

Total assignment of the ¹H and ¹³C NMR data for felodipine and its derivatives

Jihyun Jung,¹ Laehee Kim,¹ Chang Sik Lee,² Yoon Hwan Cho,² Seung-Ho Ahn² and Yoongho Lim¹*

¹ Department of Applied Biology and Chemistry, Konkuk University, Seoul 143-701, Korea

² Central R&D Center, Korea United Pharm Inc., Chungnam 339-840, Korea

Received 23 December 2000; Revised 21 February 2001; Accepted 23 February 2001

The ¹H and ¹³C NMR data for felodipine and its derivatives were completely assigned. Felodipine has 3-ethyl and 5-methyl esters which make the 1,4-dihydropyridine asymmetric. It is, however, difficult to distinguish 2,6dimethyl groups in the NMR spectra. With the help of NOESY and computer-aided molecular modeling, these

 $\begin{array}{c} \begin{array}{c} & 4' \\ & 5' \\ & 6 \\ & & 6 \end{array} \\ \begin{array}{c} CH_{5}OOC \\ 5b \\ & 5a \\ & 5 \\ & & 5 \end{array} \\ \begin{array}{c} CH_{5}OOC \\ & & 4 \\ & & 3a \\ & & 3b \\ & & 3c \\ & & 3a \\ & & 3b \\ & & 3c \\ & & 3b \\ & & 3c \\ & & & \\ \end{array} \\ \begin{array}{c} COOCH_{2}CH_{3} \\ & & 3a \\ & & 3b \\ & & 3c \\ & & & \\ & & & \\ CH_{3} \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Felodipine, 1

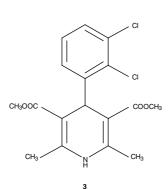
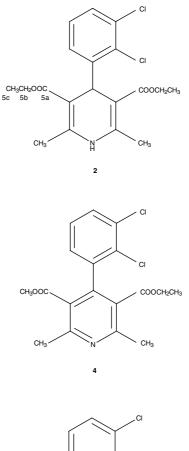
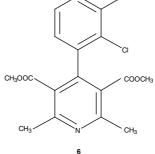


Figure 1. Structures and nomenclature of felodipine and its derivatives.


groups can be assigned. Whereas the 1,4-dihydropyridine of felodipine is connected through a methine carbon to a dichlorophenyl ring, the aromatic pyridine of felodipine derivatives is connected through a quaternary carbon. As a result, the three-dimensional conformations between the pyridine ring and the phenyl ring have important implications. Copyright © 2001 John Wiley & Sons, Ltd.

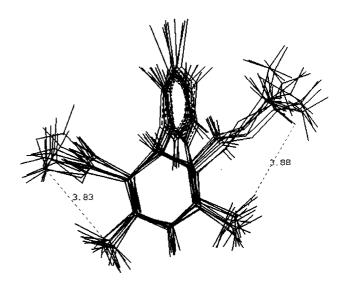

KEYWORDS: NMR; ¹H NMR; ¹³C NMR; felodipine; structure

INTRODUCTION

Felodipine is a calcium channel blocker that is used for management of hypertension.¹ As shown in Fig. 1, felodipine (1) is a 1,4dihydropyridine derivative belonging to the same group as the calcium channel blocking drugs nifedipine, amlodipine, isradipine and nimodipine.² Felodipine can be constructed through organic

*Correspondence to: Y. Lim, Department of Applied Biology and Chemistry, Konkuk University, Hwayang-Dong 1, Kwangjin-Ku, Seoul 143-701, Korea. E-mail: yoongho@konkuk.ac.kr

synthesis.³ Several impurities, which are all felodipine derivatives (Fig. 1), are produced during this synthesis. Whereas felodipine has 3-ethyl and 5-methyl ester groups, derivatives **2** and **3** have a 3,5-diethyl and a 3,5-dimethyl group, respectively. Unlike felodipine, derivatives **4**, **5** and **6** contain the aromatic pyridine instead of 1,4-dihydropyridine. Even though felodipine contains the asymmetric functional groups 3-ethyl ester and 5-methyl ester, there is only a one carbon difference. Therefore, it is difficult to assign the ¹H and ¹³C NMR data completely. Yiu and Knaus³ reported ¹H NMR data for felodipine but could not distinguish the 2,6-dimethyl groups. Here, these groups were completely assigned with the help of NOESY and computer-aided molecular modeling (CAMM). The ¹³C NMR data for felodipine were also completely assigned. In addition, the ¹H and ¹³C NMR data for the five felodipine derivatives **2–6** present as impurities were determined.


Whereas the 1,4-dihydropyridine group of felodipine and derivatives 2 and 3 is connected through a methine carbon to the dichlorophenyl ring, the aromatic pyridine of derivatives 4, 5 and 6 is connected through a quaternary carbon. As a result, the three-dimensional conformations between the pyridine ring and the phenyl ring become significant. These conformations were studied using CAMM.

RESULTS AND DISCUSSION

Felodipine has two esters, one of which is a methyl group and the other an ethyl group. Two 13 C peaks at 50.97 and 59.30 ppm belong to these groups. The former is a quartet that is determined by DEPT and the latter is a triplet. Therefore, the peaks at 50.97 and 59.30 ppm are assigned to C-5b and C-3b, respectively. In HMQC, the 13 C signal at 59.30 ppm is correlated with the 1 H signal at 3.94 ppm, which must be H-3b. H-3c is determined by COSY because a cross peak between 3.94 and 1.06 ppm is observed. The peak at 166.98 ppm is assigned to C-3a based on the vicinal coupling between C-3a and H-3b observed in HMBC. Among 18 signals in the 13 C NMR spectrum, that at 167.51 ppm should be C-5a, which is another carboxylic group. The 13 C doublet peak observed at 38.30 ppm must be C-4.

The 1,4-dihydropyridine ring is neither magnetically nor structurally equivalent, but rather is quasi-symmetric because only one methylene group in the esters imparts an asymmetric character. As a result, it is difficult to distinguish C-2a from C-6a, C-3 from C-5 and C-2 from C-6. Two ¹³C quartet peaks at 18.42 and 18.48 ppm can be assigned to C-6a and/or C-2a. Based on HMQC, the two¹H peaks at 2.24 and 2.25 ppm can be assigned to H-6a and/or H-2a. In order to distinguish these two, a CAMM calculation was performed. As shown in Fig. 2, the distance between H-3b and H-2a is 3.88 Å and that between H-5b and H-6a is 3.83 Å. Therefore, NOEs should be observed. When the ¹H peak at 3.49 ppm (H-5b) is saturated, the peak at 2.24 ppm shows an NOE value of 0.4% [Fig. 3(a)]. In this manner, an NOE value of 0.6% between 3.94 ppm (H-3b) and 2.25 ppm is observed [Fig. 3(b)]. These results are informative for H-6a and H-2a, which are located at 2.24 and 2.25 ppm, respectively. C-6a and C-2a are assigned to the signals at 18.42 and 18.48 ppm, respectively, from the HMQC data. Since the geminal coupling between H-2a and C-2 is observed in HMBC, the ¹³C chemical shift of C-2 is 146.11 ppm. The $^{13}\mathrm{C}$ peak at 146.14 ppm should be C-6. C-3 is determined based on the vicinal coupling between H-2a and C-3 in HMBC, which is 102.10 ppm. The 13 C singlet peak at 101.72 ppm must be C-5. As a result, with the help of NOESY and CAMM, C-2a, C-6a, C-3, C-5, C-2 and C-6 are completely determined

Since C-4 is coupled with H-6' in HMBC, the ¹H peak at 7.30 ppm is assigned to H-6'. H-5' and H-4' can be determined from the COSY spectrum and C-6', C-5' and C-4' can be determined from HMQC. H-4' is coupled with two ¹³C peaks at 129.80 and 131.72 ppm in HMBC, indicating C-3' and/or C-2'. However, they cannot be distinguished from these data. Because H-4 is coupled with the ¹³C peak at 129.80 ppm in HMBC, however, the peak must be C-2'. The peak at 131.72 ppm is automatically assigned to C-3'. Seventeen ¹³C signals were determined, with the exception of 149.43 ppm, which is assigned to C-1'. In HMBC the couplings of C-1' with H-4 and H-5' clarify the assignment. The ¹H signal observed at 8.90 ppm is not correlated with any ¹³C peak in HMQC. However, the peak at 8.90 ppm

Figure 2. Distances between H-3b and H-2a and between H-5b and H-6a obtained from CAMM calculation.

should be H-1. The complete assignments of the 1 H and 13 C NMR data of felodipine are listed in Table 1.

Felodipine derivatives **2** and **3** have symmetric 1,4-dihydropyridine rings. Therefore, C-3a exhibits the same chemical shift as C-5a. Likewise, the pairs C-3b and C-5b, C-3c and C-5c, C-3 and C-5, C-2 and C-6, and C-2a and C-6a show the same chemical shifts. Derivatives **2** and **3** have the same dichlorophenyl group as felodipine. Therefore, their chemical shifts are expected to be nearly identical with those of felodipine. The complete assignments of the ¹H and ¹³C NMR data for derivatives **2** and **3** are listed in Tables 2 and Table 3, respectively.

Unlike felodipine and derivatives 2 and 3, derivative 4 has an aromatic pyridine ring. The ¹H and ¹³C chemical shifts of its dichlorophenyl group are expected to be the same as those for felodipine. However, the chemical shifts of the pyridine ring should be assigned separately. C-3a, C-3b, C-3c, C-5a and C-5b can be assigned in the same manner as used for felodipine. Based on the long-range coupling between H-6' and C-4 in HMBC, the C-4 peak is 143.81 ppm. Among the six carbons of the dichlorophenyl ring, C-1' exhibits a different chemical shift but can be assigned by the long-range coupling between H-5' and C-1' in HMBC.

The pairs C-2a and C-6a, C-3 and C-5, and C-2 and C-6 must now be distinguished. NOESY analysis and CAMM calculations were performed. According to the CAMM calculation, the distance between H-3b and H-2a is 3.88 Å and that between H-5b and H-6a is 3.83 Å. Therefore, NOEs are expected to be observed. When the 1 H peak at 3.51 ppm (H-5b) is saturated, the peak at 2.55 ppm shows an NOE value of 0.7%. In this manner, an NOE value of 0.7% between 3.97 ppm (H-3b) and 2.56 ppm is observed. The results are indicative regarding H-6a and H-2a, which are located at 2.55 and 2.56 ppm, respectively. In addition, from HMQC, C-6a and C-2a are assigned to 23.29 and 23.36 ppm, respectively. Since geminal coupling between H-2a and C-2 is observed in HMBC, the ¹³C chemical shift of C-2 is 156.44 ppm. The $^{13}\mathrm{C}$ peak at 156.61 ppm should be C-6. C-3 is determined based on the vicinal coupling between H-2a and C-3 in HMBC, which is 125.99 ppm. The ¹³C singlet peak at 126.04 ppm must be assigned to C-5. The complete assignments of the 1 H and 13 C NMR data for derivative 4 are listed in Tables 2 and 3, respectively. Derivatives 5 and 6 have symmetric pyridine rings so their assignments can be finished based on the results for derivative 4.

The three-dimensional structures of felodipine and derivative 4 were studied using CAMM. For felodipine, C-4 has a tetrahedral structure. The dichlorophenyl ring is placed in front of the pyridine ring by 125° and H-4 is placed at the back of the pyridine ring by 117°. For derivative 4, however, the dichlorophenyl ring is twisted in relation to the pyridine ring by 179°, and C-4', C-1', C-4' and N-1 are placed on the same central axis because of the aromatic pyridine ring.

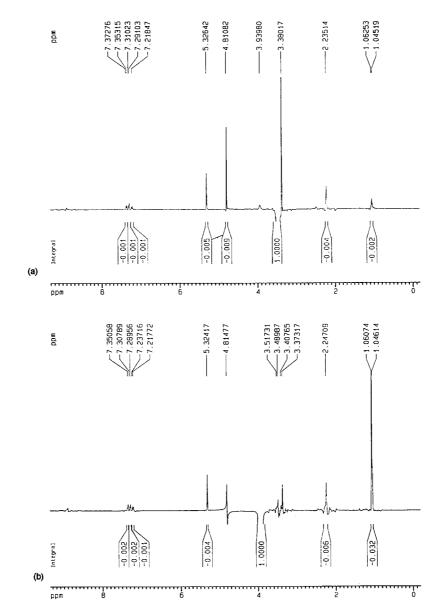


Figure 3. (a) NOE spectra between H-3b and H-2a and (b) H-5b and H-6a of felodipine.

$\delta^{13}C$	CHn	$\delta^1 \mathrm{H}\left(J,\mathrm{Hz}\right)$	HMBC	COSY	Assignment
14.43	q	1.06 (t, 7.1)		H-3c/H-3b	C-3c
18.42	q	2.24 (s)			C-6a
18.48	q	2.25 (s)	C-2a/H-1		C-2a
38.30	d	5.33 (s)	C-4/H-6′		C-4
50.77	q	3.49 (s)			C-5b
59.30	t	3.94 (m)	C-3b/H-3c	H-3b/H-3c	C-3b
101.72	s	_	C-5/H-4		C-5
102.10	s	_	C-3/H-2a, C-3/H-1		C-3
128.32	d	7.22 (t, 7.8)	C-5′/H-6′	H-5′/H-4′, H-5′/H-6′	C-5′
128.42	d	7.37 (dd, 1.7, 7.7)		H-4′/H-5′	C-4′
129.80	s	_	C-2'/H-4		C-2′

(continued overleaf)

$\delta^{13}C$	CHn	$\delta^1 \mathrm{H}\left(J,\mathrm{Hz}\right)$	HMBC	COSY	Assignment
129.93	d	7.30 (dd, 1.7, 7.9)	C-6'/H-4'	H-6′/H-5′	C-6′
131.72	s	_	C-3'/H-4', C-3'/H-5'		C-3′
146.11	s	_	C-2/H-2a, C-2/H-4		C-2
146.14	s	_			C-6
149.43	s	_	C-1′/H-4, C-1′/H-5′		C-1′
166.98	s	_	C-3a/H-4, C-3a/H-3b		C-3a
167.51	s	_	C-5a/H-5b		C-5a
_	_	8.90 (s)			N-1

Table 2. Assignments of ¹H NMR data for felodipine and its derivatives

	1	2	3	4	5	6
3c	1.06 (t, 7.1)	1.07 (t, 7.1)	_	0.83 (t, 7.1)	0.77 (t. 7.1)	_
5c	—	1.07 (0,7.11)	—	—	0117 (0,711)	—
6a	2.24 (s)	2.24 (s)	2.25 (s)	2.55 (s)	2.50 (s)	2.48 (s)
2a	2.25 (s)			2.56 (s)		
4	5.33 (s)	5.32 (s)	5.34 (s)	—	—	—
5b	3.49 (s)	205()	2 40 ()	3.51 (s)	201()	2 (1)
3b	3.94 (m)	3.95 (m)	3.49 (s)	3.97 (m)	3.91 (m)	3.44 (s)
5′	7.22 (t, 7.8)	7.22 (t, 7.8)	7.23 (t, 7.8)	7.41 (t, 8.0)	7.34 (t, 7.9)	7.34 (t, 7.9)
4′	7.37	7.37	7.36	7.69	7.64	7.61
4	(dd, 1.7, 7.7)	(dd, 1.7, 7.8)	(dd, 1.7, 7.8)	(dd, 1.5, 8.0)	— 3.91 (m) 7.34 (t, 7.9)	(dd, 1.4, 8.1)
(1	7.30	7.30	7.29	7.16	7.1	7.09
6′	(dd, 1.7, 7.9)	(dd, 1.7, 7.8)	(dd, 1.7, 7.8)	(dd, 1.5, 8.0)		(dd, 1.4, 7.7)
N1	8.90 (s)	8.87 (s)	8.94 (s)	_	_	_

	1	2	3	4	5	6
3c	14.43	14.5	_	13.51	13.5	_
5c	_			_		_
6a	18.42	10 E	18.4	23.29	23.2	23.4
2a	18.48	18.5		23.36		
4	38.30	38.4	38.2	143.81	143.7	143.9
5b	50.77	59.3	50.0	52.63	61.4	52.6
3b	59.30	59.5	50.8	61.43		
5	101.72	101.0	101.9	126.04	126.1	125.9
3	102.10	101.9		125.99		
5′	128.32	128.26	128.3	128.19	128.1	128.2
4'	128.42	128.39	128.5	130.98	130.87	131.0
2′	129.80	129.9	129.7	130.59	130.85	130.4
6′	129.93	130.1	129.8	129.09	129.2	128.9
3′	131.72	131.7	131.8	132.07	132.2	132.0
2	146.11	146.0	148.2	156.44	156.5	156.6
6	146.14			156.61		
1′	149.43	149.6	149.5	137.46	137.6	137.4
3a	166.98	167.1	167.5	166.28	166.3	166.9
5a	167.51			166.90		

Even though felodipine contains the asymmetric functional groups 3-ethyl ester and 5-methyl ester, these groups differ from each other by only one methylene group. It is, therefore, difficult to assign the ¹H and ¹³C NMR data completely. The ¹H NMR data were completely assigned by Yiu and Knaus,³ but H-2a and H-6a were not distinguished. The ¹³C NMR data were also determined. In addition, the NMR data for impurities occurring in felodipine synthesis were completely assigned.

EXPERIMENTAL

Materials

Felodipine (1) was prepared according to a published procedure.³ Derivatives 2-6 were synthesized according to published procedures.^{4,5}

NMR spectra

All NMR measurements were performed on a Bruker Avance 400 spectrometer system (9.4 T) at 298 K. The ¹H NMR, ¹³C NMR, DEPT, COSY, HMQC, HMBC, and NOESY spectra were collected in DMSO- d_6 with TMS as an internal reference. The concentration of the samples was 50 mM. For ¹H NMR analysis, 32 transients were acquired with a 1 s relaxation delay using 32K data points. The 90° pulse was 9.7 µs with a spectral width of 4000 Hz. ¹³C NMR and DEPT spectra were obtained for a spectral width of 8000 Hz, collecting 64K data points. The 90° pulse was 9.6 µs. Two-dimensional

spectra were acquired with 2048 data points for t_2 and 256 for t_1 increments.

Calculations

All calculations were performed using software from MSI (San Diego, CA, USA) on a Silicon Graphics INDY R4400 workstation. The potentials and partial charges were arranged using a consistent-valence force field and the calculations were performed for 500 ps. Among 500 calculated structures, 10 structures with the lowest total energy were superimposed.

Acknowledgements

This paper was supported by Konkuk University in 2000.

REFERENCES

- American Hospital Formulary Service. *Drug Information*, McEvoy GK (ed). American Society of Hospital Pharmacists: Bethesda, MD, 1994.
- Thomas RE. In Burger's Medicinal Chemistry and Drug Discovery, vol. 2, Wolff ME (ed). John Wiley & Sons: New York, 1996; 215.
- 3. Yiu S, Knaus EE. Org. Prepa. Proced. Int. 1996; 28: 91.
- 4. Berntsson PB, Carlson SI, Gaarder JO, Ljung BR. US Patent 4264611, 1981.
- 5. Pfister JR. Synthesis 1990; 689.