CONFORMATIONAL ANALYSIS OF ENALAPRIL (MK-421) IN SOLUTION BY ${ }^{\mathbf{1}} \mathbf{H}^{\text {AND }}{ }^{13} \mathbf{C}$ NMR

YOHKO SAKAMOTO ${ }^{\text {a* }}$, YUKO SAKAMOTO ${ }^{\text {a }}$, ISAO OONISHI ${ }^{\text {b }}$ and TAICHI OHMOTO ${ }^{a}$
${ }^{2}$ School of Pharmaceutical Sciences, Toho University, Funabashl, Chıba 274 (Japan)
${ }^{\text {b }}$ Department of Bıomolecular Scıence, Toho University, Funabashi, Chiba 274 (Japan)

(Recelved 15 November 1989)

Abstract

The conformations of enalapril (MK-421, (-)-(N-((S)-1-ethoxycarbonyl-3-phenylpropyl)-L-alanyl-L-proline), in $\mathrm{CD}_{3} \mathrm{OD}$, were investigated in order to account for their biological activity as unhbitors of angotensin converting enzyme (ACE) The ratio of trans to cts conformation around the amide bond is 32 The preferred optimum structures of the trans and cus forms are postulated With reference to the proline ring the N-type trans isomer was more prevalent than the S-type trans isomer

INTRODUCTION

Recently, a number of drugs controlling blood pressure have been developed and clinically widely utilized [1-3]. One of them, enalapril (MK-421) is an inhibitor of angiotensin converting enzyme (ACE). The structural formula of MK-421 is shown in Fig 1 with the numbering scheme MK-421 has been studied by potential energy [4], and X-ray analysis [5,6], showing only a trans form around the amide bond However both trans and cis conformations are expected in solution Accordingly, we measured several ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra to ascertain the conformations of MK-421 in solution, our purpose being to investigate the whole structure of the molecule in solution in more detal, in

Fig 1 Molecular structure of MK-421
*Author for correspondence
order to postulate the optımum conformation of MK-421 for biological activity in vivo

To obtain the main dihedral angles values of vicinal coupling constants of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ were measured The optımum conformations of trans and $c l s$ forms in solution were examined The ratio of the S-type and the N-type isomers with reference to the proline ring in the solution was also investigated

EXPERIMENTAL

MK-421, donated by Banyu Pharmaceutical Co Ltd., was used without further purification
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL GX-400 spectrometer, operating at 400.0 MHz and 100.4 MHz respectively at $25^{\circ} \mathrm{C}$ using a deuterium lock system The concentration of the sample was 20% (w/v) Chemical shifts were measured relative to tetramethylsilane The experimental conditions were as follows: number of accumulations, $128-2048$, data points, 64 k ; spectral width, 6000 Hz or 24000 Hz ; flp angle, 45° or 30°; interval of pulse to pulse, 8 s or 2 s

We carried out two-dimensional ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \mathrm{J}$ resolved spectroscopy, low power selective proton decoupling, complete proton noise decoupling and selective ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ long range J resolved two dimensional spectroscopy to determine long range coupling constants for particular protons The program DAPH written by T Ashida at the Computer Center of the University of Tokyo was used

RESULTS AND DISCUSSION

Optimum conformation of MK-421 in solution
$\mathrm{D}_{2} \mathrm{O}$ is the best solvent in which to study in vivo conformation by NMR However, in this work, $\mathrm{CD}_{3} \mathrm{OD}$ was used since MK-421 was much more soluble in this solvent than in $\mathrm{D}_{2} \mathrm{O}$ The ratio of trans and cis conformations in $\mathrm{CD}_{3} \mathrm{OD}$ was 3 2, as was also the case in $\mathrm{D}_{2} \mathrm{O}$; this value was obtaned by integration of spectra Detaled assignments of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ for the trans and $c l s$ conformations are listed in Table 1
For NMR study, the dihedral angles between vicinal hydrogens and vicinal carbon protons are required Values of ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ and ${ }^{3} J_{\mathrm{C}-\mathrm{H}}$ in each conformation have been estimated by using Karplus equations (1) and (2) [7,8]

$$
\begin{align*}
& { }^{3} J_{\mathrm{HH}}=700-100 \cos \theta+500 \cos 2 \theta \tag{1}\\
& { }^{3} J_{\mathrm{CH}}=426-100 \cos \theta+356 \cos 2 \theta \tag{2}
\end{align*}
$$

The values of coupling constants observed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were substituted in eqns (1) and (2) The main dihedral angles ($\phi_{1}, \theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4}) are

TABLE 1
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts for the trans and cts conformers of enalapril

	trans		cts		trans	cls
	449		456	C2	6065	6054
$\mathrm{H} 3,3^{\prime}$	201		227	C2'	17476	17468
	227		234	C3	2997	3191
H4,4	201		175	C4	2584	2311
			196	C5	4804	
H5, ${ }^{\prime}$	357		346	C1p	16910	16890
	364		364	C2p	5604	5670
H2p	429		412	C3p	1584	1640
H3p	158		156	C1b	6012	6005
Hib	394		396	C2b	3348	3330
H2b	273 227			C3b	3204	3195
H3b			284	C1e	16955	17001
H2e		429		C2e	6391	6380
H3e		132		C3e	1441	1435
H2,6a		725		Cla	14117	14121
H3,5a		725		C2,6a		
H4a		725		C3,5a		
				C4a		

TABLE 2
Couphng constants (Hz)

	trans	c.ss
${ }^{3} J_{\text {H1b H2b }}$	60	57
${ }^{3} J_{\mathrm{H} 24} \mathrm{H} 3 \mathrm{~b}$		
${ }^{3} J_{\text {H2p }}{ }^{\text {H }}$ p	68	70
${ }^{3} J_{\mathbf{H} 2} \mathrm{H} 3$	51	47
${ }^{3} J_{\mathrm{H} 2 \mathrm{H} 3}$	88	63
${ }^{3} J_{\mathrm{H} 2 \mathrm{Clp}}$	$1>$	$1>$
${ }^{3} J_{\text {H2p }}{ }^{\text {C1b }}$	18	$1>$
${ }^{3} J_{\text {Hib C2p }}$	26	23
${ }^{3} J_{\text {H3b }}$ C2 6a	61	

needed to obtain the optımum conformation of trans and ccs forms in solution The values of the maın dihedral angles ($\phi_{1}, \theta_{1}, \theta_{2}, \theta_{3}$ and θ_{4}) were determined using the experimental values of ${ }^{3} J_{\mathrm{H} 2 \mathrm{p}, \mathrm{C} 1 \mathrm{~b}},{ }^{3} J_{\mathrm{H} 1 \mathrm{~b}, \mathrm{C} 2 \mathrm{p}},{ }^{3} J_{H 1 b, H 2 b},{ }^{3} J_{\mathrm{H} 2 \mathrm{~b}, \mathrm{H} 3 \mathrm{~b}}$ and ${ }^{3} J_{\mathrm{H} 3 \mathrm{~b} \text { C2,6a }}$, respectively
'I'he values of ${ }^{3} J_{\mathrm{H}-\mathrm{H}}$ and ${ }^{3} J_{\mathrm{C}-\mathrm{H}}$ for trans and cls conformations are shown in Table 2 Their selected C-C-C-C dihedral angles are listed in Table 3, in which

TABLE 3

Main dihedral angles (deg)

	This work			Potental energy data [4]	X-ray data [6]
	trans	$c l s$			
ϕ_{1}	175	164	$180-220$	175	
ψ_{1}	160	160	$160-170$	156	
ω_{1}	180	0	180	-178	
θ_{1}	63	60	$70-130$	57	
θ_{2}	52	180	52	$180-240$	68
θ_{3}		89		180	179
θ_{4}		90	84		

the values of potential energy [4] and X-ray [6] are also given for comparison For example, the values of dıhedral angle $\mathrm{C} 2 \mathrm{~b}-\mathrm{C} 1 \mathrm{~b}-\mathrm{N}-\mathrm{C} 2 \mathrm{p}\left(\theta_{1}\right)$ were determined from the value of ${ }^{3} J_{\mathrm{Hib}, \mathrm{C} 2 \mathrm{p}}$ as follows The experimental value of ${ }^{3} J_{\mathrm{H} 1 \mathrm{~b}, \mathrm{C} 2 \mathrm{p}}$ of the trans form was 26 Hz , from the low power selective proton decoupling by irradiation of H3p as shown in Fig. 2(a2). This value of ${ }^{3} J_{\mathrm{H} \mathrm{h}, \mathrm{C} 2 \mathrm{p}}$ was substituted in eqn (2) and consequently, the four values of the dihedral angle $\mathrm{H} 1 \mathrm{~b}-\mathrm{C} 1 \mathrm{~b}-\mathrm{N}-\mathrm{C} 2 \mathrm{p}\left(54^{\circ}, 117^{\circ},-117^{\circ}\right.$ and -54°) were obtained. These four values of the dihedral angle $\mathrm{H} 1 \mathrm{~b}-\mathrm{C} 1 \mathrm{~b}-\mathrm{N}-\mathrm{C} 2 \mathrm{p}$ were then appled to Newman projections Consequently, four values of the C-C-N-C dihedral angle ($\theta_{1}, 171^{\circ},-126^{\circ}, 0^{\circ}$ and 63°) were obtaned. Though the best value of the four possible dihedral angles was not determined exactly from the NMR coupling constants, we chose the best value $\left(63^{\circ}\right)$ of the dihedral angle $\left(\theta_{1}\right)$ from a comparison with potential energy [4] and X-ray [6] data (Table 3) The value corresponded with that at optimum biological activity. The best values of other dihedral angles were determined in the same way.

The possible values of the dihedral angle $\mathrm{C} 1 \mathrm{~b}-\mathrm{N}-\mathrm{C} 2 p-\mathrm{C} 1 p\left(\phi_{1}\right)$ were determined from the value of ${ }^{3} J_{\mathrm{H} 2 \mathrm{p}, \mathrm{C} 1 \mathrm{~b}}$ which was 18 Hz for the trans form, from low power selective proton decoupling with the triple arradiation of H 2 b and H3b, as shown in Fig. 2(b2) The values of dihedral angles C3b-C2b-C1b-N $\left(\theta_{2}\right)$ and $\mathrm{C} 1 \mathrm{a}-\mathrm{C} 3 \mathrm{~b}-\mathrm{C} 2 \mathrm{~b}-\mathrm{C} 1 \mathrm{~b}\left(\theta_{3}\right)$ were determined from the values of ${ }^{3} J_{\mathrm{H} 1 \mathrm{~b}, \mathrm{H} 2 \mathrm{~b}}$ and ${ }^{3} J_{\mathrm{H} 2 \mathrm{~b}, \mathrm{H} 3 \mathrm{~b}}$ which were determined by two dimensional ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} J$ resolved spectroscopy From the results of these cross sections, the value of ${ }^{3} J_{\text {H2h, нзь }}$ of 77 Hz was obtaned for H 3 b at both $\delta 273$ and $\delta 284$ Also the value of ${ }^{3} J_{\mathrm{Hib}, \mathrm{H} 2 \mathrm{~b}}$ for trans was 60 Hz at $\delta 3.94$. The values of dhedral angles $\mathrm{C} 2,6 \mathrm{a}-$ $\mathrm{C} 1 \mathrm{a}-\mathrm{C} 3 \mathrm{~b}-\mathrm{C} 2 \mathrm{~b}\left(\theta_{4}\right)$ were determined from the value of ${ }^{3} J_{\mathrm{Hzb}, \mathrm{C}, 6 \mathrm{a}}$. The value of 61 Hz for ${ }^{3} J_{\mathrm{Hbb}, \mathrm{C}, 6 \mathrm{a}}$ was obtaned by selective ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ long range J resolution two-dımensional spectroscopy for the purpose of observing C2a, 6 a by irradiation of 3 b protons

Fig 2 (a1) ${ }^{13} \mathrm{C}$ NMR spectra of C2p by gated decoupling with NOE, (a2) with selective irradıation of H3p, trans form, (a3) with selective irradiation of H3p, cls form (b1) ${ }^{13}$ C NMR spectra of C1b by gated decoupling with NOE, (b2) with selective triple irradiation of H2b and H3b, cis and trans forms

The value of ω_{1} was determined by the calculation of internuclear distances by the difference NOE NMR spectra as shown in Fig. 3.
Enhancement of the H2 signals by irradiation of the H3p proton was estimated to be 50 and 07% in the $c t s$ and trans forms, respectively, based on the enhancement of the H 2 p signal (83%) by the irradation Coupling constants of H 2 p and H 3 p and the difference NOE spectra gave information on the internuclear distance between H3p and H2 The distance between H3p and H2p was $296 \AA$ in the $c v$ form, which was considered as a criterion of distance between the H 3 p and H 2 protons of the trans and $c l s$ forms NOE is proportional to $1 / r^{6}$
$\frac{07}{83}=\frac{296^{6}}{r^{6}}, \quad r=4.47(45 \AA)$ trans
$\frac{5.0}{83}=\frac{2.96^{6}}{r^{6}}, \quad r=322(32 \AA) c l s$
From these relations, the distance between the $3 \mathrm{pCH}_{3}$ and the H 2 proton of the trans form was found to be $4.5 \AA$ and that of the cis form was $32 \AA$. From these results, it seems reasonable to assume that the dihedral angle (ω_{1}) of the amide bond in the $c i s$ form is 0° and that in the trans form is 180°

Using the program GONCHAN we predict the trans and ccs forms to be as shown in Figs. 4a and 4b. The coupling constants and difference NOE spectra gave information on the conformation in solution.
Structure-activity studies have shown that particular functional groups are essential for the biological activity of MK-421. It seems reasonable to assume that, in the binding of MK-421 to ACE, the functional groups are situated on the same side In the trans form, ethoxycarbonyl, carbonyl and carboxyl, which form active regions, are situated on the same side, whereas in the $c l s$ form the carboxyl group is situated on the opposite side to ethoxycarbonyl and carbonyl groups Therefore, the trans conformation should be preferred for biological activity

Conformatoon of the proline ring

The detaled conformation of the proline ring in solution was estimated
In the proline ring, S-type and N-type isomers exist in solution We determined the occurrence ratio of these isomers. From Fig. 5, the values of the dihedral angle for the diaxial and diequatorial forms were determined to be 87° and 150°, respectively The dihedral angle $\mathrm{H} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3^{\prime}$ was estimated to be equatorial for the S-type isomer and axial for the N-type isomer (Fig 6)

By using the Karplus equation (1), the value of ${ }^{3} J_{\mathrm{H} 2, \mathrm{H} 3}$ was found to be 2 Hz for the S-type isomer and 10 Hz for the N-type isomer For the amide bond the values for the trans and cls forms in solution were 8.8 Hz and 63 Hz , respectively (Table 2)

Fig 3 Difference NOE spectra with selective arradiation of H 3 p (top), ${ }^{1} \mathrm{H}$ NMR spectra with selective irradation of H 3 p (bottom)

(a)trans

(b) Cls

Fig 4 Stereoscopic views of the molecular in $\mathrm{CD}_{3} \mathrm{OD}$ (a) trans form, (b) cis form

(a)

(b)

(c)
C2-C3
C3-C4

C4-C5

Fig 5 Newman projectıons along (a) C2-C3, (b) C3-C4, and (c) C4-C5

Fig 6 Structure of S - and N-types of proline ring in MK-421

If one supposes that α_{1} and α_{2} are the molar ratios of S-type isomer in trans and cls conformations, respectively, the following equations are obtained

$$
\begin{array}{ll}
2(\mathrm{~Hz}) \alpha_{1}+10(\mathrm{~Hz})\left(1-\alpha_{1}\right)=88(\mathrm{~Hz}) & \alpha_{1}=015(\text { trans }) \\
2(\mathrm{~Hz}) \alpha_{2}+10(\mathrm{~Hz})\left(1-\alpha_{2}\right)=63(\mathrm{~Hz}) & \alpha_{2}=0.46(\mathrm{css})
\end{array}
$$

In the trans form, the occurrence ratio of S - and N-type isomers is 1585 The prevalence of N-type isomer over S-type isomer may be due to the tendency of the carbonyl group to hydrogen bond with the carboxyl group In the czs form, the corresponding ratio is 4654 , that $1 \mathrm{~s}, S$ - and N-type isomers are present in almost the same proportion (in contrast to the case of the trans form) because the carbonyl and carboxyl groups in the $c z s$ form are oriented in opposite directions, and they do not influence each other

The comparison of the conformations of trans and cls forms obviously confirms results obtained using the NMR techniques in solution

CONCLUSIONS

Use of bond angles and bond lengths obtained for MK-421 from NMR studies in solution have enabled us to postulate the favoured spatial orientation of functional groups in solution which are important for binding to the enzyme ACE. We conclude that the trans conformation of MK-421 is favoured for binding to angıotensin converting enzyme

ACKNOWLEDGEMENTS

The authors are indebted to Dr. Isao Ando of Tokyo Institute of Technology for bringing this problem to our attention and also to Dr Shinji Ando of Tokyo Institute of Technology for drawing the stereoscopic views of MK-421 with the program GONCHAN We sincerely thank the Banyu Pharmaceutical Laboratory for the gift of the sample

REFERENCES

1 C H Hassall, A Krohn, C J Moody and W A Thomas, FEBS Lett, 147 (1982) 175
2 M A Ondettı and D W Cushman, Annu Rev Brochem, 51 (1982) 283
3 W B Abrams, R O Davies and H J Gomez, J Hypertension, 2 (1984) 31
4 P R Andrews, J M Carson, A Casellı, M J Spark and R Woods, J Med Chem, 28 (1985) 393
5 Y In, M Shibata, M Do1, T Ishida, M Inoue, Y Sasakı and S Mormoto, J Chem Soc, Chem Commun , (1986) 437
6 G Precıgoux, S Geoffre and F Leroy, Acta Crystallogr, Sect C, 42 (1986) 1022
7 M Karplus, J Am Chem Soc , 85 (1963) 2870
8 J L Marshall (Ed), Carbon-Carbon and Carbon-Proton NMR Couplings, Verlag Chemie, Deerfield Beach, FL, 1983, p 22

