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Abstract

This paper describes the application of a collection of data mining methods to solve a calibration problem in a quantitative chemistry
environment. Experimental data obtained from reactions which involve known concentrations of two or more components are used to calibrate
a model that, later, will be used to predict the (unknown) concentrations of those components in a new reaction. This problem can be seen as
a selection + prediction one, where the goal is to obtain good values for the variables to predict while minimizing the number of the input
variables needed, taking a small subset of really significant ones. Initial approaches to the problem were principal components analysis and
filtering combined with two prediction techniques: artificial neural networks and partial least squares regression. Finally, a parallel estimation
of distribution algorithm was used to reduce the number of variables to be used for prediction, yielding the best models for all the considered
problems.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In modern laboratories the development of chemical instru-
mentation has allowed the existence of equipment that can
acquire large amounts of data in a short period of time. For
instance, whole ultraviolet–visible (UV–Vis) spectra can be ob-
tained at a rate of several samples per second by diode-arrays
or charge-coupled devices, and the same happens with mass
spectra or nuclear magnetic resonance spectra. Typically, the
number of data points in each spectrum ranges between 100
and 1000, and the number of spectra acquired in a run ranges
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between 100 and 200. All this information is easily stored into
a personal computer, opening new possibilities for handling
these large volumes of data. All kinds of data mining techniques
can then be applied in order to extract knowledge from the raw
data.

Many chemical reactions can be followed through the
change of their UV–Vis spectrum. When the chemical and
physical reaction conditions are controlled, the rate of changes
in the UV–Vis spectrum can be made dependent exclusively on
the concentration of species taking part in the reaction. Very
similar species give rise, frequently, to different reaction rates
with a common reagent; this provides a way to determine the
concentration of species in the original mixture. This is, usu-
ally, the essential information that is looked for. The raw data
of every run make up the experimental signal that can be used
to resolve mixtures of 2–3 highly related components. The use
of multivariate calibration algorithms applied to reaction rate
data helps to improve the selectivity of analytical methods be-
cause of the discriminant power of the reaction kinetics. To do
this, a procedure in two steps is accomplished. In the first one,
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enough experimental matrices of data are obtained for differ-
ent and known concentrations of the species of interest. Then,
all that information is used to establish a model that, in a sec-
ond step, can be used to predict the concentration of the same
species in unknown sample mixtures. Among the different mul-
tivariate calibration algorithms, Partial least squares regression
(PLS) and artificial neural networks (ANN) have frequently
been used. Nowadays, PLS is, by far, the most widely used
algorithm because it was specifically developed to provide op-
timum prediction ability. However, ANN is claimed to provide
better results in cases where non-linear systems are involved;
the reason is that ANNs are intrinsically non-linear, whereas
PLS is a linear algorithm [2]. The algorithm of our choice is
trained with the experimental data (or with data elaborated from
it) during the model-construction step, also known as the cal-
ibration step. Once trained, it can be used to predict values.
Obviously, the goal is to obtain a model able to provide the ini-
tial concentration of the species of interest with an error as low
as possible. This model can be very useful in different practi-
cal areas: for example, an independent laboratory could use the
model to verify that a given drug contains the concentration of
components described in their prospectus.

When dealing with this kind of problems, that is, datasets
with thousands of variables, an important stage must usually
be completed: a reduction of the number of variables, looking
for those that have the most relevant information. Several ap-
proaches can be used for this size reduction: feature construc-
tion and feature subset selection (FSS) [15]. Feature construc-
tion techniques look for the relation among the variables and
return a set of new variables, combining the original ones. In
contrast, FSS looks for the most significant variables, returning
a subset of the original group.

In FSS, two main approaches must be mentioned: filter and
wrapper. In the filter approach, variables are selected taking into
account some intrinsic properties of the dataset. In contrast, the
wrapper approach considers the final objective of the selected
variables; for instance, in a classification problem, the wrapper
approach evaluates each subset of variables by means of the
accuracy of the classifier built with that subset of variables.

In the search of a simple solution for the problem, two
techniques were studied initially: principal component analysis
(PCA) and filtering. As the obtained solutions were not satis-
factory, a more complex solution was applied, combining filter
and wrapper techniques in two consecutive steps: after a pre-
liminary filtering, we used estimation of distribution algorithms
(EDAs) to implement a wrapper-based selection of variables.
Among the different solutions (filter and/or wrapper) that have
been presented in the last years, we decided to use parallel
EDAs because of their promising results in previous works in
the FSS area [11,12], although we are conscious that other effi-
cient approaches exist [5]. Additionally, as EDAs require long
computation times, we present a parallel implementation that
makes their application viable when facing complex problems
that would be unaffordable if using a single computer.

The rest of the paper is organized as follows: Section 2 begins
with a description of the two prediction techniques (ANN and
PLS) used to complete the calibration. Section 3 introduces

three example problems used throughout this paper to evaluate
our proposals. The different approaches developed for each
prediction technique are shown in Sections 4 (ANN) and 5
(PLS). After an introduction to EDAs and parallel EDAs in
Section 6, we present in Section 7 a filter + wrapper solution
based on these algorithms. Section 8 summarizes the results
obtained with all the different techniques and, finally, Section
9 ends with some conclusions as well as proposals for future
work.

2. Prediction techniques

2.1. Artificial neural networks

Essentially, an ANN [17] can be defined as a pool of simple
processing units (nodes) that work together sending informa-
tion among them. Each unit stores the information that receives
and produces an output that depends on an internal function.
From the several variants of ANNs described in the literature,
we used the so-called multilayer perceptron (MLP) model [23].
In this model, nodes are organized in layers: an input layer,
an output layer and several intermediate (hidden) layers, where
the nodes of a layer can only be connected to nodes of adjacent
layers. Once the structure has been defined (number of layers
and nodes per layer), it is necessary to adjust the weights of
the network, so that it produces the desired output when con-
fronted with a particular input. This process is known as train-
ing. As occurs with the structure, different proposals have been
presented to complete this training. Among them, we selected
a classic approach called Backpropagation [24].

2.2. Partial least squares regression

PLS Regression [28] is a common tool in chemistry, used
to analyze two data matrices X and Y by a linear multivariate
model. In PLS, the structure of X and also of Y is modelled to
give richer results than the traditional multiple regression ap-
proach. This is achieved indirectly by extracting latent variables
T and U from matrices X and Y, respectively. The extracted
factors T (also referred to as X-scores) are used to predict the
Y-scores U, and then the predicted Y-scores are used to con-
struct predictions for the responses. One of the main charac-
teristics of PLS, which is particularly useful in our case, is its
ability to deal with datasets of many features and a reduced
number of samples.

3. Chemical reactions used in this study

The problems used throughout this paper correspond to one
binary and two ternary mixtures of chemical species (target
variables) whose original concentration we want to predict. To
achieve this, another chemical species (the reagent) is added
to the mixture. The reaction of the species and the reagent
is followed through the change, along time, of the UV–Vis
spectrum. From the experimental raw data obtained for different
initial mixtures (samples) with known initial concentrations,
calibration models will be created. The features (variables) that
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Table 1
Characteristics of the problems used in the experiments

Small Medium Large

Time interval (step) 3–903 (30 s) 3–501 (6 s) 2–602 (10 s)
Wavelength interval 300–390 (2 nm) 250–496 (6 nm) 290–470 (2 nm)
Features 1426 3528 5551
Samples 76 58 181
Targets 2 3 3

represent a sample consist of light absorbance values at several
wavelengths at successive intervals of time.

The aim of the calibration step is to generate a model that
relates the experimental time-spectral data of calibration mix-
tures to the concentration data of the species of interest of each
mixture.

It must be remarked that the features of a sample consist of
b spectra, each spectrum for one time step, whereas the target
consists of only one concentration for each species: the initial
one, instead of b concentrations, one for each time step. In
the former case, there is a quantitative analytical problem of
determination (the aim of the present work); in the latter case
the problem consists of following the concentration of species
along time, which is a completely different problem.

The concentration of the target variables in the training
datasets is normalized to values in the range [0,1]. In this paper
we have used datasets from three chemical systems identified
as small, medium and large, depending on the number of fea-
tures available in each case (see Table 1). The number of total
features can be calculated by multiplying the number of dis-
crete wavelengths by the number of time steps. The problem
defined as small corresponds to mixtures of acetylsalicylic
acid (aspirin) and acetaminophen (paracetamol) that are fre-
quently found in analgesic preparations. They were made to
react with bromine as a reagent [16]. The problem defined as
medium corresponds to mixtures of three related aminoacids,
present in the human organism: homocysteine is formed as an
intermediate in the metabolism of the methionine to cysteine.
In this case, mixtures of the three aminoacids were made to
react with dichromate, which is a powerful oxidant [8]. The
problem defined as large corresponds to mixtures of formalde-
hyde, glyoxal and glutaraldehyde. These mixtures react with
3-methyl-2-benzothiazolone hydrazone [26]. In Table 1 we
have collected the particular characteristics of each problem.
The time interval is the time (in seconds) along which mea-
surements are acquired (the frequency of acquisition is also
given); the table also provides the wavelength interval and step
(units are in nanometers).

4. MLP approach

With this choice of calibration algorithm, we need to consider
the way it is used. The problems have more than 1000 variables
and feeding directly the neural network with all these values
could be an initial approximation. However, results obtained
this way are far from good: using so many variables as input

makes difficult to the MLP to differentiate the really relevant
ones. Therefore, the model we present for this technique has two
modules. The first one, selection, takes as input all the dataset
and reduces it considering only the most relevant variables or
principal components (depending on the approach). The second
one uses an (already) trained MLP which takes as input the
variables selected by the first step and returns the values for the
variables to be predicted.

Due to the small number of cases in the datasets, we have
chosen to complete a five-fold cross-validation to measure the
accuracy of the different models proposed. In this technique
(k-fold cross-validation), the dataset is randomly divided in k
pieces, using k − 1 of them to train the model and one to test
its goodness. The process is repeated k times, using each time
different pieces for training and testing. As fitness function, a
global error value is given, defined as the average of the square
difference between the predicted value and the real value for
each variable, that is, mean square error of prediction (MSEP).
Furthermore, as training a MLP is a non-deterministic process,
we need to repeat all the process several times; we fixed this
value to 10.

In the following sections we explain how PCA and a filtering
technique are used to reduce the number of variables, obtaining
a subset with the most significant ones.

4.1. PCA approach

The initial approach to the problem was to use PCA to ex-
tract the main characteristics of the dataset and, afterwards,
train the MLP to build the calibration module. PCA involves a
mathematical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated
variables called principal components.

Once a dataset with the principal components is available,
we can test different MLP structural configurations in order to
select the best one. We do that using a brute-force approach:
testing a large range of possibilities for the input and hidden
layers of the MLP. Obviously, we need to put a limit to this
trial-and-error process, due to the huge number of possible con-
figurations for the MLP. In particular, we have decided to fix
the number of hidden layers to one. The number of nodes of
the output layer is fixed by each problem, that is, the number
of species to be predicted. So, we need to determine the con-
figurations for the input and hidden layers.

The number of nodes of the input layer depends on how many
principal components we want to incorporate in our model.
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Fig. 1. Small problem. MSEP for different PCA + MLP configurations.

A priori, we do not know how many of them are really use-
ful. Also, we do not know the optimum configuration of the
hidden layer. For this reason, we tested configurations with 5–
50 principal components, and 5–50 intermediate nodes. Ob-
tained results (for the three problems) are plotted in error maps
(Figs. 1–3) where each map point (x, y) represents the MSEP
for a configuration with x hidden nodes and y input nodes
(please note the different scales used for each problem).

As can be seen in the maps, configurations with too few inter-
mediate nodes yield large error values. Regarding the number of
components (input nodes), we need more than seven to achieve
a good MLP configuration. Increasing too much the number of
nodes in the hidden layer decreases the accuracy for the large
problem (see Fig. 3), although this does not happen with the
other two problems (see Figs. 1 and 2). Taking into account the
propensity to overfitting of neural networks, the simplest model
should be chosen; in other words, the number of nodes in the
hidden layer should be as low as possible. The best results for
this PCA + MLP approach can be consulted in Table 2.

4.2. Filter approach

In the literature, several proposals have been described to
complete filter approaches. Usually, these techniques perform
an univariate evaluation for each variable, assigning it a value.
Once all the variables have been evaluated, we have a sorted
list (ranking) based on the relevance of each variable.

The approximation that we have used in this paper is the
correlation-based feature selection (CFS), introduced in [9].
CFS is a multivariate approach to filter, i.e., it is able to evaluate
the goodness of subsets of variables, returning as a result the

5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

50

# Nodes in hidden layer

# 
P

rin
ci

pa
l c

om
po

ne
nt

s

0.01-0.015 0.015-0.02 0.02-0.025 0.025-0.03

Fig. 2. Medium problem. MSEP for different PCA + MLP configurations.
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Fig. 3. Large problem. MSEP for different PCA + MLP configurations.

set of the most relevant ones. This method requires all the
data to be discrete, so a previous discretization process was
completed employing one of the most used algorithms, the so-
called entropy or Fayyad–Irani method [6].

The filtering process, when applied to our problems, obtained
a subset of a few relevant variables, 33, 55 and 31 for the
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Table 2
# Input variables, # neurons in the hidden layer and MSEP for the PCA + MLP and Filter + MLP approaches

Small Medium Large
#i #n Error #i #n Error #i #n Error

PCA + MLP 23 33 6.942e−3 25 49 1.521e−2 24 22 1.473e−2

Filter + MLP 33 6 6.434e−3 55 17 1.510e−2 31 8 1.057e−2
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Fig. 4. Small problem. MSEP for different Filter + MLP configurations.
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Fig. 5. Medium problem. MSEP for different Filter + MLP configurations.

small, medium and large problems respectively, which fix the
configurations of the input layers of the MLPs. As we did for
the PCA method, we tested 46 different configurations for the
intermediate layers, varying the number of nodes from 5 to 50.
Obtained error values are plotted in Figs. 4–6. In this approach
we have a behavior similar to PCA + MLP, where increasing
the number of hidden-layer nodes is initially helpful but hurts
when too many nodes are used. In addition, we can note that
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Fig. 6. Large problem. MSEP for different Filter + MLP configurations.

this approach uses a simpler model (less nodes in the hidden-
layer) and improves for all the problems the results obtained
by the previous version (PCA +MLP). The best results for this
approach can be consulted in Table 2.

5. PLS approach

5.1. PLS with the whole set of features

As done for the previous technique (MLP), we tested two
initial approaches using PLS. In the first one, PLS is applied
directly over the whole feature set. In the second one, a pre-
vious filter process is performed before applying PLS. Exper-
iments were carried out using the PLS package [27] from the
R statistical computing environment [22]. As done for MLP, a
five-fold cross-validation was completed.

Each run of PLS returns not one, but a collection of models,
each one corresponding to the number of principal components
used. We have fixed a maximum of 50 components, and selected
the model with the smallest MSEP. In all the runs, the best
models comprised less than 20 components. Results obtained
with this approximation improves notably those obtained with
any of the previous MLP-based configurations (see Table 3).

5.2. Filter and PLS

PLS has been applied over the same filtered set used for
MLP. Table 3 summarizes the obtained average error. Note that
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Table 3
# Input variables, # principal components and MSEP for the PLS and Filter + PLS approaches

Small Medium Large

#i #p Error #i #p Error #i #p Error

PLS 1426 12 4.723e−3 3528 12 8.982e−3 5551 16 4.058e−3

Filter + PLS 33 11 5.231e−3 55 7 1.890e−2 31 8 6.644e−3

the filtering yields worse results for all the problems. However,
previous works [14,10] demonstrate that reducing the number
of features can be helpful for PLS (although experiments were
carried out only in datasets with at most two hundred variables).
Therefore, we decided to use EDAs to complete the selection
of the variables and, due to the large number of features in our
datasets, we developed a parallel version for a particular EDA,
trying to obtain a tool able to manage problems with more than
a few hundred features.

6. EDAs and parallel approaches

EDAs were introduced in [20]. Their structure is similar to
genetic algorithms (GAs) but, instead of using crossover or
mutation operators to obtain the new population, they sample
this population from a probability distribution. This probability
distribution is estimated from the database that contains a se-
lection of the individuals of the previous population. Thus, the
interrelations between the different variables that represent the
individuals are explicitly expressed through the joint probabil-
ity distribution associated with the individuals selected at each
generation. A common scheme for all EDAs can be given as:
(1) generate an initial population of M individuals and evaluate
each of them, (2) select N individuals from the set of M, fol-
lowing a given selection method, (3) learn a probability model
from the set of selected individuals, and (4) finally, generate
(and evaluate) a new population of M individuals, based on the
sampling of the probability distribution learnt in the previous
step.

Steps 2–4 are repeated until some stop criterion is met (e.g.,
a maximum number of generations or no improvement after a
certain number of generations).

The most important step is the third one: the way the de-
pendencies between variables are learnt. Looking at this step,
EDAs can be classified in three families: (1) those where all the
variables are considered independent, (2) those that only con-
sider dependencies between pairs of variables, and (3) those that
consider multiple dependencies. Detailed information about the
different approaches that constitute the family of EDAs and
their characteristics can be obtained in [13,21].

Our interest in EDAs for FSS is motivated by results obtained
in previous works [11,12]. However, these works reported the
difficulty of applying multivariate EDAs (for example, Estima-
tion of Bayesian Networks Algorithms (EBNAs)) on problems
with more than 100 variables due to the high computational
cost.

Therefore, we want to accelerate this kind of algorithms,
designing a parallel approach for one of them (the EBNABIC

algorithm). In the following sections, a description of the algo-
rithm as well as the parallelization scheme are presented.

6.1. Description of the sequential EBNABIC

The learning phase of EBNABIC involves the learning of a
Bayesian network from the selected individuals at each gener-
ation, that is, learning the structure (the graph S) and the pa-
rameters (�, that codify the local probability distributions).

In [19] some parallel approaches for different EDAs were
presented, focusing on the learning phase. In those experiments
very simple fitness functions (evaluation of the individuals)
were used. However, in problems like the one presented in this
paper, the evaluation of the fitness function can take a sizeable
portion of the overall execution time.

Before designing a parallel approach for a sequential algo-
rithm it is necessary to complete a previous analysis of the
most time-consuming phases, in order to select those whose
parallelization would be more profitable. We run the sequen-
tial version of EBNABIC to perform an FSS over the medium
dataset (details will be given in Section 7), and found that the
learning phase needs the 32% of the total CPU time, while the
“sampling and evaluation” phase requires the 67%. These pro-
portions were similar for the other two problems. Therefore, an
efficient parallel algorithm must deal with both phases. In the
following subsections we define these two phases and examine
the approaches taken to accelerate their execution in a parallel
computer.

6.1.1. The learning phase
Once the population is selected, a Bayesian network is learnt

from it. In EBNABIC, a greedy approach is used to learn the
structure of the Bayesian network. Each possible network struc-
ture will be assigned a score that represents its goodness for the
current population. The search will be done adding or deleting
edges to the existing Bayesian network when this addition or
deletion implies a better score.

Obviously, the score used during this process plays an impor-
tant role in the algorithm, as it conditions the obtained Bayesian
network. EBNABIC uses the penalized maximum likelihood
score denoted by BIC (Bayesian information criterion) [25].
Given a structure S and a dataset D (set of selected individuals),
the BIC score can be defined as

BIC(S, D) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij

−1

2
log(N)

n∑
i=1

qi(ri − 1), (1)
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where: (i) n is the number of variables of the Bayesian network
(size of the individual), (ii) ri is the number of different values
that variable Xi can take, (iii) qi is the number of different
values that the parent variables of Xi , Pai, can take, (iv) Nij

is the number of individuals in D in which variables Pai take
their j th value, and (v) Nijk is the number of individuals in D
in which variable Xi takes its kth value and variables Pai take
their j th value.

An important property of this score is that it is decomposable.
This means that the score can be calculated as the sum of the
separate local BIC scores for the variables, that is, each variable
Xi has a local BIC score (BIC(i, S, D)) associated to it

BIC(i, S, D) =
qi∑

j=1

ri∑
k=1

Nijk log
Nijk

Nij

−1

2
log(N)qi(ri − 1). (2)

At each step, an exhaustive search is made through the whole
set of possible arc modifications. An arc modification consists
of adding or deleting an arc from the current structure S. The
modification that maximizes the gain of the BIC score is used
to update S, as long as it results in a DAG structure. This cycle
continues until there is no arc modification that improves the
score. It is important to bear in mind that if we update S with
the arc modification (j, i), then only BIC(i, S, D) needs to be
recalculated.

The previous structural learning algorithm involves a se-
quence of actions that differs between the first step and all sub-
sequent steps. In the first step, given a structure S and a dataset
D, the change in the BIC score is calculated for each possible
arc modification. Thus, we have to calculate n(n− 1) terms, as
there are n(n − 1) possible arc modifications. The arc modifi-
cation that maximizes the gain of the BIC score, whilst main-
taining the DAG structure, is applied to S. In the remaining
steps, only changes to the BIC score due to arc modifications
related to the variable Xi (it is assumed that in the previous
step, S was updated with the arc modification (j, i)) need to be
considered. Other arc modifications have not changed its value
because of the decomposable property of the score. In this case,
the number of terms to be calculated is n − 2.

The following data structures are used to implement the al-
gorithm: (i) a vector BIC[i], i = 1, 2, . . . , n, where BIC[i]
stores the local BIC score of the current structure associated
with variable Xi , (ii) a structure S[i], i = 1, 2, . . . , n, with the
DAG represented as adjacency lists, (iii) a n×n matrix G[j, i],
j, i = 1, . . . , n, where each (j, i) entry represents the gain or
loss in score associated with the arc modification (j, i), and
(iv) a matrix paths[i, j ], i, j = 1, 2 . . . , n, of dimension n × n

that represents the number of paths between each pair of ver-
tices (variables). This data structure is used to check if an arc
modification produces a DAG structure. The pseudo-code for
the sequential structure learning algorithm is shown in Fig. 7.

6.1.2. Parallelization of the learning phase
We have chosen a well-known design pattern for parallel pro-

gramming: the master-worker paradigm. The master runs the

Fig. 7. Pseudo-code for the sequential structural learning algorithm.

sequential parts and when it reaches the costly phase(s), it dis-
tributes parts of its workload among a collection of workers.
Then, it collects and summarizes the partial results, and con-
tinues normal operation. Sometimes, depending on the charac-
teristics of the work that must be completed, it is interesting to
design the master in such a way that it can make use of its idle
time: while waiting for the workers to finish, the master com-
pletes part of the work just as another worker. This approach
is particularly useful in small-scale parallel computers.

The paradigm was implemented using message passing in-
terface (MPI). The selected programming language was C++.

Related to the algorithm, we have explained before that the
learning phase (creation of the Bayesian network) is a greedy
process where each network will be measured using the decom-
posable BIC criterion. So, each worker (master included) will
compute a subset of variables returning the results to the mas-
ter, which then updates the structure of the Bayesian network
applying the arc addition/deletion that improves the score the
most.

With regard to the execution scheme, once initialization has
been completed, workers wait for a job request. Two different
types of job requests can be received: (1) to compute the initial
BIC scores for their respective set of variables—each worker re-
ceives a chunk of variables to work with—and (2) to update the
BIC scores and maintain the integrity of the local structures—
each node addition or deletion means that the master must no-
tify the workers that the (i, j) edge has changed and they must
update their own copy of the network as well as BIC scores.
Figs. 8 and 9 show the pseudo-code for master and workers.

6.1.3. Parallelization of the “sampling and evaluation” phase
In [3] the author introduces a summary of ideas for the de-

sign of efficient parallel evolutionary algorithms, which include
the parallelization of fitness evaluation. In our work, as we
want to maintain exactly the same behavior of the sequential
algorithm, we will use a single-population master-worker ap-
proach, in which each worker evaluates a subset of individuals.
Additionally, instead of receiving from the manager the sub-
set to evaluate, we decided (based on previous experiments)
that the worker will also be responsible of sampling (creat-
ing) this subset. In this way, once the workers have finished,
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Fig. 8. Parallel structural learning phase. Pseudo-code for the master.

Fig. 9. Parallel structural learning phase: pseudo-code for the workers.

the manager receives the new individuals together with their
fitness value.

The parallel approach is as follows: being NewPopSet the
amount of new individuals to be created and comp the num-
ber of computational nodes, the master sends to each worker
the order to create and evaluate NewPopSet/comp new indi-
viduals (note that the master plays also the worker role, creat-
ing and evaluating a portion of the new individuals). Once all
these new individuals have been created and evaluated, they are
gathered by the master, which adds them to the population and
continues with the algorithm.

In our experiments we have always operated with sets of
identical computers; this is the reason we assign the same (or
similar) number of computations to each worker. In other het-
erogeneous situations, it would be better to use an on-demand

Fig. 10. Pseudo-code for the parallel “sampling and evaluation” phase for
the master.

Fig. 11. Pseudo-code for the parallel “sampling and evaluation” phase for
the workers.

scheme, where only one piece of work is sent to each worker
and, when it is completed, another one is sent, until all the
computations have been terminated. This alternative provides
better load balancing, but needs more communication than the
one we use. Yet another possibility could be to previously mea-
sure the computation capacity of each computer, assigning af-
terwards to each of them a workload tailored to its capacity.
The pseudo-codes for the parallel “sampling and evaluation”
phase are shown in Figs. 10 (master) and 11 (workers).

7. Experiments using parallel EDAs and PLS

In order to adapt the EBNABIC algorithm to the FSS problem
we are dealing with, the following choices were introduced:
(i) each variable Xi of the individual can take one of two val-
ues: 0 or 1 (1 implies that the ith feature is selected and 0
that is not selected), (ii) in order to check the goodness of an
individual, a PLS training-evaluation process (with a five-fold
cross-validation) must be completed using as input the set of
selected variables from the dataset. As explained before, MSEP
is the fitness value for each individual. The smaller the error,
the better the individual.

It is well known [7] that a large number of cases (individ-
uals) is needed to properly learn a Bayesian network. So, for
problems in which individuals have several thousand variables
(as is the case for our example problems), this would mean
that each time a new population is created, thousands of in-
dividuals should be evaluated (executing PLS with a five-fold
cross-validation). Unfortunately, this would require excessive
time, even for the parallel implementation. Therefore, a previ-
ous filtering technique is applied in order to reduce the number
of variables over which the smart search will be performed.

Instead of using just one of the different filtering techniques
available, we decided to use 2 × 6 different rankings, com-
bining two discretizations (equal frequency and equal width)
with six metrics (mutual information, Euclidean distance, Ma-
tusita, Kullback–Leibler mode 1, Kullback–Leibler mode 2,
and Bhattacharyya (described in [1])) for each target variable.
From these partial rankings, a unique ranking for each target
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Table 4
MSEP and deviations (considering all executions m, and only the best execution b)

Errorm Devm Errorb Devb

Small problem
PCA + MLP 6.942e−3 3.287e−3 6.832e−3 4.141e−3

Filter + MLP 6.434e−3 2.931e−3 6.226e−3 2.929e−3

PLS 4.723e−3 4.133e−3 2.582e−3 7.733e−4

Filter + PLS 5.231e−3 1.411e−3 4.692e−3 9.504e−4

EDA + PLS 1.716e−3 6.241e−4 1.458e−3 5.516e−4

Medium problem
PCA + MLP 1.521e−2 4.105e−3 1.435e−2 3.955e−3

Filter + MLP 1.510e−2 5.573e−3 1.431e−2 5.053e−3

PLS 8.982e−3 3.260e−3 6.567e−3 1.671e−3

Filter + PLS 1.890e−2 6.178e−3 1.640e−2 4.754e−3

EDA + PLS 4.678e−3 1.806e−3 4.006e−3 1.548e−3

Large problem
PCA + MLP 1.473e−2 2.747e−3 1.347e−2 3.749e−3

Filter + MLP 1.057e−2 1.539e−3 9.866e−3 1.863e−3

PLS 4.058e−3 7.514e−4 3.907e−3 6.209e−4

Filter + PLS 6.644e−3 1.316e−3 5.851e−3 1.151e−3

EDA + PLS 3.154e−3 6.016e−4 2.855e−3 7.730e−4

variable is created based on the mean of the positions that each
variable occupies in each partial ranking. Finally, the different
lists (one for each target variable) are merged selecting in an
ordered way one variable from each list until there are no vari-
ables left. Once the ranking is established, the first 500 (most
relevant) features are selected, setting this way the size of the
individual.

Given that the aim is to obtain a good accuracy with a mini-
mum number of features, we fixed an initial probability of 0.05
(for each variable) of being selected. The maximum number of
generations was set to 300 and 1000 was the size of the popu-
lation. In each generation, 999 new individuals are created and
the next population is obtained selecting the best 1000 indi-
viduals among the present population and the recently created
individuals.

The results obtained using this EDA + PLS approach can be
consulted in Table 4. This table includes and extends the results
obtained by previous versions, showing MSEPs and deviations.
These values have been obtained as follows:

• For MLP and PLS, five executions of the best configurations
(in terms of input and hidden nodes for MLP, and number
of components for PLS) have been completed, obtaining
five MSEP in each execution (due to the five-fold cross-
validation).

• For EDA, 10 executions have been completed, yielding 10
individuals (solutions). Then, these individuals have been
used to execute PLS (with the selected features), obtaining
five MSEP for each individual (due again to the five-fold
cross-validation).

8. Discussion of results

Once the experiments have been carried out, we can ana-
lyze the obtained results from two points of view: quality of
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Fig. 12. Small problem. Boxplot of MSEPs.

the calibration models (in terms of MSEP) and execution time
required by each approach.

8.1. Calibration accuracy

Results are provided in Table 4 and Figs. 12–14 (boxplot
diagrams). It can be seen that, in all but one case, PLS-based
approaches outperform those based on MLP. A prior filtering
of the database, looking for the most relevant variables, seems
to be useful for the MLP approach (better results for all the
problems) but not for PLS. The use of EBNABIC to carry out
a selection of variables shows itself really helpful in terms of
improvement of the modelling ability of PLS: compare the re-
sulting errors and deviations with that obtained using the whole
set of features. In addition, the number of features selected by
EBNABIC (50, 47, and 66 for the small, medium, and large
problems respectively), provide easily interpretable models.

In the quantitative chemistry field, a model is considered
valid when the calibration error is equal or less than a 10%. We
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Fig. 13. Medium problem. Boxplot of MSEPs.
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Fig. 14. Large problem. Boxplot of MSEPs.

have summarized in Table 5 the calibration errors for the two
best approaches (PLS and EDA + PLS), expressed in percent-
age, for the three datasets. These percentages have been cal-
culated applying the following formula generally used in this
field:

Percentage error = 100

√∑c
i=1(Ĉi − Ci)2∑c

i=1 C2
i

, (3)

Table 5
Mean error percentages (only for the best execution) for PLS and EDA+PLS
approaches

Small Medium Large

PLS 9.16 14.72 5.38
EDA + PLS 5.37 9.71 4.62

Table 6
Summary of execution times for each approach and problem using 8 CPUs

Small Medium Large

PCA + MLP 2 h 06′ 1 h 34′ 4 h 43′
Filter + MLP 3′ 2′ 6′
PLS (1 CPU) 1′ 1′ 1′
Filter + PLS (1 CPU) 1′ 1′ 1′
EDA + PLS 6 h 54′ 7 h 02′ 9 h 13′

where c is the number of cases, and Ĉi and Ci are the pre-
dicted and actual concentration values, respectively. Note that
these values (Ĉi and Ci) should be the real, non-normalized
ones. Error percentages have been calculated using the values
obtained in the best execution of each algorithm.

According to these results, PLS by itself (using all the vari-
ables) is able to obtain a valid model only for the small and
large datasets. However, the EDA+PLS method provides valid
models for all the problems, even if for the medium dataset the
results are quite tight (we attribute this to the reduced num-
ber of cases in the dataset). In addition, this approach presents
models that can be more interpretable as the number of features
is reduced from thousands to four-six tens.

The conclusion of this section is that, in terms of accuracy of
calibration and validity of the models, the combination of par-
allel EBNABIC with PLS is the most promising of all the tech-
niques considered, for the three databases used in this study.

8.2. Execution time

All the experiments were completed in a 8-node Linux clus-
ter. Each node has two processors (AMD Athlon MP 2000+,
1.6 GHz, 256 KB of cache memory) and 1 GB of (shared) RAM.
Table 6 shows the execution times required by each approxi-
mation. It can be observed that PLS is a very fast method, re-
quiring less than 1 min of execution time in a single processor.
In contrast, as the utilization of a MLP requires the selection of
the number of nodes in the input and hidden layers, the execu-
tion time required to explore a large range of these parameters
is quite notable, even using the parallel cluster.

Finally, the last approximation (EDA + PLS) requires be-
tween 7 and 9 h to complete a run (using 8 processors). This
is not, obviously, the best approach in terms of computational
demands, but when resources are available, the accuracy of the
resulting predictions may make the effort worthwhile.

When proposing a parallel approach to a problem, an im-
portant issue is its scalability: would the program run faster
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Table 7
Speed up and efficiency results for the EDA and PLS approach with the medium dataset

#CPUs Time Speed up Efficiency

Sequential 51 h 53′25′′ — —
2 25 h 57′11′′ 2.00 1.00
4 13 h 18′24′′ 3.90 0.97
8 7 h 01′49′′ 7.38 0.92
16 3 h 46′01′′ 13.78 0.86

if I use more computing nodes? How faster? In order to see
the scalability of the (parallel) EDA +PLS alternative, we exe-
cuted it using different computing cluster sizes, for the medium
dataset. Table 7 shows the speed up and efficiency for 2, 4, 8
and 16 processors. It must be pointed out that the speed up of
the algorithm is almost linear, getting a good efficiency (86%)
even when 16 CPUs are used.

9. Conclusions and future work

This paper presents some promising approaches to model the
behavior of chemical reaction mixtures, and to relate it with
the initial concentration of the chemical species taking part in
it. This is done by a combination of variable reduction and
multivariate calibration techniques.

As initial approaches, PCA and filtering were used with MLP,
as well as PLS with and without filtering, with the aim of re-
ducing the calibration error of the obtained models. Experi-
ments with different problems show that any approach using
PLS outperforms notably those based on MLP.

In a second phase, a filter technique was combined with a
wrapper approach based on EDAs. Due to the high computa-
tional cost of this technique, a parallel approach has been de-
veloped for a particular EDA (EBNABIC), that allows the use
of this algorithm to face problems that would be unaffordable
with a sequential solution.

Related to the calibration problem, promising results have
been obtained using parallel EDAs, being this method the
one that generates models with the smallest errors for all the
datasets included in our study. In addition, it must be noted
that the parallel EDA can be used not only in combination
with PLS or MLP: any other algorithm could be used, due to
its modular construction; it is only required to adapt the eval-
uation function of the individuals to the particular calibration
technique.

The results achieved, together with the reasonable execution
times, encourages us to further explore the utilization of EDAs
in calibration processes. A line of work that shows potential is
the use of multi-objective approaches (preliminary results are
presented in [18]). Our plans also include the exploration of
other algorithms inside the family of EDAs. Some preliminary
work based on approaches proposed in [4] shows promising re-
sults using more simple algorithms (suggesting that algorithms
like UMDA could get results similar to EBNABIC). However,
it must be pointed out that, also for UMDA, the most time-
consuming step is the “sampling and evaluation” phase and

therefore, a parallel approach would still be necessary in order
to obtain acceptable execution times.
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