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This paper presents a novel framework of the estimation of particle swarm distribution algo-
rithms (EPSDAs). The aim is to effectively combine particle swarm optimization (PSO) with
the estimation of distribution algorithms (EDAs) without losing their unique features. This
aim is achieved by incorporating the following mechanisms: (1) selection is applied to
the local best solutions in order to obtain more promising individuals for model building,
(2) a probabilistic model of the problem is built from the selected solutions, and (3) new
individuals are generated by a stochastic combination of the EDA’s model sampling method
and the PSO’s particle moving mechanism. To exhibit the utility of the EPSDA framework,
an extended compact particle swarm optimization (EcPSO) is developed by combining the
strengths of the extended compact genetic algorithm (EcGA) with binary PSO (BPSO), along
the lines of the suggested framework. Due to its effective nature of harmonizing the global
search of EcGA with the local search of BPSO, EcPSO is able to discover the optimal solution
in a fast and reliable manner. Experimental results on artificial to real-world problems have
adduced grounds for the effectiveness of the proposed approach.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Nature often signals paradigm shifts in the cutting-edge computing technologies [1,33]. Evolutionary computing and
swarm intelligence are such representative instances. They have flaunted an enviable success record in dealing with a variety
of real-world applications.

Particle swarm optimization (PSO), which is inspired from the flocking behavior of birds, is a stochastic search and opti-
mization algorithm [9,18]. In PSO, each individual, named a particle, traverses search space by learning from the historical
experience of a population, called a swarm. PSO operates, gracefully adjusting the trajectory of each particle towards its
own best (i.e., local best) position and the global best position discovered by its neighbors, as well as the whole swarm. It
is effective in discovering multiple (local best) solutions. Although sharing/exchanging information between particles takes
place to some extent, it is performed in a strictly limited fashion. In other words, only the global best position at each iter-
ation/generation is exploited as the reference of the coevolution between particles (i.e., the knowledge exchange between
particles). Thus, PSO is thought of as a weak-cooperative search method, i.e., the local-search intensive.

For the last two decades, genetic and evolutionary algorithms (GEAs) have been successfully applied to various engineering
and scientific problems [1,10,11]. In recent days, a new paradigm of GEAs has received great attention. This new paradigm is
the estimation of distribution algorithms (EDAs), also known as probabilistic model building genetic algorithms [20,27]. Combin-
ing the linkage learning with the graphical probabilistic modeling under the features of natural selection, EDAs are good at
. All rights reserved.
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the automatic discovery and exploitation of problem regularities. Unlike PSO, a population evolves with intensive commu-
nication among all of the promising individuals, ensuring an effective mixing and reproduction of superior partial solutions,
i.e., building blocks (BBs), thereby readily extracting promising regions of search space and, thus, reliably discovering the glo-
bal optimum [1,27]. Thus, EDAs are regarded as a strong-cooperative search method, i.e., the global-search intensive.

In recent years, some efforts to effectively combine the strengths of PSO and EDAs have been tried [16,34–36]. They
started from an investigation such that each particle may benefit from the global statistic gathered from all of the local best
positions (i.e., solutions) of a swarm. Accordingly, they have better performances than extant PSO schemes on widely-known
benchmark problems. However, the research has been performed with two limited factors. First, only a univariate marginal
distribution (UMD) model has been the focus. Usually, the search capability of algorithms can be significantly improved by
identifying and exploiting the regularities of problems, but the UMD model-based approach fails to do so [11,13,14,
20,23,26,27]. Typically, such a task can be achieved by incorporating more complex multivariate distribution (MD) models
[1,11,20,27]. Second, using all of the local best solutions, in the context of probabilistic model building, may not be apt
for obtaining meaningful/useful information, since good models can be learned from a set of solutions that are properly fitted
in terms of the exploration of search space and the exploitation of solutions found thus far. The local best solutions discov-
ered by the PSO mechanism (i.e., a kind of local search), on the other hand, mainly focus on the exploration of the search
space. It is desirable to apply the natural selection concept in the level of local best solutions (as in EDAs) in order to further
promote the exploitation of solutions. The above matters are the underlying motivation for this study.

In a similar context, a few efforts to strike a balance between the recent nature-inspired algorithms and the advanced
EDAs have been made [5,31]. For instance, DE/EDA [31] has been developed by incorporating the global information ex-
tracted by a multivariate EDA (e.g., a Gaussian model with a diagonal covariance matrix) with the local information obtained
by a differential evolution, and BAIS [5] has been proposed by replacing the traditional cloning and mutation procedures of
the artificial immune system with the probabilistic model building and sampling methods of the Bayesian optimization algo-
rithm. Further issues, however, are beyond the scope of this paper.

This paper presents a novel framework of the estimation of particle swarm distribution algorithms (EPSDAs) with a view to
bring together the benefits of PSO and EDAs. For demonstrating the utility of the suggested framework, an extended compact
particle swarm optimization (EcPSO) is developed by following the framework of the EPSDAs. The rest of the paper is orga-
nized as follows. Section 2 provides some background knowledge of PSO and EDAs. Section 3 describes the framework of
EPSDAs and also presents EcPSO in detail. Performance tests are conducted in Section 4, and the paper concludes with a sum-
mary in Section 5.
2. Existing algorithms

This section briefly provides some background information on PSO and EDAs.
2.1. Particle swarm optimization

In principle, PSO emulates the dynamics of bird flocking to solve optimization problems [9,18]. It is characterized by a
moving process, such that each particle flies through the multidimensional search space while its velocity and position
are updated by its own (or neighbor’s) best information, as well as the best knowledge of the entire swarm.

Initially, PSO is equipped with a swarm of N possible particles (i.e., solutions) randomly generated in an n-dimensional
search space. A particle i at its tth iteration consists of a position vector, xi(t), and a velocity vector, vi(t). At each iteration,
the particle i is updated by means of two important vectors. The first vector is pbesti, which amounts to the best solution
(i.e., position) found by the particle i, so far. The second vector is gbest(t), which is the best of pbestk(t), "k. Unless the ter-
mination criteria are met, each particle is updated in each iteration by the following rule:
v ijðt þ 1Þ ¼ w � v ijðtÞ þ c1 � r1 � ðpbestijðtÞ � xijðtÞÞ þ c2 � r2 � ðgbestjðtÞ � xijðtÞÞ; ð1Þ
xijðt þ 1Þ ¼ xijðtÞ þ v ijðt þ 1Þ; ð2Þ
where i (2{1, . . . ,N}) is the particle’s index in the swarm and j (2{1, . . . ,n}) denotes the component’s index of the correspond-
ing particle. Also, w is the positive inertia weight, c1 and c2 are the cognitive and social learning factors, respectively, and r1

and r2 are two random numbers uniformly distributed from zero to one [9,18]. Note that w controls the influence of the past
velocity on the present one, and c1 and c2 determine the effect of the local best and the global best solutions on the present
velocity of the particle, respectively.

Physically, each particle traverses the search space by striking a balance between its own and its social experiences
[9,18,25]. Mathematically, a particle evolves with its previous velocity, its own best information, and the global best knowl-
edge of the whole swarm. It has been empirically observed that PSO is a good alternative when solving diverse global opti-
mization problems [25]. Moreover, some theoretical and empirical studies on the optimal inertia weight and the optimal
learning factors have been performed [4,6].

With a similar concept, employing a sigmoid function, with a view of solving combinatorial optimization problems, has
developed a discrete version of PSO, also known as binary PSO (BPSO) [19]. In principle, the velocity has been regarded as the
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probability of taking ‘1’ or ‘0’ on a bit (i.e., position). The velocity is updated by the same rule of Eq. (1); but the position
renewal is conducted by the following rule [19]:
xijðt þ 1Þ ¼
1 if r 6 sigðv ijðt þ 1ÞÞ;
0 otherwise;

�
ð3Þ
where r is a random number in [0,1] and sig(�) is the sigmoid function that transforms the velocity into the probability,
according to the following expression:
sigðv ijðtÞÞ ¼
1

1þ expf�v ijðtÞg
: ð4Þ
Recently, a modified BPSO (mBPSO) has been developed from the concept of the genotype-phenotype mapping [21]. It re-
places the position renewal of BPSO (Eq. (3)) with the following rules:
xðgÞij ðt þ 1Þ ¼ xðgÞij ðtÞ þ v ijðt þ 1Þ; ð5Þ

xijðt þ 1Þ ¼
1 if r 6 sig xðgÞij ðt þ 1Þ

� �
;

0 otherwise;

(
ð6Þ
where xðgÞij ðtÞ and xij(t) represent the genotypic and phenotypic positions of the jth dimension of the ith particle, respectively.
Overall, mBPSO has offered an improved performance over the traditional BPSO.

Naturally, PSO is apt for locally discovering better solutions. However, every particle tends to search around its own pre-
vious best positions without achieving any improvement [16]. It denotes that the explored regions are quite often revisited
by the swarm (without success), thereby bringing forth unnecessary search. This arises from two critical problems of PSO.
First, it does not learn/treat the whole swarm as a single entity [16]. Second, it does not take into account any regularity
of problems (e.g., dependence of variables).
2.2. Estimation of distribution algorithms

EDAs have attracted much interest in recent years [1,20,27]. Incorporating the linkage learning techniques into the graph-
ical probabilistic modeling, EDAs construct promising probabilistic models from superior solutions found thus far, which un-
cover some important regularities of problems. Exploiting the probabilistic models to traverse the search space, EDAs
efficiently evolve the whole population towards the promising regions of the global optimum. In general, EDAs iterate the
following three phases, until the termination criteria are satisfied:

1. Select good individuals from a population.
2. Estimate the probability distribution from the selected individuals.
3. Generate new individuals (i.e., offspring) from the estimated distribution.

The last phase replaces the traditional recombination and mutation operators of GEAs. EDAs ensure an effective mixing
and reproduction of BBs due to their ability to accurately discover and utilize the structure of a given problem. It results in
solving hard problems with a linear or sub-quadratic scalability in terms of fitness function evaluations [1,26,27]. However,
there is a trade-off between the accuracy of the estimated distribution and the efficiency of the computation. For instance, a
complicated model is preferable if the fitness function is computationally expensive.

Depending on how intricate and involved the probabilistic models are, they are generally classified into two categories:
no dependencies and dependencies. The former assumes statistical independence of all the (decision) variables of the problem.
All the algorithms in this category compute the probability distribution as a product of univariate distributions [20,27]. It
approximates the order-one behavior of GEAs with a uniform crossover. However, the assumption appears to be unrealistic
in view of the fact that many optimization problems involve certain types of interaction between variables. Thus, it gives rise
to the disruption of BBs, thereby failing to converge to the optimum. The population-based incremental learning (PBIL) [3], the
compact genetic algorithm (cGA) [12], and the univariate marginal distribution algorithm (UMDA) [22] are representative
examples.

The second category assumes that the decision variables statistically interact with each other to some extent. In this cat-
egory, all the algorithms endeavor to use general probabilistic models in such a manner of accurately learning the informa-
tion on dependencies (i.e., BBs) and exploiting the knowledge for performing a better search [20,27]. At the expense of some
computational cost in the probabilistic model learning, the overall time complexity for decomposable problems can be sig-
nificantly improved by reducing the number of fitness function evaluations until the optimum is reached. Accordingly, the
approach is able to solve many difficult problems quickly, accurately, and reliably. The extended compact genetic algorithm
(EcGA) [13,14], the factorized distribution algorithm (FDA) [23], and the Bayesian optimization algorithm (BOA) [26] are
widely-known in this regard. Recently, the adaptive estimated maximum-entropy distribution algorithm [32], the assign-
ment function-based BOA [24], and the eigen decomposition EDA [8] have been introduced.
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In general, EcGA has been recognized as a competent EDA in the way that an appropriate multivariate distribution model
is employed in terms of the modeling accuracy and the computational efficiency [13,14]. It provides a direct linkage map of
decision variables (i.e., BB information) by means of a marginal product model (MPM). Incorporating the minimal description
length (MDL) concept over model complexity and (compressed) population complexity, EcGA learns the MPM with a greedy
search algorithm. Further details of EcGA are described below.

EcGA starts with a set of randomly generated individuals. After evaluating their fitness values, tournament selection is
performed. A probabilistic model is then learned from the selected individuals, and an MPM is employed as the feasible
probability distribution model. Note that the MPM partitions (decision) variables into several mutually independent groups
and then computes marginal probabilities for each (linkage) group. In the model building phase, a greedy search is per-
formed with the MDL metric. The metric defined in Eq. (7) consists of two terms, model complexity and population
complexity
1 Thu
2 The
min log2ðNÞ
Xm

i¼1

ð2ki � 1Þ � N
Xm

i¼1

X2ki

j¼1

pijlog2ðpijÞ

s:t: 2ki
6 N; 8i 2 f1; . . . ;mg;

ð7Þ
where N is the population size, m is the number of partitions, and ki is the number of variables in the ith partition.1 Further, pij

denotes the probability of the jth variable sequence in the ith partition.
In Eq. (7), the first term represents the number of bits needed to store all the marginal probabilities, and the second term

amounts to the entropy of the marginal distribution over all of the partitions [13,14]. The (greedy) search method discovers
a promising model structure by incrementally merging two partitions (i.e., subsets) that yield the highest improvement in
the MDL metric. The merging process continues until no more improvement is achieved. Lastly, new individuals are gener-
ated by sampling the final probabilistic model. The above procedures are iterated unless the termination criteria are
satisfied.

As aforementioned, EDAs excel at discovering the promising region (of search space) in which the global optimum exists
[1,14,27]. Only focusing on utilizing the global information of the population, however, EDAs are not efficient in rapidly lead-
ing individuals toward the closest local optimum.
3. Proposed approach

This section presents the framework of EPSDAs and then demonstrates its utility by designing EcPSO. Also, its computa-
tional time complexity is mentioned.

3.1. Estimation of particle swarm distribution algorithms

In principle, PSO and EDAs are very competent in local search and global search, respectively. With this in view, EPSDAs
have been designed to obtain the best of both approaches, but only a small amount of work has been done in this regard
[16,34–36]. In [34–36], combining PSO with PBIL developed a simple version of an EPSDA. Its performance has been inves-
tigated for widely-known combinatorial optimization problems, such as knapsack and graph partitioning. In [16], another
EPSDA has been proposed by means of the mixture of one-dimensional Gaussian functions, which approximates the distri-
bution of the good regions in each dimension. This can be viewed as a combination of PSO and a continuous PBIL with the
Gaussian kernel. Its effectiveness has been verified with several numerical optimization benchmarks, such as Rosenbrock
and Griewangk functions.

Conceptually, the above-mentioned approaches have tried to exploit the global statistic collected from all of the local best
solutions (of the whole swarm) in order to efficiently perform the search. Moreover, the statistic has been independently
measured in each dimension. Thus, they are very effective in solving problems with independent variables since UMD mod-
els have been genuinely incorporated. However, they may suffer when it comes to solving real-world problems due to some
important interactions of variables with which BBs are associated. To find the optimum of such problems, it is necessary to
discover and preserve the BBs. This can be naturally achieved by incorporating MD models. As described earlier, a set of solu-
tions well configured in terms of exploration and exploitation are needed for good probabilistic model building. Taking all
the local best solutions may not be a proper choice for model construction, because the local best solutions formed by the
search mechanism of PSO mainly promote the exploration of the search space. In other words, it is lacking in the exploitation
of solutions since the (single) global best solution is the only source of exploitation. The problem can be simply resolved by
applying the selection to the local best solutions (as done in EDAs).

Let PðtÞ ¼ fXðtÞ; eXðtÞ;HðtÞ;VðtÞg be a particle swarm at the tth generation, which consists of particles X(t), their local best
positions eXðtÞ, the global best position H(t) defined as the best one among eXðtÞ, and the particles’ velocities V(t).2 With the
terminologies, the framework of EPSDAs can be described as follows:
s,
Pm

i¼1ki equals the individual length (i.e., problem size n).
term ‘local best’ is also known as ‘particle best.’ Moreover, ‘position’ is identically used as ‘solution.’



C.W. Ahn et al. / Information Sciences 192 (2012) 109–119 113
STEP 1. INITIALIZATION.
Randomly generate the initial particles X(0).

STEP 2. EVALUATION.
Evaluate the fitness values for all particles X(t).

STEP 3. UPDATE.
Update the local best solutions eXðtÞ, the global best solution H(t), and the particles’ velocities V(t).

STEP 4. SELECTION.
Select a set of promising solutions, eXSðtÞ, from the local best solutions eXðtÞ.

STEP 5. LEARNING.
Learn a probabilistic model MðtÞ from the selected local best solutions, eXSðtÞ, using a metric (and constraints).

STEP 6. CREATION.
Generate new particles X(t + 1) from both the estimated distribution MðtÞ and the current particle swarm PðtÞ.

STEP 7. TERMINATION.
If the termination criteria are not met, go to STEP 2.

Unlike PSO and EDAs, STEPS 5 and 6 uniquely characterize EPSDAs as they harmonize the local search of PSO with the global
search of EDAs. Thus, EPSDAs are quite good at simultaneously performing the local search and the global search in a coop-
erative manner. The global search is performed by the EDA process of generating new individuals from the probabilistic model
built on the selected set of solutions. The local search is done with the PSO process of looking for a better solution in the way of
each (current) local best position. Both features can be clearly carried through by STEPS 5 and 6 because new particles are gen-
erated by assembling several partial solutions obtained from both the probabilistic model (of EDAs) and the particle flying
model (of PSO). Moreover, the mechanism is processed with the information on variable dependencies. Thus, any algorithm
developed under the above suggested framework can solve hard problems quickly, accurately, and reliably.

3.2. Extended compact particle swarm optimization

Along the lines of the framework of EPSDAs, EcPSO is developed for supporting its utility. The design goal of EcPSO is to
effectively combine the BPSO with the traditional EcGA without compromising their unique features.

Due to its ability to learn and promote BBs, EcGA is able to explore better regions of the search space in a fast and reliable
manner (see Section 2.2). Thus, EcGA is very apt at the global search. Meanwhile, PSO can independently traverse the search
space because each particle mainly evolves/flies with its own best experience and the best knowledge of the swarm (see Sec-
tion 2.1). Once some particles access the basin of the attractors, the PSO tends to quickly converge to its optimum. Thus, PSO
excels at a fast (multiple) local search. In essence, combining the global search and the local search methods may produce a
powerful search mechanism, striking a balance between them. The idea is to apply a proper selection method to the set of
local best solutions (as explained in Section 3.1) and then learn an MPM from the selected solutions. After that, new particles
are created by merging the MPM sampling method of EcGA and the particle evolution model of PSO. Detailed procedures are
described below.

A particle swarm PðtÞ consists of particles X(t), their local best solutions eXðtÞ, the global best solution H(t), and the par-
ticles’ velocities V(t), that is, PðtÞ ¼ fXðtÞ; eXðtÞ;HðtÞ;VðtÞg. Let Xi(t) = {Xi,k(t) 2 {0,1}j k = 1, . . . ,n} be the ith particle in the n-
dimensional space at the tth generation, and denote the value of its kth variable as Xi,k(t). Similarly, all notations with regard
to eXðtÞ and V(t) can be naturally interpreted. For the global best solution, Hk(t) denotes the value of the kth variable of H(t).
An MPM learned at the tth generation is denoted asMðtÞ. Moreover, m is the number of partitions (i.e., BBs), and Zk repre-
sents a set of (decision) variables belonging to the kth partition. Thus, a problem can be decomposed into several disjoint
sub-problems, that is, XiðtÞ ¼

Sm
k¼1Xi;Zk

ðtÞ and / ¼
Tm

k¼1Xi;Zk
ðtÞ. Meanwhile, the sub-MPM corresponding to the sub-problem

Zk, is denoted by MZk
ðtÞ. An indicator function, Ia(r), is defined as
3 It is
IaðrÞ ¼
1 if r 6 a;
0 otherwise;

�
ð8Þ
where r is a random number in [0,1]. Furthermore, samplingðMZk
ðtÞÞ creates a partial particle by sampling the sub-MPM

MZk
ðtÞ (as done in [13,14]), and flyingðPi;Zk

ðtÞÞ3 generates a part of the ith particle by emulating the particle flying model
(see Eqs. (1)–(4)) in the level of sub-space Zk. With these terminologies, EcPSO operates as follows:

STEP 1. INITIALIZATION.

Randomly generate the initial N particles X(0).

STEP 2. EVALUATION.
Evaluate the fitness values for all particles X(t).

STEP 3. UPDATE.
Update the local best solutions eXðtÞ, the global best solution H(t), and the particles’ velocities V(t).
obvious that Pi;Zk
ðtÞ ¼ fXi;Zk

ðtÞ; eX i;Zk
ðtÞ;HZk

ðtÞ;Vi;Zk
ðtÞg.
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STEP 4. SELECTION.
Apply a tournament selection to eXðtÞ and obtain a set of selected solutions, eXSðtÞ.

STEP 5. LEARNING.
Learn an MPM MðtÞ from the set eXSðtÞ using the MDL metric and the greedy search.

STEP 6. CREATION.
Generate new N particles X(t + 1) by the following rule:

Xiðt þ 1Þ ¼
[m
k¼1

fIaðrÞ � flyingðPi;Zk
ðtÞÞ þ ð1� IaðrÞÞ � samplingðMZk

ðtÞÞg: ð9Þ

STEP 7. TERMINATION.
If the termination criteria are not met, go to STEP 2.

As is usual with EDAs, EcPSO starts with the initial randomly generated N particles, X(0) (see STEP 1). After evaluating the
fitness values for all current particles, X(t), in STEP 2, the update process of STEP 3 is performed, as follows: (1) update the local
best solutions by eXiðtÞ ¼ arg max

x2feX iðt�1Þ;XiðtÞg
f ðxÞ, where f(�) is the fitness function,4 (2) update the global best solution by

HðtÞ ¼ arg max
x2feX iðtÞj 8i2f1;...;Ngg

f ðxÞ, and (3) update the velocities by Eq. (1), which can be rewritten as
4 Wit
5 It is
Vi;jðtÞ ¼ w � Vi;jðt � 1Þ þ c1 � r1 � ðeXi;jðtÞ � Xi;jðtÞÞ þ c2 � r2 � ðHjðtÞ � Xi;jðtÞÞ: ð10Þ
The tournament selection is then applied to the updated local best solutions, eXðtÞ, by which a set of selected individuals,eXSðtÞ, is obtained (see STEP 4). Recall that the tournament selection (without replacement) works by randomly choosing non-
overlapping s individuals5 and selecting the best one as a parent for the next generation. With the selected solutions eXSðtÞ, an
MPMMðtÞ is learned by utilizing the MDL metric given in Eq. (7) and the greedy search incrementally merging two partitions
(see STEP 5). In STEP 6, a set of new particles are generated by properly combining the MPM sampling of EcGA (as in [13,14]) with
the particle flying process of BPSO (i.e., Eqs. (1)–(4)). Finally, the above steps are iterated until the termination criteria are sat-
isfied (see STEP 7).

Note that EcPSO can be characterized by the method of creating new particles given in STEP 6. It assembles/mixes partial
solutions created by the sampling of MPM and the flying model of current particles in the level of sub-problems (i.e., par-
titions or sub-space). Here, the mixing rate of partitions can be adjusted by changing the value of parameter a of Ia(r). That
is, EcPSO becomes the global-search (local-search) intensive as a goes to 0 (1). In this way, EcPSO can effectively bring to-
gether the strengths of both worlds: the global search of EcGA and the local search of PSO.
3.3. Computational time complexity

In general, the computational time complexity is an important issue in designing optimization algorithms. This section
briefly makes mention of the issue in this regard.

In many real-world problems, the time spent evaluating a candidate solution usually outweighs the time required by the
rest of the algorithmic components [29]. This implies that the number of (fitness function) evaluations until a reliable con-
vergence to the optimum can be the measure of the (computational) time complexity of algorithms. Meanwhile, the com-
putational overhead usually increases as a low-order polynomial of the problem size [29]. Thus, the growth of the number of
evaluations in terms of the problem size until the global convergence is the more appropriate measure of time complexity,
which is also known as scalability.

We assume decomposable problems with bounded difficulty for tractability. Such problems are formed by concatenating
subfunctions, in which the overall fitness is the sum of contributions from all subfunctions that are disjoint with a uniform
order [2,26,29]. Note that the number of evaluations can be computed as a product of the population size needed for discov-
ering the problem regularities (i.e., population complexity) and the number of generations required for population conver-
gence (i.e., convergence complexity) [2,29]. Some efforts to analyze the time complexity (i.e., scalability) of EDAs have been
successfully made [2,29,30]. Based on those results, we shortly investigate the time complexity of EcGA, EcPSO, and mBPSO.

To start with, EcGA is considered. As aforementioned, the time complexity consists of population complexity and conver-
gence complexity. For the population complexity, there are three main factors: initial supply, decision-making, and model
building, but the last one that denotes the population size required for the correct MPM building is dominant [29]. Thus,
the population complexity is O(n) [29,30]. From the analogy between the dynamics of EcGA for decomposable problems
and that of UMDA, the convergence complexity for the selection methods whose intensity is constant, e.g., tournament
and truncation selection, is bounded by Oð

ffiffiffi
n
p
Þ [2,29]. Thus, the overall time complexity of EcGA becomes Oðn

ffiffiffi
n
p
Þ, i.e., O(n1.5).

To bring together the strengths of the local and global searches, EcPSO ingeniously combines BPSO with EcGA. The use of
BPSO is very effective in traversing the search space. But it does not nearly affect the population complexity since discovering
the problem regularities mainly depends on not the search progress but the MPM building process [29]. Thus, the population
hout loss of generality, the task is to maximize the fitness function.
assumed that the size of a tournament is s.
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complexity can be approximated to that of EcGA, that is, O(n). Moreover, the number of generations until convergence can be
reduced by employing BPSO. However, it is not able to reduce the computational overhead accruing from the growth of the
problem size since the effect of the local search is not strong enough to come up with the growth of the search space com-
plexity [28]. Approximately, EcPSO has the same convergence complexity as EcGA, that is, Oð

ffiffiffi
n
p
Þ. As a result, the overall time

complexity of EcPSO amounts to Oðn
ffiffiffi
n
p
Þ, i.e., O(n1.5). It is interesting to note that EcPSO can reduce the running/search time

itself without degrading the overall time complexity (i.e., scalability) of EcGA.
As for mBPSO, there is no process for discovering the problem regularities. Obviously, the population complexity is expo-

nential [29], which leads to the exponential complexity in the convergence time. Thus, the overall time complexity of mBPSO
surely becomes exponential.6

The above approach is somewhat conservative, but the empirical evidence in Section 4.2 supports the results. It is worth-
while to investigate the time complexity (of the algorithms) of other types of problems, but further study is beyond the scope
of this paper.

4. Experiments and results

This section empirically demonstrates the effectiveness of EcPSO in conquering hard problems.

4.1. Test problems

In this experiment, two kinds of test problems are taken into account: (fully) deceptive problems [7,14,26] and Ising Spin
Glass (ISG) problems [15,28]. They are regarded as the representative hard-type artificial and real-world problems,
respectively.

A deceptive problem consists of additive trap functions [1,7,26]. First, we define a trap function, ftrap, which is a constit-
uent of a deceptive problem, as follows:
6 An
ftrapðuðy1; . . . ; ykÞÞ ¼
1:0 if u ¼ k;

ð1:0� dÞ 1� u
k�1

� �
if u < k;

(
ð11Þ
where u(�) is the unitation (i.e., the number of 1s) of a k-bit long substring, and d is the fitness difference between the best BB
(i.e., all 1s) and its deceptive attractor (i.e., all 0s). The function becomes harder as k increases and d decreases. Based on the
trap function, a family of deceptive problems can be constructed by additively concatenating a number of the trap functions.
Accordingly, the overall fitness amounts to the sum of all trap function values, formulated by
Fk-bitðy1; . . . ; ym�kÞ ¼
Xm

i¼1

ftrapðyði�1Þ�kþ1; . . . ; yi�kÞ: ð12Þ
The task is to maximize the problem. It has one global optimum in the string of all 1s and (2n/k � 1) local optima. In order
to solve this type of problem, all bits of each sub-problem (i.e., group) must be treated together because their lower order
statistics are misleading. It denotes that no algorithm finds it easy to discover the global optimum without incorporating
the knowledge of BBs (i.e., linkage information). Thus, deceptive problems have been perceived as common test benchmarks
in the community of evolutionary optimization.

ISG is a widely-known problem in the field of statistical physics [15,28]. The aim is to find the ground states of ISG sys-
tems. A finite-dimensional ISG is typically modeled by a regular two- or three-dimensional grid, where each node i denotes a
spin ri and each edge (i, j) represents a coupling between two spins ri and rj. In this experiment, two-dimensional ISG sys-
tems are investigated with periodic boundary conditions. Being arranged on a two-dimensional grid, the spins interact with
only their nearest neighbors. The state of an ISG system is defined by a Hamiltonian H that specifies the system energy by
HðrÞ ¼ �
Xn�1

i¼0

Xn�1

j¼0

Jijrirj; ð13Þ
where a set of spins r = {r0,r1, . . . ,rn�1} taking values from {�1,+1} represents the physical state of the spins, and Jij, a real
number, specifies a coupling coefficient from the ith spin (ri) to the jth spin (rj). The task is to discover the state of the spins
at which the system energy is minimized (i.e., the ground state is achieved). Such ISG systems are frequently employed as
test problems in the study of GEAs because the symmetry between spins and a large number of plateaus are exhibited.

4.2. Experimental setup and results

EcPSO is compared with the modified BPSO (mBPSO) [21] and the conventional EcGA [13,14]. The number of (fitness func-
tion) evaluations until reaching the global optimum is taken as the performance measure. Clearly, the minimum number of
such evaluations (in terms of problem size) is of interest. The corresponding population (i.e., swarm) size N is empirically
exact value of the exponent is not important in the study of computational time complexity.
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Fig. 1. Performance comparison of mBPSO, EcGA, and EcPSO in terms of the average number of evaluations until reaching the optimum, as applied to the 4-
bit deceptive problem.

Table 1
Statistical comparison of the algorithms for the 4-bit deceptive problem. The numbers in non-parenthesis and parenthesis denotes mean and deviation,
respectively.

n 8 16 24 32 40 48 56

mBPSO 121.24 2315.7 36983.1 393166.7 – – –
(91.97) (2321.6) (52828.7) (619639.9)

EcGA 109.82 1377.1 3803.4 6831.4 10952.8 15352.1 20311.5
(56.24) (438.5) (476.9) (861.7) (1452.2) (1366.3) (2311.4)

EcPSO 69.3 671.3 1823.1 3641.4 6592 8959.5 12637.5
(41.78) (236.5) (395.6) (643.5) (805.6) (1185.8) (1633.9)

Statistical t-test: (EcGA � EcPSO)
t-value 5.57a 7.58a 16.45a 15.65a 13.45a 18.94a 16.46a

a Statistical significance by a paired, two-tailed test at a = 0.01. Clearly, the statistical test for mBPSO does not need to be performed.
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found by a bisection method [1,13,14,26]. Moreover, due to its effectiveness in achieving low selection noise, the tournament
selection without replacement is employed in both EcGA and EcPSO. In order to provide the moderate selection intensity, the
size of the tournament is set to 4 for deceptive problems and 16 for ISG systems. The parameter a of Ia(r) of EcPSO is fixed at
0.1 in order to incorporate the local search at a proper level. As for mBPSO, the parameter setting suggested by the original
work [21] is employed: w = 0.6893 and c1 = c2 = 1.4269. Each experiment is terminated either when the optimum is found or
when every individual returns the same quality. All results are averaged over 30 runs.

To begin with, two deceptive problems are tested here: 4-bit and 5-bit (i.e., k = 4 and k = 5). The fitness difference, d is set
to 1/4 and 1/5, respectively. Fig. 1 and Table 1 compare the number of evaluations until convergence to the optimum when
mBPSO, EcGA, and EcPSO are applied to the 4-bit deceptive problem. Also, the performance comparison for the 5-bit decep-
tive problem is exhibited in Fig. 2 and Table 2. The results demonstrate that EcPSO achieves a significant improvement in
comparison with mBPSO and EcGA. Further, it is seen that the theoretical models of the time complexity of the algorithms
are consistent with the experimental results.

As for mBPSO, the number of evaluations required for discovering the optimum exponentially grows as the problem
size increases, that is, the exponential time complexity, O(n7.0) and O(n8.0). Moreover, EcGA and EcPSO can solve the
deceptive problems with a quadratic time complexity in terms of the problem size, i.e., O(n1.5).7 In the running/search
time, more specifically, EcPSO converges to the optimum with, on average, 55% (for 4-bit deception) and 64% (for 5-bit
deception) of the number of evaluations of EcGA (see the tables). The good news for EcPSO is that its performance improve-
ment grows as the problem’s difficulty increases. Tables 1 and 2 support the claim of the dominant performance of EcPSO
over mBPSO and EcGA. As a result, it follows that EcPSO traverses the search space of difficult problems more efficiently than
mBPSO and EcGA.
7 In [14], a more accurate complexity has been empirically found as O(n1.5 log(n)).
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Fig. 2. Performance comparison of mBPSO, EcGA, and EcPSO in terms of the average number of evaluations until reaching the optimum, as applied to the 5-
bit deceptive problem.

Table 2
Statistical comparison of the algorithms for the 5-bit deceptive problem. The numbers in non-parenthesis and parenthesis denote mean and deviation,
respectively.

n 10 20 30 40 50 60

mBPSO 469.8 89371.6 3.1571E6 – – –
(332.8) (161191.6) (3.9180E6)

EcGA 527.47 6816.4 16658.3 31233.3 46183 66200
(241.05) (2033.9) (2209.4) (3067.4) (4446) (6303.6)

EcPSO 325.7 4181.3 10957.5 19400 30791.7 43525
(204.6) (549.3) (3738.3) (2362.2) (4292.7) (5064.4)

Statistical t-test: (EcGA � EcPSO)
t-value 2.94a 6.75a 6.68a 15.21a 13.71a 15.61a

a Statistical significance by a paired, two-tailed test at a = 0.01. Clearly, the statistical test for mBPSO does not need to be performed.
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Fig. 3. Performance comparison of mBPSO, EcGA, and EcPSO in terms of the average number of evaluations until reaching the optimum, as applied to the
ISG systems.
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Table 3
Statistical comparison of the algorithms for the ISG systems. The numbers in non-parenthesis and parenthesis
denote mean and deviation, respectively.

n 25 36 49

mBPSO 2443.9 4447.1 695583.3
(2262.2) (3892.9) (861064.1)

EcGA 2150.3 3666.2 44725
(992.4) (1671.8) (20289.9)

EcPSO 1201.2 2033.5 26480.4
(662.6) (1155.4) (27056.3)

Statistical t-test: (EcGA � EcPSO)
t-value 4.69a 5.22a 4.83a

a Statistical significance by a paired, two-tailed test at a = 0.01. Clearly, the statistical test for mBPSO does
not need to be performed.
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At this juncture, ISG systems with various spins are tested for demonstrating the feasibility of EcPSO in solving real-world
problems. With a view of getting a quantitative comprehension of the disorder in ISG systems, we consider the ±J spin glass
whose value (i.e., coupling coefficient) is chosen from {�1,+1} with an equal probability. Fig. 3 and Table 3 exhibit the per-
formance comparison of mBPSO, EcGA, and EcPSO, as applied to ISG systems with {25,36,49} spins arranged on 5 � 5, 6 � 6,
and 7 � 7 toroids, respectively. The ground states (i.e., optimal solutions) of ISG systems are obtained from an online server
[17]. Trends similar to those found in Figs. 1 and 2 can be observed here, as well; therefore, it is proved that EcPSO outper-
forms mBPSO and EcGA in finding the ground states of ISG systems. Also, the efficiency of EcPSO over mBPSO and EcGA is
clearly supported by the statistical test in Table 3.

Last but not least, it is observed that the scalability performance (in terms of the problem size) of EcPSO is comparable to
that of EcGA. In other words, the time complexity of the two algorithms is asymptotically identical. This implies that the
invitation of PSO mechanisms not only enhances the convergence performance, but also does not affect the unique features
of EcGA (i.e., the problem decomposition and the maximum inter-mixing of BBs).

5. Conclusion

This paper has presented an efficient framework of the estimation of particle swarm distribution algorithms (EPSDAs).
The aim was to bring together the strengths of the particle swarm optimization (PSO) and the estimation of distribution algo-
rithms (EDAs). This was achieved by discovering problem regularities from the selected set of local best solutions and then
generating new individuals by means of the probabilistic model sampling technique of EDAs and the particle evolving pro-
cess of PSO. Moreover, an extended compact particle swarm optimization (EcPSO) has been developed by referring to the
framework of EPSDAs. The purpose was to demonstrate the utility of the suggested framework. The algorithm was tested
on (artificial) deceptive problems, as well as (real-world) Ising Spin Glass systems. The experimental results exhibited that
EcPSO achieves significantly better performance than those obtained by mBPSO and EcGA. Specifically, EcPSO discovered the
optimal solution by the least number of evaluations, without compromising the scale-up behavior in terms of the problem
size (i.e., time complexity). Of course, more work to develop alternatives for dealing with non-disjoint or continuous prob-
lems is needed. However, the strategy of using EPSDAs to harmonize the local search of PSO with the global search of EDAs
on the basis of problem regularities has definite advantages over other algorithms. Thus, the approach proposed herein can
be considered an effective tool for solving a variety of difficult, especially deceptive, and/or symmetric problems.
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