problem 
The knapsack problem considered here is the 0-1 knapsack problem, which 

is classified as NP-hard (Garey and Johnson, 1979). 
The 0-1 knapsack problem is: given a finite set of items where for each item 

its weight and profit are known, try to select the subset of items that provides 
the maximum profit, and whose sum of weights is bounded by the knapsack 
capacity. 

In mathematical notation, if we denote by 

• n the number of items 

• Pi the profit of item i 

• Wi the weight of item i 

• c the capacity of the knapsack 

then a solution for the 0- 1 knapsack problem consists of selecting a subset of 
the items so as to: 

. . ",n 
• maxImIze Wi=1 PiXi 

• subject to the constraint l:~=1 WiXi ~ C 

where for all i = 1, ... , n 

Xi = {I if item i is selected 
o otherwise. 

Example 9.1 We illustrate the 0-1 knapsack problem with a simple example 
consisting of 7 items, where the profits and weights associated with each item 
are shown in Table 9.1. We assume that the capacity of the knapsack is c = 100. 
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If we select the items numbered 1,2 and 4 we obtain a profit of 81 with a 
combined weight (30 + 54 + 16 = 100) that doesn't exceed the capacity of the 
knapsack. However it is not possible to select the items numbered 1,2 and 3 
because their combined weight (30 + 54 + 32 = 116) exceeds the capacity of the 
knapsack. 

Approaches to the knapsack problem include both algorithms developed us­
ing greedy principles and exact methods. The greedy principle orders the items 
by nonincreasing efficiencies, where efficiency is the ratio between profit and 
weight, then includes the most efficient items in the knapsack until its capacity 
is exceeded. Approches based on the greedy principle include work by Ingargi­
ola and Korsh (1973), Dembo and Hammer (1980), Martello and Toth (1988), 
Fayard and Plateau (1982) and Pisinger (1999). Alternatively, amongst the 
exact methods, Balas and Zemel's (1980) algorithm embeds the branch-and­
bound technique, while Plateau and Elkihel's (1985) hybrid algorithm uses both 
branch-and-bound and dynamic programming. 

More relevant to this chapter are the approaches based on Genetic Algo­
rithms (GAs) and EDAs. Using GAs, Watannabe et al. (1992) and Gordon et 
al. (1993) developed an approach that uses binary representation, while Hinter­
ding (1994) uses a representation based on permutations. Olsen (1994) proposes 
the use of penalty functions designed for the knapsack problem and Simoes and 
Costa (2001) propose an approach to the 0-1 knapsack problem based on GAs 
where the standard crossover operator is replaced by a biologically-inspired 
mechanism known as transposition. 

Regarding EDAs, Baluja (1995) presents some results obtained with the 
PBIL algorithm, while Baluja and Davies (1998) show some empirical compar­
isons between COMIT and PBIL (see Chapter 3 for details of these algorithms). 
In both these works, binary representation is used. 

3. Binary representation 

In this section, we introduce two new approaches based on binary represen­
tations. The first is based on discrete EDAs, and the second uses EDAs in 
continuous domains. In both approaches we will assume that the variables will 
be ordered from left to right, by their ratios between profit and weight. This 
means that Xl is the variable associated with the item with the largest ratio 
between profit and weight, and Xn corresponds to the variable with the worst 
ratio. 

3.1 Discrete EDAs 

Representation. Each possible solution to the 0-1 knapsack problem is 
represented by a binary array of dimension n, written as: 

(Xl, ... ,Xi,··· ,Xn)· 
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A value of 1 in the ith position indicates that the ith item has been selected 
for inclusion in the knapsack. From the point of view of the EDAs, each bit 
represents the value of one random variable following a Bernouilli distribution. 
The cardinality of the search space is 2n. 

Example 9.2 Continuing the example introduced in Section 9.2, if the 1st , 

2nd , and 4th are the only selected items, then the corresponding binary array 
'is: 

(1,1,0,1,0,0,0), 

Evaluation. Since the array of bits can represent a solution that exceeds 
the capacity of the knapsack, we have developed two approaches to evaluate 
these arrays: 

• Penalization of arrays representing non-feasible solutions. 

In this approach, if the array represents a non-feasible selection of items, 
we penalize its evaluation so that it is not competitive with the evaluations 
of feasible solutions. 

This evaluation is done in the following manner: 

where K is a positive number so that: 

if 2:7=1 WiXi ::; c 
if 2:~=1 WiXi > C 

(9.1) 

for all (Xl, ... , Xi, . .. , Xn) such that 2:~=1 WiXi > c we hwe: 

11 11 

K(L Wi - L WiXi) ::; min(Pl,' " ,Pn) ' (9.2) 
i=l i=l 

Inequality 9.2 means that all the item selections that correspond to non­
feasible solutions will obtain a worse evaluation than the evaluation cor­
responding to any feasible solution. 

• First fit algorithm. 

In this approach to selecting items for inclusion in the knapsack whilst 
avoiding violating the constraint on its capacity, we select, from left to 
right and in order, items that meet the capacity constraint and reject 
items that result in a constraint violation. This first fit algorithm is 
shown in Figure 9.1. Hinterding (1994) uses this algorithm with different 
orderings to initialize the population of a GA. 
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Search left to right for first item that does not violate 
the capacity constraint 

if item found add to knapsack 

else terminate algorithm 

Fig'U1'e 9.1 First fit algorithm. 

Initialization. We have considered three different methods for obtaining 
the initial population: 

• Each item is selected with equal probability, independent of the remain­
ing items and independent of its ratio between profit and weight. This 
initialization will be called uniform. 

In order to obtain an expected number of selected items of Li~: Wi ' each 
item is selected with a probability equal to Li~l Wi • 

The probability vector from which we generate the initial population is 
therefore: 

• Each item is selected with a probability proportional to its ratio between 
profit and weight. That is: 

(Po(xd, ... ,PO(Xi), ... ,PO(Xn)) ex: (~, ... , Pi , ... , Pn). (9.4) 
Wi Wi Wn 

Denoting by M the proportionality constant and taking into account that 
the expected number of selected items must be Ei:: Wi' we obtain that: 

n ML Pi _ nc 
- I:n w· W· 

i=l' j=l) 

(9.5) 

or equivalently: 

nc 
M = ",n . ",n Ei.. ' 

uj=l W) ui=l Wi 

(9.6) 
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obtaining finally that: 

( WI Lj=~~~CL7=1 ~ , ... , Wn Lj=~:~CL7=1 ~ ) . (9.7) 

Since it is not guaranteed that each of the components of this vector is 
smaller than 1, we obtain the initial population of individuals using the 
following probability distribution: 

() . ( Pinc ) Po Xi = mm 1, . ",n . ",n .Ei.. 
W, ~j=l W J ~i=l Wi 

(9.8) 

for all i = 1, ... ,n. 

• Probabilistic seed, in which starting from the solution provided by the first 
fit algorithm, an initial population of solutions is obtained by simulating 
the following probability distribution: 

(Po(xd,··· ,PO(Xi), ... ,Po(xn )) 

where for all i = 1, ... ,n: 

{ a if item Xi is selected by the first fit 
Po (x i) = 1 _ a if item X i is not selected by the first fit. 

In this chapter we fix the a value to 0.95. 

3.2 Continuous EDAs 

(9.9) 

Representation. For continuous EDAs, we need n+ 1 variables to represent 
each item selection. A Gaussian network is used to express the interdependen­
cies between these n + 1 variables. The first n variables are related to their 
corresponding items, and the (n+ 1)th variable provides a threshold were chosen 
items have an associated variable which is larger than the threshold. 

Example 9.3 Suppose we use the following vector of dimension 8 to represent 
a choice between the 7 items in Example 9.1: 

(Xl, X2, X3, X4, X5, X6, X7, Xs) = (1004,12.8,904,16.2,7.14,5.67,9.14,9.98). 

This array is interpreted here as selecting items 1,2 and 4, because their cor­
responding values -(10.4, 12.8 and 16.2)- are the only ones that overcomes 
the threshold of 9.98. This 8 dimensional array is therefore eq'uivalent to the 
following 7 dimensional binary array: 

(1,1,0,1,0,0,0). 
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Evaluation. Evaluation is done on the binary transformation, so it is ex­
actly the same as the one used for discrete EDAs. 

Initialization. We again consider three different initializations: 

• Each item is selected with uniform probability, independent of the re­
maining items and independent of its ratio between profit and weight. 

In a similar manner to the discrete case, if the probability of selecting each 
item is 2:7:1 Wi' and if Xi == N(/.l, (J2) for all i = 1, ... , nand X n+1 = 
N(/.lthr, (J2), we can obtain the value for /.lthr, given that: 

C 

p(Xi > Xn+d = I:7=1 Wi (9.10) 

for all i = 1, ... ,n. Noting that: Xi - Xn+l == N(/.l- /.lthr , 2(J2) we obtain 
that the parameter /.lthr must satisfy: 

p(X > X ) - p(X X > 0) _/.00 1 e-~(Xi-JL+JLthr)2dx_ 
i n+1 - i - n+1 - (;;;2" i -

JLthr y 7r (J 
c 

(9.11) ",n . 
L...i=l Wi 

One example of this condition would be to use: (J = ~ and /.l = /.lthr. 

• Each item is selected with a probability proportional to its ratio between 
profit and weight. 

Reasoning in a similar way to the discrete case, we have that for all 
i = 1, ... ,n: 

Pinc 
p(Xi > X n+1) = . ",n . ",n Ei.' (9.12) 

W. L...j=l wJ L...i=l Wi 

If we fix the parameters of the (n+ l)th variable, X n+1 == N(/.lthr, (J2) then 
each variable Xi (i = 1, ... , n) which also follows a normal distribution, 
Xi == N(/.li, (J2), must satisfy: 

P(Xi > Xn+l) = P(Xi - Xn+l > 0) = p(N(/.l - /.lthr, 2(J2) > 0) = 

(9.13) 

In order to determine /.li for all i = 1, ... , n we fix the values for the 
parameters (J and /.lthr respectively to ~ and 0, to obtain that for all 
i = 1, . . . ,n: 

(9.14) 

• Probabilistic seed as described in the previous section. 
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4. Representation based on permutations 

Representation. Each possible solution for the 0-1 knapsack problem is 
represented by a permutation (-rr(l), ... , 7r(i), ... 7r(n)) of the items be selected. 

Existing work on discrete ED As (Santana et al., 1999; Bengoetxea et al., 
2000a, 2000b) already deals with problems similar to the one of obtaining these 
permutations. These all adapt the simulation phase in order to obtain a permu­
tation. The problem with these approaches is that the probability distribution 
learnt by the Bayesian network is changed by the constraint. 

In this chapter we obtain each permutation from the simulation of a Gaussian 
network (Pelikan, 2000). We assume that the random variables in the Gaussian 
network are ordered -as in the binary representation- by their ratio between 
profit and weight. 

If we denote by (Xl"'" Xi,"" xn) the continuous vector obtained in the 
simulation of the Gaussian network, then once the values Xi (i = 1, ... , n) are 
ordered from the largest to the smallest we obtain the items: 7r( i) = Xi:n for 
all i = 1, ... , n. 

With this representation the cardinality of the search space is n!. This 
number is bigger (if n ~ 4) than 2n because the representation we are using is 
redundant. 

Example 9.4 Assume that we have obtained the following 7 dimensional vec­
tor for the 7 items of Example 9.1: 

(Xl, X2, X3, X4, X5, X6, X7) = (10.4,12.8,9.4,16.2,7.14,5.67,9.14). 

Ordering the values corresponding to the items, we obtain: 

(7r(1),7r(2),7r(3),7r(4),7r(5),7r(6),7r(7)) = (3,2,4,1,6,7,5). 

This permutation indicates the order of selection for the items to be included 
in the knapsack. 

Evaluation. Here, we don't use the evaluation via penalization, so each 
permutation is evaluated using the first fit algorithm described in Section 9.3. 

3: 
Initialization. We consider three possible initializations, as seen in Section 

• Each item has the same probability of being in each of the n positions of 
the permutation. 

To obtain this initialization all the random variables will follow the same 
normal distribution model. That is Xi == N(/l, 0-'2) for all i = 1, ... , n. 

• We assign more probability to those items with larger ratios between 
profit and weight. 
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Table 9.2 Knapsack problem. Binary representation. Average of the best results. 
n =: 50. Greedy: 1713. 

penalty first fit 

uniform proportional prob. seed uniform proportional prob. seed 

UMDA 1731.8 1731.0 1717.8 1734.0 1734.0 1732.8 
MIMIC 1731.2 1731.2 1716.8 1734.0 1734.0 1730.4 
EBNApc 1731.0 1730.6 1720.4 1734.0 1733.0 1728.8 

UMDAc 1731.2 1733.2 1713.0 1734.0 1732.4 1713.0 
MIMICc 1731.2 1732.2 1713.0 1734.0 1734.0 1713.0 
EGNAee 1729.3 1730.7 1715.2 1734.0 1733.6 1717.6 

Table 9.3 Knapsack problem. Binary representation. Average of the best results. 
n =: 200. Greedy: 8010. 

penalty first fit 

uniform proportional prob. seed uniform proportional prob. seed 

UMDA 7964.0 7977.3 8011.6 8018.0 8018.0 8018.2 
MIMIC 7977.2 7990.2 8013.0 8017.2 8018.0 8018.6 

UMDAc 7935.4 8003.8 8010.4 8016.8 8016.8 8014.5 
MIMICc 7950.2 7985.0 8010.0 8017.8 8016.8 8014.1 

Here, we generate n dimensional vectors whose ith component have ex­
pected value proportional to its ratio between profit and weight. That is: 
Xi == N(Pi, 0-2 ) where Pi (X ~ for all i = 1, ... , n. 

• Probabilistic seed, as described in previous sections. 

5. Experimental results 
In this section we present the results of some experiments carried out with 

different number of objects (n = 50,200 and 1000). For each experiment we 
randomly obtain the values for the profit and weight associated to each item, 
as well as the capacity of the knapsack. 

In Tables 9.2 to 9.4 the average results over 10 independent runs for, re­
spectively, the 50, 200 and 1000 objects problems are shown. All these three 
tables correspond to the results obtained with a binary representation. As can 
be seen in the tables we consider -see Section 3.1 for details- two ways for 
the evaluations of the individuals (penalization and first fit algorithm) in com-
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Table 9.4 Knapsack problem. Binary representation. Average of the best results. 
n = 1000. Greedy: 41425. 

penalty first fit 

uniform proportional prob. seed uniform proportional prob. seed 

UMDA 38212.8 39063.6 40895.6 41145 .6 41097 .2 41393 .0 
MIMIC 38307.8 39282.8 41070.2 41341.8 41239.6 41424.4 

UMDAc 37545.8 40786.2 41425.0 41425.6 41425.0 41425.0 
MIMICc 37647.2 39787.7 41425.0 41426.2 41425.4 41425.0 

Table 9.5 Knapsack problem. Representation based on permutation. Mean of the 
best results. n = 50. Greedy: 1713. 

UMDAc 
MIMICc 
EGNAee 

uniform 

1734.0 
1734.0 
1734.0 

proportional 

1734.0 
1734.0 
1733.6 

probabilistic seed 

1713.0 
1713.0 
1713.0 

Table 9.6 Knapsack problem. Representation based on permutation. Mean of the 
best results. n = 200. Greedy: 8010. 

UMDAc 
MIMICc 

uniform 

8012.0 
8005.8 

proportional 

8012.1 
8014.4 

probabilistic seed 

8016.5 
8016.2 

bination with three initializations (uniform, proportional and by means of a 
probabilistic seeding). 

In a similar manner Tables 9.5 to 9.7 present the results obtained for the 
permutation based representation -see Section 3.2 for details- for the 50, 200 
and 1000 objects problems. In these tables we take into account the same three 
different initializations, but in these cases always the first fit algorithm was the 
only evaluation method considered. 

Roughly speaking the best results were obtained with the first fit algorithm 
as the way to verify the constraints of the 0-1 knapsack problem. For the 
smallest problem considered (n = 50) the best results were obtained with the 
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Table 9.7 Knapsack problem. Representation based on permutation. Mean of the 
best results. n = 1000. Greedy: 41425. 

UMDAc 
MIMICc 

uniform 

40246.0 
40246.8 

proportional 

40585.0 
40478.7 

probabilistic seed 

41427.0 
41427.0 

uniform initialization and binary representation. In the intermediate problem 
(n = 200) the best results were obtained with the first fit evaluation and the bi­
nary representation in conjunction with discrete UMDA. Finally in the biggest 
problem (n = 1000), the first fit evaluation in combination with a permutation 
based representation and a probabilistic seeding led to the best results. 

The non-parametric tests of Kruskal-Wallis and Man-Whitney were used to 
verify the null hypothesis of the same distribution. These tasks were carried 
out with the statistical package S.P.S.S. release 10.0.6. The results were as 
follows: 

• Comparing different EDA algorithms. 

Here, fixing the representation (binary or permutation based), the evalua­
tion (penalty or first fit) and the initialization type (uniform, proportional 
or probabilistic seeding), we aim to compare the results obtained with the 
different EDA approaches. 

- 50 objects 

The differences were statistically significant for the case of discrete 
EDAs for a binary representation, with a penalty evaluation and a 
uniform initialization (p = 0.006), and also with a first fit evaluation 
and a probabilistic seeding (p = 0.0291). We also found statisti­
cally significant differences for the case of continuous EDAs, for a 
binary representation, a first fit evaluation and a probabilistic seed­
ing (p = 0.0403). On the other hand, with a permutation based 
representation the tests did not detect that the differences between 
the three continuous EDAs were statistically significant. 

200 objects 

The following cases presented differences statistically significant for 
discrete EDAs: binary representation, with a penalty evaluation and 
an uniform initialization (p = 0.009) or a proportional initializa­
tion (p = 0.0058), and also binary representation with a first fit 
evaluation and an uniform initialization (p = 0.0293). In the case 



206 Estimation of Distribution Algorithms 

of continuous EDAs the tests showed differences for: binary repre­
sentation with a penalty evaluation and proportional initialization 
(p = 0.0013), and for permutation based representation, and uniform 
initialization (p = 0.0086). 

- 1000 objects 

For discrete ED As all the differences were statistically significant 
except for the case of a penalty evaluation in conjunction with an 
uniform initialization. For continuous ED As we obtained differences 
for: binary representation with penalty evaluation and proportional 
initialization (p = 0.0001), and permutation based representation 
with proportional initialization (p = 0.0227). 

• Comparing different evaluations. 

The objective in this point is to compare the behaviour of the algorithms 
once the initialization and the type of EDA were fixed. In fact, these 
comparisons are only valid for the results presented in Tables 9.2 to 9.4. 

- 50 objects 

In the case of discrete EDAs with a binary representation, the ob­
tained differences between pairs of algorithms of the same complexity 
and same initialization were statistically significant. When compar­
ing continuous ED As with a binary representation the cases with dif­
ferences statistically significant were UMDAs with uniform initializa­
tion (p = 0.0293), MIMICs with uniform initialization (p = 0.0049), 
and proportional initialization (p = 0.0049) as well as EGNAees with 
uniform initialization (p = 0.0019). 

200 objects 

In this case, for discrete ED As as well as for continuous EDAs with a 
binary represeIl~ation all the differences between pairs of algorithms 
of the same complexity and same initialization were statistically sig­
nificant. 

- 1000 objects 

In this case we obtained the same behaviour as in the case of 200 
objects, except for the continuous EDAs where the differences when 
comparing the two types of evaluations were not statistically signif­
icant for the probabilistic seeding based initializations. 

• Comparing different representations. 

For the penalty evaluation we compare the results obtained with discrete 
and continuous EDAs of the same complexity and a binary representation. 
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For the first fit evaluation we extend the comparison taking into account 
permutation based representation. 

50 objects 

The differences were significant for: UMDAs with penalty evaluation 
and proportional initialization (p < 0.0001), UMDAs with penalty 
evaluation and probabilistic seeding (p = 0.0051), UMDAs with 
first fit evaluation and proportional initialization (p = 0.0115), UM­
DAs with first fit evaluation and probabilistic seeding (p < 0.0001). 
Also MIMICs with first fit evaluation and probabilistic seeding (p < 
0.0001) as well as EBNApc versus EGNAee with penalty evalua­
tion and probabilistic seeding (p = 0.0015) and EBNApc versus 
EGNAee with binary representation versus EGNAee with continu­
ous representation with first fit evaluation and probabilistic seeding 
(p < 0.0001) presented differences statistically significant. 

200 objects 

In this example, all the differences were statistically significant ex­
cept the following three cases: UMDAs with penalty evaluation 
and probabilistic seeding initialization (p = 0.1351), MIMICs with 
penalty evaluation and uniform initialization (p = 0.1668), and 
MIMIC with first fit evaluation and proportional initialization (p = 
0.3420). 

- 1000 objects 

In this example all the differences were statistically significant. 

• Comparing different initializations. 

Here we compare, for algorithms with the same complexity and the same 
evaluation type, the results obtained for the three different initializations: 
uniform, proportional and probabilistic seeding. 

50 objects 

All the differences were statistically significant except for the case of 
UMDA algorithms with a binary representation, and first fit evalu­
ation (p = 0.1260). 

- 200 objects 

Except for UMDA algorithms with binary representation, and first 
fit evaluation (p = 0.4508) all the differences were statistically sig­
nificant. 

- 1000 objects 

In all the comparisons the obtained differences were statistically sig­
nificant. 
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6. Conclusions 
In this chapter we have introduced for the first time the application of EDAs 

to the 0-1 knapsack problem. We have introduced two different representations 
(binary and permutation based) in combination with two manner of maintain­
ing the feasibility of the individuals (penalization and first fit algorithm) and 
also three different initializations of the first population (uniform, proportional 
and probabilistic seeding). 

With the experiment we have carried out in this preliminary work, we con­
clude the superiority of the first fit algorithm with respect to the penalization. 
More work must be done to obtain clear conclusions with respect to the other 
parameters. 
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