
0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 1

FESTAL: Fault-Tolerant Elastic Scheduling
Algorithm for Real-Time Tasks in

Virtualized Clouds
Ji Wang, Weidong Bao, Xiaomin Zhu, Member, IEEE, Laurence T. Yang, Senior Member, IEEE, and

Yang Xiang, Senior Member, IEEE

Abstract—As clouds have been deployed widely in various fields, the reliability and availability of clouds become the major concern of
cloud service providers and users. Thereby, fault tolerance in clouds receives a great deal of attention in both industry and academia,
especially for real-time applications due to their safety critical nature. Large amounts of researches have been conducted to realize fault
tolerance in distributed systems, among which fault-tolerant scheduling plays a significant role. However, few researches on the fault-
tolerant scheduling study the virtualization and the elasticity, two key features of clouds, sufficiently. To address this issue, this paper
presents a fault-tolerant mechanism which extends the Primary-Backup (PB) model to incorporate the features of clouds. Meanwhile,
for the first time, we propose an elastic resource provisioning mechanism in the fault-tolerant context to improve the resource utilization.
On the basis of the fault-tolerant mechanism and the elastic resource provisioning mechanism, we design novel fault-tolerant elastic
scheduling algorithms for real-time tasks in clouds named FESTAL, aiming at achieving both fault tolerance and high resource utilization
in clouds. Extensive experiments injecting with random synthetic workloads as well as the workload from the latest version of the
Google cloud tracelogs are conducted by CloudSim to compare FESTAL with three baseline algorithms, i.e., Non-Migration-FESTAL
(NMFESTAL), Non-Overlapping-FESTAL (NOFESTAL), and Elastic First Fit (EFF). The experimental results demonstrate that FESTAL
is able to effectively enhance the performance of virtualized clouds.

Index Terms—cloud, fault-tolerant scheduling, elasticity, primary-backup model.

F

1 INTRODUCTION

The cloud, usually supported by virtualized data centers, has
become a revolution paradigm for the on-demand provisioning
of applications, platforms, and computing resources in a “pay-
as-you-go” manner. Empowered by the large-scale resources in
data centers and the virtualization technology, the cloud gives
users the illusion of unlimited computing resources whose
provisioning is elastic according to the users’ demand [1].
While cloud computing enjoys numerous advantages, the large
cloud data centers incur a high resources failure probability
due to the increased functionality and complexity of the large
systems [2]. This phenomenon is even more noticeable in most
cloud service providers like Google, since they are built on
inexpensive commodity hardware whose failure probability is
expected to be much higher.

On the other hand, an increasing number of enterprises and
research institutes have deployed their applications in clouds.
Noticeably, many applications, e.g., financial transactions and
scientific computing, are with real-time nature, where the cor-
rectness depends not only on the computation results, but also

• Ji Wang, Weidong Bao and Xiaomin Zhu are with the School of Infor-
mation System and Management, National University of Defense Tech-
nology, Changsha, Hunan, P. R. China, 410073. E-mail:{wangji, wdbao,
xmzhu}@nudt.edu.cn

• Laurence T. Yang is with the Department of Computer Science, St.
Francis Xavier University, Antigonish, NS, B2G 2W5, Canada. E-mail:
ltyang@stfx.ca

• Yang Xiang is with the School of Information Technology, Deakin Universi-
ty 221, Burwood, VIC 3125, Australia. E-mail: yang.xiang@deakin.edu.au

on the time instants at which they become available [3]. On
account of the deadline-bound requirements of applications,
it is essential to preserve the ability to provision computing
services despite the occurrence of failures. Therefore, Fault
tolerance for real-time tasks becomes a common challenge for
clouds.

Scheduling is an efficient approach to achieving fault tol-
erance by allocating multiple copies of tasks on different
computing instances. Among the researches on fault-tolerant
scheduling, the Primary-Backup (PB) model is a popular
scheme in which each task has two copies, namely, the
primary and the backup, executing on two different computing
instances for fault tolerance [4]. Extensive researches have
been conducted to devise effective fault-tolerant scheduling
algorithms based on the PB model in the traditional distributed
systems such as grids and clusters [3], [5], [6], [7], [8], [9].
However, differing from the traditional distributed systems,
clouds have distinct features:

• One of the vital technologies in cloud computing is
virtualization which makes VMs become the basic com-
puting instances, and enables VMs to migrate across the
multiple-hosts;

• The scale of cloud is elastic according to the users’
demand. It can be scaled up to satisfy the increased
resource requests while scaled down to improve the
resource utilization when the demand is relatively low.

The above features incur more difficulties for the research
in clouds. The virtualization technology splits the system into

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 2

two layers: hosts and VMs. One host’s collapse results in
multiple computing instances (i.e., VMs) failures, which is
much tougher to tackle. Meanwhile, the VM migration as
well as an elastic resource provisioning mechanism should
be developed when designing the fault-tolerant scheduling
algorithm to improve the system resource utilization, which
makes the research further complex.

To the best of our knowledge, few researches have studied
the above problems profoundly. As a result, it is hard for the
existing fault-tolerant scheduling algorithms to fully benefit
from clouds. Motivated by the need of high efficient fault-
tolerant scheduling for real-time tasks in virtualized clouds,
we gives substantial considerations to the virtualization and
the elasticity, and then develops FESTAL, i.e., Fault-tolerant
Elastic Scheduling algorithms for real-time TAsks in cLouds.
The main contributions of this work are as follows:

• We developed a novel fault-tolerant mechanism that
extends the conventional PB model to incorporate the
features of clouds;

• For the first time, we propose an elastic resource provi-
sioning mechanism in the fault-tolerant context to opti-
mize resource utilization while supporting fault tolerance
in clouds;

• Based on the fault-tolerant mechanism and the elastic re-
source provisioning mechanism, we designed an efficient
fault-tolerant scheduling algorithm − FESTAL;

• Extensive simulation experiments injecting with random
synthetic workloads as well as the workloads form the
Google tracelogs are conducted to validate the superiority
of FESTAL.

The rest of this paper is organized as follows: Section 2
reviews related work. The problem formulation is presented
in Section 3. Section 4 proposes the fault-tolerant mechanism.
Based on the analysis in Section 4, the scheduling algorithms
as well as the elasticity mechanism are developed in Section
5. Section 6 demonstrates the simulation experiments and the
performance analysis. Finally, the paper is concluded by a
summary and future work in Section 7.

2 RELATED WORK

It is a challenging work to realize fault tolerance in distributed
systems while optimizing resource utilization and task perfor-
mance. To accomplish it, two fundamental technologies are
widely applied: resubmission and replication [10]. Resubmis-
sion strives to re-execute the tasks on other normal computing
instances after a failure. In MapReduce [11], to handle worker
failures, the tasks on a failed worker are reset back to their
initial states, and re-execute on other workers. Plankensteiner
et al. proposed a new heuristic named Resubmission Impact to
achieve fault tolerance in distributed systems [12]. Nonethe-
less, the resubmission may significantly delay the finish time
of tasks after failures, which is catastrophic for real-time tasks
due to their strict timing requirements. The system using
replication technology executes several copies of the same
task to support fault tolerance while guaranteeing finishing
tasks before their deadlines. However, replication suffers from

relatively large resource consumption, and results in a poor
performance of the system.

Based on the replication technology, fault-tolerant schedul-
ing tries to schedule the copies of tasks in an efficient manner
that can enhance the schedulability, reliability and flexibility
of computing systems effectively. Large amounts of research-
es have been conducted to develop efficient fault-tolerant
scheduling algorithms, among which the Primary-Backup (PB)
model is a widely used model where each task is replicated
into two copies, i.e., the primary and the backup, scheduled on
two different computing instances for fault tolerance [5], [6].
In order to reduce the extra resource consumption of backups,
an effective technique called overlapping is investigated. By
the overlapping technique, the backups are able to overlap
in the same time slot on the same computing instances [4].
Qin and Jiang studied the backups overlapping of dependent
tasks and designed a fault-tolerant scheduling algorithm in
heterogeneous systems [3]. Nonetheless, the algorithm is static
in nature, and not suitable for dynamic scheduling. In many
scenarios, tasks are aperiodic, the arrival time and the dead-
line of which are unknown in advance, requiring dynamic
scheduling algorithm. Based on the overlapping technique,
Zheng et al. developed two dynamic algorithms named MRC-
ECT and MCT-LRC to schedule backups of independent and
dependent tasks, respectively [7]. In [9], the load-balancing
technique as well as the overlapping technique were integrated
with fault-tolerant scheduling to improve the performance of
grids. Note that the backups in these literatures belong to the
passive backup scheme, i.e., a backup is allowed to execute
only if its primary fails. This scheme requires that the task
has enough time laxity for backups, which may be unrealistic
in practice. On the contrary, the active backup scheme allows
backups to execute concurrently with its primaries, that is to
say a backup can begin to execute even though its primary
does not fail. Al-Omari et al. investigated how to adaptively
control the backup scheme based on the task’s time laxity [13].
Zhu et al. analyzed the overlapping technique with both the
passive and active backup scheme, and proposed a QoS-aware
fault-tolerant scheduling algorithm in heterogeneous clusters
[8]. Although these algorithms exhibit good performances in
traditional distributed systems, they have two common draw-
backs when taking the features of clouds into account: (1) the
virtualization technology is not considered, and the constraints
of VM migration are not analyzed when using the PB model;
(2) the elasticity of the system is not studied in the above
literatures. Therefore, the existing fault-tolerant scheduling
algorithms for the traditional systems are not suitable when
applied to clouds. Recently, Antony et al. managed to devise
a fault-tolerant scheduling algorithm based on the PB model
in clouds to achieve fault tolerance as well as load-balancing
[14]. However, neither the deadline restriction of real-time
tasks nor the methods of improving the resource utilization
is studied. In addition, none of the above literatures considers
the resource management while scheduling tasks.

Nowadays, the resource management in clouds is a research
hotsopt where large numbers of literatures have been produced.
Samimi et al. proposed a new market model CDARA to
optimize the resource allocation in clouds, which can generate

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 3

higher revenues for both users and providers [15]. Warneke
et al. developed a dynamic resource allocation framework
for the parallel data processing in clouds; it enables the
dynamic allocation and adjustment of resources during the
execution of tasks [16]. Hsu et al. presented an energy-aware
resource management technique by consolidating VMs among
virtual clusters to restrict CPU use below a specified threshold
[17]. These literatures focused on how to maximize revenue
and minimize cost by optimizing the resource allocation in
clouds, while no elastic resource provisioning was discussed.
Sharma et al. proposed Kingfisher, a cost-aware system that
efficiently supports for elasticity in clouds [18]. Beloglazov
et al. developed some heuristics for real-time dynamic al-
location of VMs to improve the system resource utilization
by applying live migration, and switching idle hosts to sleep
mode [19]. Vasic et al devised a framework DejaVu that
enables the system to quickly adapt to workload changes
[20]. Graubner et al. proposed an elastic scheduling algorithm
that was based on VM consolidation to save energy [21].
Unfortunately, these works do not consider the task scheduling
when adjusting the resource provisioning. Recently, Le et
al. studied the adaptive resource management architecture as
well as the task scheduling policy to dynamically provision
resource according to the request workloads [22]. Zhang et al.
proposed a heterogeneity-aware resource management system,
HARMONY, that consists of dynamic resource provisioning,
resource allocation and task scheduling [23]. Nonetheless, all
these literatures do not take fault tolerance into consideration,
and hence they cannot support fault tolerance while optimizing
the resource management.

To the best of our knowledge, few previous literatures has
studied the fault-tolerant scheduling and the elastic resource
provisioning collectively. Thus, we design FESTAL that can
achieve both fault tolerance and high performance in terms of
resource utilization.

3 PROBLEM FORMULATION

In this section, we introduce the models and notions used in
this paper.

3.1 System model

The cloud in this work is characterized by an infinite set
H = {h1, h2, ...} of hosts with different processing power Pi

that is measured by Million Instructions per Second (MIPS,
a widely used metric [15], [24], [25], [26]), representing the
infinite heterogeneous computing resources in the cloud. Note
that not all the hosts in the cloud is active, the count of active
hosts is actually limited in practice. So the active hosts set
is modeled by Ha = {h1, h2, ..., h|Ha|}, Ha ⊆ H , while the
items in H−Ha represent the hosts in sleep status. The hosts
can be dynamically switched between the active and the sleep
status according to the system workload. Each host hi contains
multiple VMs denoted by a set Vi = {vi1, vi2, ..., vi|Vi|} of
VMs with different processing power Pij . Also, the VMs can
be dynamically created and cancelled based on the system

workload. Meanwhile, the VMs can migrate across the ac-
tive hosts in order to consolidate resources and improve the
resource utilization.

We use a set T = {t1, t2, ..., tn} of independent and non-
preemptive tasks. Each task ti has three attributes: arrival time
ai, deadline di, and task size tsi that is measured by Million
of Instructions (MI) similar to [25], [26], [27], [28]. Each
task ti has two copies denoted as tPi and tBi executed on
two different hosts for fault tolerance. In clouds, the copies
of tasks are allocated to VMs rather than hosts directly.
vm(tPi) and vm(tBi) denote the VMs where tPi and tBi are
allocated respectively, while host(tPi) and host(tBi) represent
the corresponding hosts. In a virtualized cloud, it usually takes
seconds to deliver the task to a VM, and deploy it. Then,
the task is ready for execution. rkl(t

P
i) and rkl(t

B
i) denote

the ready time of tPi and tBi on vkl. The execution time of
tasks’ copies is assumed to be estimated a priori, which is a
common assumption in scheduling research [29]. In this work,
we apply a widely used approach that is based on the task size
and the processing power to estimate the execution time [24],
[28], [30], [31]: on the VM vkl, the execution time ekl(ti) of
task ti’s copy is the ratio of its task size over the processing
power of this VM. For instance, vm(tPi) = vkl means that
the primary tPi of ti is scheduled on vkl that is on hk, and
host(tPi) = hk, ekl(ti) = tsi/Pkl.

Both the active backup and the passive backup schemes are
adopted in this work. When a task arrives at the system, its
primary is scheduled before its backup. The status of backup
scheduled on vkl, denoted by st(tBi), is adaptively determined
by the following expression:

st(tBi) =

{
passive if fP

i + ekl(ti) ≤ di,

active if fP
i + ekl(ti) > di.

(1)

To diminish the actual execution time of backups, we
introduce the technique developed in [32] to terminate the
execution of backups and reclaim the resource when the
backups’ corresponding primaries finish successfully.

Backup Copy

Controller

Real-Time

Controller

Resource Controller

A Task V11

A Task V12

A Task ...

A Task Vm1

A Task Vm2

A Task ...

h1

hm

Task

Task

Resource Adjustment

Information

Status Information

Status Information

Resource Adjustment

Information

Users

Tasks queue

Scheduler

Rejected Task

Fig. 1. Scheduling architecture.

The scheduling architecture is shown in Fig. 1. The sched-
uler consists of a backup copy controller, a real-time controller,
and a resource controller. This architecture adopts the star-
topology communication model that is widely studied in
clouds [14], [19], [26] where the scheduler is responsible
for scheduling all the tasks to the hosts, and monitoring

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 4

the status of all the hosts. The hosts in the cloud report
their status information such as tasks’ execution status to
the scheduler directly. Considering our work focuses on the
computing-extensive tasks, both the results of tasks and the
status information of hosts are assumed to be small-data.
Hence, the communication delay is fixed and small.

When a task arrives, its backup copy is produced by the
backup copy controller. Then, the backup copy controller
delivers the two copies of the task to the real-time controller
that is responsible for determining whether the two copies can
be finished before its deadline. If not, the real-time controller
informs the resource controller to add new resources. If no
schedule can be found to satisfy the tasks’ timing constraint
although new resources have been added, the task will be
rejected. In addition, the resource controller monitors the status
of resources. When the system is in light-workload where
some VMs keep idle for a long time, the resource controller
decides whether some VMs should be cancelled to improve
the resource utilization.

If the primary of a task finishes successfully, the success
information will be sent to the backup copy controller. Then,
the backup copy controller informs the VM where the task’s
backup is allocated to cancel the execution of the backup. On
the other hand, when a host fails the fault detection mechanism
will detect the failure whose information then will be reported
to the backup copy controller. In this situation, the backup
copy controller does not inform the VM to cancel the execution
of backups. And backups will execute based on the schedule
normally for fault tolerance.

3.2 Fault model
In this work, we focus on the failure of hosts. If a host fails,
the copies of tasks on this host will fail to finish. At one time
instant, at most one host may encounter a failure, that is to
say, if the primaries of tasks fail, the backups can always finish
successfully before another host fails. Failures can be either
transient or permanent, and are independent, affecting only a
single host.

In addition, there exists a failure detection mechanism
such as fail-signal and acceptance test [4], [5], providing
information of failures. New tasks will not be scheduled to
a known failed host.

Note that it is straightforward to extend this model to
tolerate multiple host failures. First of all, we divide the
hosts into several small groups. Then, the above fault model
is applied in each small group. Finally, the proposed fault-
tolerant mechanism is employed in each small group like that
in [4] to handle multiple host failures.

3.3 Scheduling objectives
The main objective in this study is to accommodate as many
tasks as possible, and enhance the system resource utilization
while adopting the PB fault-tolerant model. As a result,
the first scheduling objective is to maximize the number of
accepted tasks under timing constraints.

In order to enhance the resource utilization, the active time
of hosts (i.e., the time duration of hosts in active status)

should be fully utilized. Hence, another scheduling objectives,
maximizing the resource utilization, can be expressed as
follows:

RTH = max
ti∈T,hk∈H

{TET/HAT} , (2)

where TET denotes the total execution time of all tasks, TET
is equal to

∑
ti∈T

∑
hk∈H

∑
vkl∈Vk

ekl(t
P
i)x

P
ikl+ekl(t

B
i)x

B
ikl, x

P
ikl (or,

xB
ikl) equals 1 if and only if tPi (or, tBi) is allocated to vmkl,

otherwise xP
ikl = 0 (or, xB

ikl = 0); HAT represents the total
active time of all the hosts in a cloud, HAT equals

∑
hk∈H

atk,

atk denotes the active time of hk.
The above objectives suggest that our fault-tolerant schedul-

ing strategy strives to accommodate more tasks within timing
constraints and decrease the total active time of hosts.

4 FAULT-TOLERANT MECHANISM
The PB model is employed in our work for fault tolerance.
Since one host’s failure will result in the failure of all the
VMs on the host, two copies of one task is not allowed to be
scheduled on the VMs that are in the same host. The primary
and the backup of one task must be allocated on different hosts
for fault tolerance.

The conventional PB model consumes at least double re-
sources for the sake of fault tolerance. To efficiently boost the
resources utilization and thereby to improve the system perfor-
mance, we attempt to extend the PB model by introducing the
BB overlapping technique and the VM migration technique
in the context of virtualized clouds. In this section, we will
analyze the constraints of the BB overlapping and the VM
migration to achieve fault tolerance in a virtualized cloud.

4.1 BB overlapping
According to the analysis in [7], backups can overlap with
each other when their primaries are on different computing
instances in the traditional distributed systems. However, the
situation becomes much more complex in virtualized clouds.

Because the basic computing instances in virtualized clouds
are VMs rather than hosts. It is the fundamental premise of
BB overlapping that the primaries are not scheduled on the
VMs that are on the same host.

Theorem 1: If host(tPi) = host(tPj), then tBi cannot overlap
tBj , regardless of whether vm(tPi) = vm(tPj) or not.

Proof: Prove by contradiction. Suppose that host(tPi) =
host(tPj) = h1, and tBi overlaps tBj . When h1 fails, all the
VMs in h1 fail, incurring the failures of the copies on these
VMs, including tPi and tPj . Thus, tBi and tBj must execute.
Since tBi and tBj execute simultaneously in the same VM, a
timing conflict happens. Contradiction happens. Therefore, tBi
cannot overlap tBj .

Without loss of generality, we assume that tj is a newly-
arrived task to be scheduled and two copies of task ti have
been scheduled. In terms of the scheme of tBi , two cases
should be discussed respectively, that is st(tBi) = passive
and st(tBi) = active.
Case 1. st(tBi) = passive, host(tPi) ̸= host(tPj), vm(tBi) =
vm(tBj).

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 5

Fig. 2 depicts two scenarios of this case. In Fig. 2(a), tBj
adopts passive backup scheme. According to the assumptions
in Section 3.2, at most one host may encounter a failure at one
time instant, thus tBi can overlap tBj . Let LSTkl(t

B
j) denote the

latest start time of tBj on vkl. To satisfy the timing constraint
of task tj , we can derive the following equation:

LSTkl(t
B
j) = dj − ekl(tj). (3)

tBj adopts active backup scheme in Fig 2.(b). The execution
of tBj is divided into two parts: tBY

j that executes with tPj
concurrently and tBN

j that executes only if tPj fails and can
be terminated when tPj finishes successfully. The overlapping
between tBi and tBj is infeasible in this scenario.

Theorem 2: If st(tBi) = passive, st(tBj) = active, then tBi
cannot overlap tBj .

Proof: Prove by contradiction. Suppose tBi overlaps with
tBj . If host(tPi) fails, tBi is invoked. However, st(tBj) =
active, tBY

j also executes. In the same VM, tBY
j and tBi exe-

cute simultaneously. Contradiction happens. Thus, tBi cannot
overlap tBj .

ti
P

tj
B

tj
P

ti
B

Overlap

h1

h2

h3

v11

v21

v31

v32

djdi

(a)

ti
P

tj
B

tj
P

ti
B

Overlap

h1

h2

h3

v11

v21

v31

v32

didj

tj
BY
tj
BN

(b)

Fig. 2. Illustration examples of st(tBi) = passive.

Case 2. st(tBi) = active, host(tPi) ̸= host(tPj), vm(tBi) =
vm(tBj).

Fig. 3 depicts two scenarios of the case of tBi adopting active
backup scheme where tBi is composed of tBY

i and tBN
i . In Fig.

3(a), tBj is able to overlap tBi when the following theorem is
satisfied.

Theorem 3: Let ESTkl(t
B
j) denote the earliest start time of

tBj . On the VM vkl, vm(tBi) = vm(tBj) = vkl, If st(tBi) =
active, st(tBj) = passive, and tBi overlaps tBj , then

ESTkl(t
B
j) ≥ fP

i + ε, (4)

where ε is the time to cancel the execution of tBi if tPi finishes
successfully.

Proof: Prove by contradiction. Suppose that sBj < fP
i ,

and tBi overlaps tBj , so tBY
i overlaps tBj . When host(tPj)

fails, tBj is invoked. But tBY
i is executing, and cannot be

interrupted, which results in a timing conflict between tBY
i

and tBj . Contradiction happens. Therefore, ESTkl(t
B
j) must

be later than fP
i + ε.

tBj adopts active backup scheme in Fig. 3(b). But tBi is not
allowed to overlap tBj in this scenario, the proof of which
is similar to Theorem 2. If host(tPi) fails, the overlapping
between tBi and tBj will result in a timing conflict between tBi
and tBY

j .

ti
P

tj
B

tj
P

ti
B

Overlap

h1

h2

h3

v11

v21

v31

v32

djdi

ti
BY
ti
BN

(a)

ti
P

tj
B

tj
P

ti
B

Overlap

h1

h2

h3

v11

v21

v31

v32

di dj

tj
BY
tj
BN

(b)

Fig. 3. Illustration examples of st(tBi) = active.

4.2 VM migration

The overlapping technique improves the resource utilization
by reducing the backup’s usage of available processor time,
which nonetheless only functions at the VM level. Further
improvement is supposed to be achieved at the host level. The
VM migration, a widely used technique in the cloud resource
management, is able to further optimize the resource utilization
at the host level. In order to guarantee fault tolerance when
VMs migrate across hosts, the constraints of VM migration
are analyzed as below.

Theorem 4: Let fHkl be a set of hosts. fHkl =
{host(tPi)|∀ti ∈ T, vm(tBi) = vkl} ∪ {host(tBi)|∀ti ∈
T, vm(tPi) = vkl}. vkl cannot migrate to hj , ∀hj ∈ fHkl.

Proof: Prove by contradiction. Suppose that vkl migrates
to hj , ∀hj ∈ fHkl. Then, the primary and the backup of one
task are allocated on the same host. If this host fails, both the
primary and the backup fail to finish successfully. Obviously,
fault tolerance cannot be realized. Contradiction happens. As
a result, the migration is infeasible. An illustration example is
shown in Fig. 4(a).

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 6

Theorem 5: ∀ti ∈ T , vm(tPi) = vkl, if tBi overlaps tBj ,
then vkl cannot migrate to host(tPj).

Proof: Prove by contradiction. Suppose that vkl migrates
to host(tPj). Then, tPi and tPj are on the same host while
tBi overlaps tBj , which violates Theorem 1. Contradiction
happens. As a result, the migration is infeasible. An illustration
example is shown in Fig. 4(b).

ti
P

ti
B

tj
B

tj
Bh1

h2

h3

v11

v21

v31

v21'
ti
B

tj
P

(a) An example of Theorem 4.

ti
P

tj
P

ti
B tj

B

ti
P

h1

h2

h3

v11

v21

v31

v11'

Overlap

(b) An example of Theorem 5.

Fig. 4. Illustration examples of the constraints of the VM
migration.

5 FAULT-TOLERANT ELASTIC SCHEDULING
ALGORITHMS−FESTAL
In this section, we develop an elastic resource provisioning
mechanism in the context of fault tolerance. Then, based on
the fault-tolerant mechanism, we devise a novel fault-tolerant
scheduling algorithm FESTAL that incorporates the elastic
resource provisioning mechanism. The main goal of FESTAL
is to enhance the system schedulability and resource utilization
so long as achieving fault tolerance.

5.1 Elastic Resource Provisioning Mechanism
FESTAL incorporates an elastic resource provisioning mech-
anism that is able to dynamically adjust the resource provi-
sioning based on the resource request. The elastic resource
provisioning mechanism consists of the resource scaling-up
mechanism and the resource scaling-down mechanism. When
copies of tasks cannot be scheduled on the existing resources,
the resource scaling-up mechanism is called to augment the
resources. Meanwhile, if some resources are idle for a long
time during the operation of the system, the resource scaling-
down mechanism will work to eliminate the idle resources,
and so improve the resource utilization.

If a copy of task ti cannot be scheduled on any existing VM,
the resource scaling-up mechanism will be called to create a

new VM and add it into the system. The processing power
Pnew of the new VM satisfies the following expression:

rnew(ti) + tsi/Pnew + delay < di, (5)

where rnew(ti) denotes the ready time of ti on the new VM,
delay denotes the time delay coming from the creation time
of a new VM, the time delay of VM migration and the boot
time of new active hosts. The pseudocode for the scaling-
up mechanism is presented in Algorithm 1. The mechanism
first tries to allocate the new VM on the existing active hosts
(see lines 3-6). If there is no suitable active host, the system
migrates some VMs among the active hosts to make room for
the new VM (see lines 7-11). If it still fails, a host in sleep
status will be turned on, and then the new VM is allocated on
it (see lines 12-17).

Algorithm 1: Function scaleUpResources()
1 Select a kind of newVm satisfying the equation (5);
2 Sort Ha in a decreasing order by the remaining MIPS;
3 foreach hk in Ha do
4 if hk can accommodate newV m then
5 Create newVm on hk;
6 return newV m;

7 foreach hs in Ha do
8 Migrate the VM with minimal MIPS in hs to other hosts

with the fault-tolerant requirements of Theorems 4 and 5;
9 if hs can accommodate newV m then

10 Create newVm on hs;
11 return newV m;

12 Turn on a host hnew in H −Ha;
13 if the MIPS of hnew satisfies newV m then
14 Create newV m on hnew;
15 return newV m;
16 else
17 return NULL;

When some VMs are idle for a relatively long time, it means
that the system is in the light workload and some resources
are wasted. Thereby, the resource scaling-down mechanism
functions to cancel the idle VMs and switch some active hosts
to the sleep status for better resource utilization. For each VM,
we set a time instant Tcancel at which the VM is expected to
be cancelled. When a task’s copy is scheduled on the VM,
Tcancel is updated as follows:

• When a primary tPi is scheduled on the VM, Tcancel =
max{fP

i + Tidle, Tcancel};
• When a backup tBi is scheduled on the VM, Tcancel =

max{fP
i + Tidle, Tcancel}; if tPi encounters a fault, and

tBi is due to execute, Tcancel = max{fB
i +Tidle, Tcancel}.

Fig. 5 illustrates the updating of Tcancel. The VM will be
cancelled if no task executes on the VM during a period
of Tidle. In order to make full use of the resources during
Tidle and to reduce the resource consumption of backups,
backups can be scheduled to finish or even start after Tcancel

as backups may be deallocated if primaries finish successfully.
For example, in Fig. 5(a), tBi starts later than Tcancel. Because
tBi will be deallocated if tPi succeeds, it is a waste of resource
for v21 to be cancelled after the execution of tBi . However,

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 7

ti
P

ti
B

Time

Host 2

Host 1

v11

v12

v21

Tidle

v12 and v21 are cancelled

(a) tPi succeeds

ti
P

ti
B

Time

Host 2

Host 1

v11

v12

v21

Tidle

v21 is cancelledHost1 fails

(b) tPi fails

Fig. 5. Illustrations of the updating of Tcancel.

when tPi fails, tBi is due to execute for fault tolerance, and
so the Tcancel is postponed (in Fig. 5(b)). Furthermore, by
this approach the system can adaptively adjust the resource
provisioning according to the host reliability. When the hosts
are of high reliability (i.e., few hosts fail), more VMs for
backups will be cancelled to save resource, and vice versa.

Algorithm 2 presents the pseudocode for the scaling-down
mechanism. If there exists any VM whose idle time reaches
the preestablished threshold vkl.Tcancel, then this VM will be
canceled (see lines 2-3). After this operation, if the processing
power utilization of the host falls below the lower threshold
Ulow, the VMs on the host will try to migrate from this host
(see lines 4-14). If all the VMs on the host can migrate to other
hosts, the host will be switched to the sleep status to eliminate
the idle resource consumption (see lines 15-17). Otherwise, the
system gives up the migration operation of all the VMs on the
host (see line 19).

5.2 Algorithms for Scheduling Primaries and Back-
ups
The algorithms of FESTAL for scheduling primaries and
backups are in heuristic fashion. In order to reserve sufficient
time laxity for backups, the primaries should finish as early as
possible. Besides, according to Theorem 1, primaries should
not concentrate on several hosts, which otherwise makes
backups’ overlapping infeasible, and consequently results in
more resource consumption for backups. Hence, the primaries
scheduling should reach the following two objectives:

• The finish time of primaries should be as early as
possible;

• The primaries should be evenly scheduled on the active
hosts.

On the basis of the two objectives, we propose an improved
“As Early As Possible” (I-AEAP) strategy. The pseudocode
for the I-AEAP is presented in Algorithm 3. I-AEAP first

Algorithm 2: Function scaleDownResources()
1 foreach VM vkl in the cloud system do
2 if it reaches the time vkl.Tcancel then
3 Remove vkl from hk and cancel it;
4 if hk.utilization ≤ Ulow then
5 offTag ← TRUE;
6 foreach vkl in hk do
7 migTag ← FALSE;
8 foreach hi in Ha except hk do
9 if hi can accommodate vkl & the

migration meets fault-tolerant
requirements of Theorems 4 and 5 then

10 migTag ← TRUE;
11 break;

12 if migTag == FALSE then
13 offTag ← FALSE;
14 break;

15 if offTag then
16 Migrate VMs in hk to destination hosts;
17 Switch hk to sleep status and remove it from

Ha;
18 else
19 Give up the migration operation;

determines the candidate hosts on which fewer primaries are
scheduled: the top α% hosts with fewer primaries are chosen
as candidate hosts (see lines 1-2). Then, the VM where the
finish time of the primary is the earliest is chosen to execute
the primary (see lines 5-12). If there is no VM among the
VMs on the candidate hosts, the next top α% hosts will be
chosen for the next round of searching (see lines 13-16). With
the help of I-AEAP, the newly-arrived primary is scheduled on
the host with fewer primaries preferentially to make primaries
evenly scheduled while it also can finish as early as possible.
When it fails to find a suitable VM to finish the primary before
its deadline, the scaling-up mechanism is called to add a new
VM for the primary (see lines 17-18). If it still fails due to
the tight deadline, the task will be rejected (see line 23).

We now evaluate the time complexity of primaries schedul-
ing in FESTAL. Suppose we consider scheduling a primary
copy of task ti. Na denotes the number of active hosts in the
cloud. Nvm(k) represents the number of VMs on host hk.
Ntw(kl) represents the number of existing scheduled copies
on VM vkl. Nvm denotes the maximum number of Nvm(k)
among all the active hosts in the cloud. Ntw represents the
maximum number of Ntw(kl) among all the VMs on active
hosts.

Theorem 6: The time complexity of primaries scheduling
is O(NaNvmNtw +N2

a) in the worst situation.
Proof: For determining the earliest finish time of tPi on

VM vkl, all the existing scheduled copies are tested, so the
time complexity is O(Ntw(kl)). Then, it takes O(Nvm(k) ·
maxvkl∈Vk

{Ntw(kl)}) to scan all the VMs on host hk. Hence,
it takes O(NaNvmNtw) in the worst situation where all the
active hosts are tested.

Then it comes to the function scaleUpResources(). Firstly,
it takes O(Na) to allocate a new VM to an active host. For

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 8

Algorithm 3: Primaries Scheduling in FESTAL
1 Sort Ha in an increasing order by the count of scheduled

primaries;
2 Hcandidate ← top α% hosts in Ha;
3 find← FALSE; EFT ← +∞; v ← NULL;
4 while !all hosts in Ha have been scanned do
5 foreach hk in Hcandidate do
6 foreach vkl in hk.V mList do
7 Calculate the earliest finish time EFTkl(t

P
i);

8 if EFTkl(t
P
i) ≤ di then

9 find← TRUE;
10 if EFTkl(t

P
i) ≤ EFT then

11 EFT ← EFTkl(t
P
i);

12 v ← vkl;

13 if find == FALSE then
14 Hcandidate ←next top α% hosts in Ha;
15 else
16 break;

17 if find == FALSE then
18 v ←scaleUpResources();

19 if find == TRUE then
20 Allocate tPi to v;
21 Update the Tcancel of v;
22 else
23 Reject tPi ;

line 8 in Algorithm 1, it takes O(Na) to find a destination
host. Hence, the time complexity of adding new VMs by VM
migration (see lines 7-11) is O(N2

a). For allocating a new VM
to a new turned-on active host, the time complexity is O(1).
Therefore, the complexity of scaleUpResources() is O(Na +
N2

a +1) = O(N2
a) as N2

a is larger or at least equal to Na and
1. As a result, the overall worst-situation time complexity of
primary scheduling in FESTAL is O(NaNvmNtw +N2

a).
The backups are expected to be allocated on the hosts with

fewer primaries, and so that the hosts mainly accommodate
backups can be switched off timely when the system is of
high reliability and few backups are due to execute. Besides, in
order to make full use of the idle resources, the system should
try to schedule backups on the VM with the maximum Tcancel.
This policy can be attributed to the resource scaling-down
mechanism proposed above in which the allocation of backups
does not postpone the VM’s Tcancel in most cases. Therefore,
the choice of the VM with the maximum Tcancel can help
the system fully utilize the processor time during Tidle by
backups. In addition, the backups should try to adopt the
passive backup scheme for the reason that the passive backups
can be deallocated and are easier to overlap others than active
backups, which can further reduce the resource consumption
of backups. In conclusion, three scheduling policies are listed
as follows:

• The backups should concentrate on several active hosts;
• The backups should be scheduled on the VM with the

maximum Tcancel;
• The backups should adopt passive backup scheme as

much as possible.

Based on the three policies, an improved “As Late As
Possible” (I-ALAP) strategy is developed. The pseudocode
for the I-ALAP is presented in Algorithm 4. I-ALAP first
manages to find a proper VM from the hosts on which no
primaries are scheduled (see line 1). Then, I-ALAP allocates
the backup on the VM with the maximum Tcancel and the start
time of the backup is the latest among the VMs that are on
the candidate hosts (see lines 5-13). If no VM is found from
these hosts, I-ALAP chooses the hosts with fewer primaries
as the candidate hosts (see lines 14-17). When it fails to find
a suitable VM to finish the backup before its deadline, the
scaling-up mechanism is called to add a new VM for the
backup (see lines 18-19). If it still fails, both the primary and
the backup will be rejected (see line 24).

Algorithm 4: Backups Scheduling in FESTAL
1 Hcandidate ←the hosts on which no primaries are scheduled;
2 Hprimary ←Sort Ha −Hcandidate in an increasing order by

the count of scheduled primaries;
3 find← FALSE; v ← NULL; T ←MAX; LST ← 0;
4 while !all hosts in Hprimary have been scanned do
5 foreach hk in Hcandidate do
6 foreach vkl in hk.V mList do
7 Calculate the latest start time LSTkl(t

B
i);

8 if LSTkl(t
B
i) + ekl(ti) ≤ di then

9 find← TRUE;
10 if vkl.Tcancel < T ∥ vkl.Tcancel == T &

LSTkl(t
B
i) > LST then

11 T ← vkl.Tcancel;
12 LST ← LSTkl(t

B
i);

13 v ← vkl;

14 if find == FALSE then
15 Hcandidate ←next top α% hosts in Hprimary;
16 else
17 break;

18 if find == FALSE then
19 v ←scaleUpResources();

20 if find == TRUE then
21 Allocate tBi to v;
22 Update the Tcancel of v;
23 else
24 Reject tPi ; Reject tBi ;

Then, we analyze the time complexity of backups schedul-
ing in FESTAL. Suppose we consider scheduling a backup
copy of task ti. The nomenclatures are the same as those in
the analysis of primaries scheduling.

Theorem 7: The time complexity of backups scheduling is
O(NaNvmNtw +N2

a).
Proof: For determining the latest start time of tBi on VM

vkl, the time complexity is O(Ntw(kl)). So the complexity
for all the active hosts is O(NaNvmNtw). Considering the
complexity of scaleUpResources(), the overall time complexity
of backup allocation in FESTAL is O(NaNvmNtw +N2

a).

6 PERFORMANCE EVALUATION
To reveal the performance improvements of FESTAL,
we compare it with three baseline algorithms, i.e.,

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 9

TABLE 1
Parameters of workloads

Parameter Value(Fixed)−(Min,Max,Step)
task count(×104) (1) − (0.5,4,0.5)
task size(×105MI) ([1,2])
Interval time 1/λ (2) − (0,14,2)
baseDeadline(×102s) (4) − (1,4.5,0.5)

Non-Migration-FESTAL (NMFESTAL), Non-Overlapping-
FESTAL (NOFESTAL) and Elastic First Fit (EFF). The three
baseline algorithms are briefly described as follows:

• NMFESTAL: NMFSTAL is a variant of FESTAL. The
difference between FESTAL and NMFESTAL lies in
that NEFESTAL does not employ the VM migration
technique.

• NOFESTAL: NOFSTAL is a variant of FESTAL. Dif-
fering from FESTAL, the overlapping technique is not
employed in the NOFSTAL.

• EFF: EFF derives from the classical First Fit algorithm
that has been widely used in industry. To adapt First
Fit algorithm to virtualized clouds, the elastic resource
provisioning mechanism is integrated into EFF.

We compare these algorithms from the respect of the
following three metrics:

• Guarantee Ratio (GR) is defined to be the percentage of
tasks that are guaranteed to finish successfully among all
the submitted tasks;

• Hosts Active Time (HAT) is defined to be the total active
time of all the hosts in cloud, reflecting the resource
consumption of the system;

• Ratio of Task time over Hosts time (RTH) is defined to be
the ratio of the total tasks’ execution time over the total
active time of hosts, reflecting the resource utilization of
the system.

In order to ensure the repeatability of the experiments, we
use the approach of simulation to evaluate the performance
of aforementioned algorithms. CloudSim [24] is chosen to
simulate the cloud data center in our experiments. CloudSim,
supporting the seamless modeling, simulation, and experi-
mentation of large-scale cloud infrastructures, is a widely
recognized simulator in both industry and academia. The
detailed setting and parameters used in CloudSim are listed
as follows:

• Each host is modeled as performance equivalent to 1000,
1500, 2000 or 3000 MIPS;

• Four types of VMs with the processing power equivalent
to 250, 500, 700 and 1000 MIPS are considered;

• According to [33], the time required for turning on a host
and creating a VM is set as 90s and 15s, respectively.

6.1 Evaluation based on random synthetic work-
loads
In order to clearly observe the impacts of different parameters
of workloads on performance of clouds, we conduct the

experiments based on the random synthetic workloads. Tasks
are assumed to arrive at the cloud following Poisson distri-
bution with the average interval time 1/λ that is uniformly
distributed in the range [1/λ, 1/λ + 2]. The task sizes are
uniformly distributed in the range [1 × 105, 2 × 105] MI.
The deadline is designated as di = ai + deadlineT ime,
and deadlineT ime subjects to the uniform distribution,
U(baseDeadline, 4baseDeadline). In each group of experi-
ment, we change a single parameter while keeping the other
parameters fixed. Table 1 gives the parameters and their values.
Each experiment runs 50 times.

6.1.1 Performance impact of task count
In this experiment, we investigate the performance impact
of task count that increases from 5,000 to 40,000 with step
of 5,000. Fig. 6 depicts the performances of FESTAL, EFF,
NMFESTAL and NOFESTAL.

Fig. 6(a) shows that with the increase of task count, the
four algorithms all maintain high guarantee ratios, which can
be attributed to the infinite resources in the cloud. When the
task count increases, the system can satisfy the new request by
adding new resources. Despite of the infinite resources in the
cloud, there are still some tasks submitted to the system cannot
be accepted. This is because of the additional time needed
to create a new VM and turn on a new host, which causes
that tasks cannot start timely, and thus miss their deadlines.
Besides, it can be found that FESTAL and EFF have higher
guarantee ratios than NMFESTAL and NOFESTAL. However,
the reasons for the two algorithms are different. For FESTAL,
the comprehensive employment of the proposed techniques
and mechanisms enhances the schedulability of the system,
and hence it has a higher guarantee ratio. While the high
value of EFF mainly comes from the much more resource
consumption which is apparent in Fig. 6(b).

Fig. 6(b) demonstrates that the HATs of the four algorithms
keep ascending trend with the increase of task count. This
is explainable in that more active hosts are needed to exe-
cute more tasks accepted by the system. Additionally, EFF
and NMFESTAL perform much worse than FESTAL and
NOFESTAL in terms of HAT. The bad performance of EFF
argues that the classical scheduling algorithm is not suitable
for the fault-tolerant scheduling in clouds. This is because
without the I-AEAP and the I-ALAP, backups are mixed with
primaries on all the VMs of active hosts. The idle time of VMs
cannot be fully used by backups, and VMs cannot be cancelled
timely after the deallocating of backups. Hence, the active
hosts with theses VMs keep active, which definitely raises the
HAT. Besides, the poor exhibition of NMFESTAL indicates
that employing the VM migration technique is very efficient
in fault-tolerant scheduling. On one hand, when the task count
increases, current VMs can be consolidated to make some
room for creating new VMs, which avoids the consumption
caused by adding new active hosts. On the other hand, the
VMs in light-load host can migrate to other hosts and then
the idle hosts can be switched off, which further reduces the
HAT.

This advantage of FESTAL and NOFESTAL is further
exhibited in Fig. 6(c). The highest RTH of FESTAL suggests

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 10

0.5 1 1.5 2 2.5 3 3.5 4
80

85

90

95

100

Task Count (10
4
)

G
R

 (
%

)

FESTAL

EFF

NMFESTAL

NOFESTAL

(a)

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

Task Count (10
4
)

H
A

T
 (

1
06

s
)

FESTAL

EFF

NMFESTAL

NOFESTAL

(b)

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

Task Count (10
4
)

R
T

H

FESTAL

EFF

NMFESTAL

NOFESTAL

(c)

Fig. 6. Performance impact of task count.

that the comprehensive employment of the proposed methods
is able to boost the resource utilization effectively. In addition,
we can observe that the RTHs of FESTAL and NOFESTAL
keep a slight ascending trend with the increase of task count,
while those of EFF and NMFESTAL keep a decreasing trend.
This is reasonable in that EFF and NMFESTAL cannot make
full use of the resources, and have to add more active hosts
when more tasks are submitted, which as a result incurs
more waste of resources. On average, FESTAL outperforms
EFF, NMFESTAL and NOFESTAL 79.8%, 63.6% and 11.1%,
respectively.

6.1.2 Performance impact of arrival rate
A group of experiments are conducted in this section to ob-
serve the impact of arrival rate on the performance. Parameter
interval time 1/λ varies from 0 to 14 with an increment of 2.
The experimental results are shown in Fig. 7.

Fig. 7(a) demonstrates that when the interval time 1/λ
varies, FESTAL, EFF, NMFESTAL and NOFESTAL all have
relatively high guarantee ratios (above 90%), which also
owes to the infinite resources in the cloud. Nonetheless, the
guarantee ratio of NOFESTAL is the lowest. This is because
the backups cannot overlap other copies and consumes more
resources in NOFESTAL, affecting the scheduling of the
following tasks.

Fig. 7(b) shows that FESTAL requires smaller HAT than
EFF, NMFESTAL and NOFESTAL. The reason is similar to
that of Fig. 6(b). An interesting phenomenon is that the HAT
of NOFESTAL in 1/λ = 0 is much larger than those in other
situations. This is because tasks surge into the system almost
at one time instant, which makes the system have no time to
adjust existing resources. Thereby, the overlapping technique,
reducing the consumption of backups, is much more effective
to make full use of the existing resources to accommodate
more tasks, and avoids the large augment of resources.

From Fig. 7(c), it can be found that the RTHs of the
four algorithms decrease when the 1/λ ascends. This can
be explained that the interval time of the tasks’ arriving is
prolonged, but the idle time of the VMs does not reach the
threshold to cancel them. As a result, the VMs keep idle to
wait for the next submitted task, which decreases the resource
utilization. When the interval time changes, averagely, FES-
TAL outperforms EFF, NMFESTAL and NOFESTAL 35.5%,
47.1% and 17.8%, respectively.

6.1.3 Performance impact of deadline
The objective of this experiment is to investigate the impact of
task deadlines on the performance of the four algorithms. The
parameter baseDeadline varies from 100 to 450 with step 50.
Fig. 8 illustrates the experimental results.

In Fig. 8(a), it can be observed that the guarantee ratios of
the four algorithms increase sharply when the baseDeadline
is prolonged. Compared with the experimental results of task
count and arrival time, the impact of deadline on guarantee
ratio is much greater. This is explainable in that the tight
deadline makes adding new resources meaningless because of
the additional boot time. When the deadline is loose enough,
almost all the tasks can be scheduled in the four algorithms
in virtue of the infinite resources in the cloud.

We can observe from Fig. 8(b) that when baseT ime in-
creases, the HAT s of the four algorithms first increase, and
then keep stable values. This is because when the deadline
changes from tight to loose, more tasks can be accepted by the
system and thus more hosts keep active to accommodate these
tasks. When almost all the tasks are accepted by the system,
the HAT s keep stable values. Additionally, we can find that
the HAT s of EFF and NMFESTAL are much higher than
those of FESTAL and NOFESTAL, which can be attributed
to the similar reasons discussed in Fig. 6(b). It is worth
noting that the HAT of NMFESTAL is the largest when
baseDeadline =100, 150. We explain this observation by
the fact that when the deadline is tight, few tasks can be
accepted by the system, and the other algorithms using the VM
migration technique can efficiently utilize the existing resource
to schedule these small amounts of tasks, which thus avoids
starting more hosts.

It is shown in Fig. 8(c) that the RTHs of all the algorithms
increase when the baseDeadline increases except for that
of EFF. When baseDeadline=100,150, the RTH of EFF is
much higher than those in other situations. The reason of
this phenomenon lies in that when the deadline is very tight,
few backups can adopt the passive backup scheme, and few
backups can be cancelled during the execution. Therefore, the
system using EFF can make full use of the resources even
without the I-AEAP and I-ALAP. When the deadline becomes
looser, some idle resources cannot be eliminated timely by
EFF due to the similar reason in Fig. 6(b), and thus the RTH
decreases. When baseDeadline varies, FESTAL outperforms
EFF, NMFESTAL and NOFESTAL 36.0%, 43.3% and 14.8%

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 11

0 2 4 6 8 10 12 14
80

85

90

95

100

intervalTime

G
R

 (
%

)

FESTAL

EFF

NMFESTAL

NOFESTAL

(a)

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

intervalTime

H
A

T
 (

1
06

s
)

FESTAL

EFF

NMFESTAL

NOFESTAL

(b)

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

intervalTime

R
T
H

FESTAL

EFF

NMFESTAL

NOFESTAL

(c)

Fig. 7. Performance impact of arrival rate.

100 150 200 250 300 350 400 450
0

20

40

60

80

100

baseDeadline

G
R

 (
%

)

FESTAL

EFF

NMFESTAL

NOFESTAL

(a)

100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

baseDeadline

H
A

T
 (

1
06

)

FESTAL

EFF

NMFESTAL

NOFESTAL

(b)

100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

baseDeadline

R
T
H

FESTAL

EFF

NMFESTAL

NOFESTAL

(c)

Fig. 8. Performance impact of deadline.

on average, respectively. This result indicates that deadline
is an important restrictive factor of the I-AEAP and I-ALAP
on which the situation of tight deadlines has a considerable
adverse impact.

6.2 Evaluation based on real-world trace
The above groups of experiments demonstrate the performance
improvement of FESTAL in various random synthetic work-
loads. In order to verify the feasibility of our FESTAL in
practical use, we conduct the experiments injecting with the
latest version of the Google cloud tracelogs [34].

The tracelogs contain the information of 25 million tasks
grouped in 650 thousand jobs that span 29 days. It is of
considerably high difficulty to conduct an experiment based on
all the tasks due to the enormous count of tasks. According to
the analysis in [35], day 18 is a representative day among the
29 days. Therefore, the first 5 hours in day 18 were selected
as a testing sample in our experiment. About 240 thousand
tasks were submitted to the cloud over this 5 hours. The count
of tasks submitted in every 30 seconds is depicted in Fig.
9. It is apparent that the task count fluctuates significantly
over the time. When large amounts of tasks surge into the
system, the resource request is at a peak. While the resource
request decreases sharply at the timestamps where few tasks
were submitted into the system. Based on this observation,
it is straightforward to conclude that the elastic resource
provisioning mechanism is essential for a cloud.

Fig. 10 shows the Cumulative Distribution Function (CDF)
of the response time (i.e., the time duration form the submis-
sion of a task to the finish of it) and the execution time for
tasks. We can find that over 50% tasks’ execution time is less

0 5000 10000 15000

0.2

0.4

0.6

0.8

1

1.2

Time (s)

T
a
s
k
 C

o
u
n
t

(1
03

)

Fig. 9. The count of tasks submitted to the cloud.

than 200s, but below 40% tasks can be responded in 200s. In
addition, the average ratio of the tasks’ response time over the
execution time is 2.89. This observation suggests that most
tasks can finish in a relatively short time. But suffering from
the scheduling delay and the resource failures, the response
time almost triples. As a result, the cloud is in urgent need of
efficient scheduling algorithms and fault-tolerant mechanisms
for the improvement of its performance.

Because of lacking some detailed information and normal-
ized data, it is necessary to make four realistic assumptions as
follows:

• When a task encounters EVICT or KILL events in the
tracelogs, we assume that it is reset back to the initial
state. According to the statement in [11], [36], the Google
cloud system attempts to restart the tasks that encounter
these events from the their initial state.

• The task execution time is calculated from the last

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 12

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Execution Time (s)

C
D

F

(a)

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

Response Time (s)

C
D

F

(b)

Fig. 10. CDF of execution time and response time.

SCHEDULE event to the FINISH event.
• Task size tsi is calculated based on the execution time

and the average CPU utilization. As the tracelog does not
contain the data of task size in MI, we apply the method
proposed in [35] to solving the problem.

tsi = (timefinish− timeschedule)×Uavg ×CCPU , (6)

where timefinish and timeschedule represent the times-
tamp of FINISH and SCHEDULE event, respectively;
Uavg denotes the average CPU usage of this task. All the
three values can be obtained in the tracelog. For CCPU , it
represents the processing capacity of the CPU in Google
cloud. Since the data of machines’ capacity is rescaled in
the trace, we assume that it is similar to our experiment
settings for hosts, CCPU = 1500MIPS.

• The deadline of each task is designated through the ratio
of response time over execution time. As discussed above,
the average ratio is 2.89. So the deadline of each task is
assumed to be β times larger than its maximum execution
time, where β is uniformly distributed in the range of
[2.6,3.2].

The experimental results shown in Table 2 specify that
FESTAL can exhibit a good performance in practical. By
virtue of the nearly infinite resources in the cloud, the GRs of
the four algorithms are all relatively high. Nonetheless, there
are still some tasks rejected due to the restriction of deadline
in our experiment. The HAT of FESTAL is the smallest, while
that of EFF is the largest. This result once again suggests that
with the comprehensive employment of the techniques and the
mechanisms proposed in our work, FESTAL can effectively
reduce the active time of hosts. Meanwhile, without the help
of I-ALAP when scheduling backups, EFF scatter the backups
on all the VMs of active hosts, which makes few host be
switched off when many backups are cancelled even with
the employment of the VM migration technique, and thereby
raises the HAT. It is worthwhile noting that NOFESTAL
performs the worst in terms of RTH, even much worse than
EFF. This observation indicates that the overlapping technique
is a powerful method for improving the resource utilization
in practical. From Fig. 9, it can be found that differing
from the synthetic workloads, the real-world workload has
many situations where a surge of tasks are submitted to the
system almost at the same time. In these situations, the system
is so over-burdened that adjusting the existing resources is
almost impossible. Thereby, the overlapping technique is much

TABLE 2
Performance on Google cloud workloads

XXXXXXXXMetr.
Alg. FESTAL EFF NMFESTAL NOFESTAL

GR 95.08% 95.03% 95.87% 93.04%
HAT(×106s) 5.30 6.58 6.26 6.44

RTH 3.70 3.27 3.32 3.07

more effective to make full use of the existing resources to
accommodate more tasks, and avoids the large augment of
resources, which obviously decreases the resource utilization.
In addition, the RTH of NMFESTAL is a little higher than
that of EFF, which means that thanks to the aid of I-AEAP
and I-ALAP, NMFESTAL can exhibit better performance than
EFF even without the VM migration technique. This result
argues that I-AEAP and I-ALAP have the ability to reduce
the need of VM migration for improving resource utilization
in practice. They are able to abate the overhead brought by VM
migration without the sacrifice of resource utilization. Based
on the Google cloud tracelogs, in terms of RTH, FESTAL out-
performs EFF, NMFESTAL and NOFESTAL 13.2%, 11.4%
and 20.5%, respectively.

0

250

500

750

1000

1250

A
c
ti
v
e
 H

o
s
ts

 C
o
u
n
t

FESTAL

Task Count

0

2.5

5

7.5

10

12.5

T
a
s
k
 C

o
u
n
t(

1
03

)

FESTAL

EFF

Task Count

0 5000 10000 15000
0

250

500

750

1000

1250

A
c
ti
v
e
 H

o
s
ts

 C
o
u
n
t

time(s)

FESTAL

NMFESTAL

Task Count

0 5000 10000 15000

time(s)

0

2.5

5

7.5

10

12.5

T
a
s
k
 C

o
u
n
t(

1
03

)

FESTAL

NOFESTAL

Task Count

Fig. 11. The change of AHC and Task Count over time.

In order to further investigate how our proposed techniques
and mechanisms work, we depict the change of active hosts’
count (AHC in short) over time in Fig. 11, and compare
FESTAL with the other three algorithms respectively. The blue
solid line represents the task count whose value is specified
by the right side Y-axis. The red solid line and dashed lines
represent the AHCs of FESTAL and the other algorithms
whose values are specified by the left side Y-axis. Obviously,
the AHC of FESTAL changes with the task count in the
first figure, which indicates that the resource provisioning in
the cloud system using FESTAL is elastic according to the
resource request. When large amounts of tasks surge into the
system, the AHC increases to accommodate these tasks. When
the task count is at a low ebb, and the resource is over-
provisioned, the AHC decreases to improve the resource uti-

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 13

lization. This result suggests that our proposed elastic resource
provisioning mechanism works well in practical context. From
the comparison of FESTAL and EFF, we can observe that
the system using FESTAL turns on less active hosts than
EFF especially when the workload changes from heavy to
light. Take the time span from 5,000s to 10,000s for example,
the tasks submitted to system are much fewer than those in
the previous time, the AHC of FESTAL decreases sharply
while that of NMEARH still keeps a relatively high value.
The superiority of FESTAL in this situation can be attributed
to the I-AEAP and I-ALAP, which enables idle VMs and
active hosts to be switched off timely when many backups
are cancelled. The comparison of FESTAL and NMFESTAL
from 1,000s to 3,000s indicates that the introduction of the VM
migration technique is also able to help the system eliminate
idle resources timely by consolidating VMs to several active
hosts. However, during the time span from 5,000s to 10,000s,
the AHC of NMFESTAL shows the similar decreasing trend
with that of FESTAL. This phenomenon once again specifies
that the system using I-AEAP and I-ALAP can switch off the
idle hosts timely when the resource request drops sharply even
without the VM migration technique. Comparing the AHCs of
FESTAL and NOFESTAL, we can find that the overlapping
technique can reduce the demand of active hosts when large
amounts of tasks surge into the system. This is because when
the resource provisioning is inadequate, the adoption of the
overlapping technique reduces the resource consumption of
backups effectively, and leaves more available resources for
other tasks. As a result, the system avoids turning on much
more hosts to adapt to the quickly increased request.

7 CONCLUSIONS AND FUTURE WORK
We presented in this paper an efficient fault-tolerant elastic
scheduling algorithm FESTAL. FESTAL is based on a novel
fault-tolerant mechanism that extends from the conventional
PB model by accommodating the virtualization technology and
the VM migration technology which are employed in most
cloud date centers. FESTAL is the first of its kind reported
in the literatures; it comprehensively addresses the issue of
reliability, elasticity and schedulability of virtualized clouds.
By the comprehensive employment of the elastic resource
provisioning mechanism and the fault-tolerant scheduling al-
gorithms, FESTAL is able to achieve both fault tolerance and
high performance in terms of resource utilization. Extensive
experiments based on the synthetic workloads and the real-
world traces invalidate that FESTAL can enhance the perfor-
mance of virtualized clouds effectively.

The following issue will be addressed in our future works:
First, we will extend our fault-tolerant mechanism to tolerate
multiple hosts’ failure and propose corresponding scheduling
algorithms. Second, we will take the communication time and
other characteristics of hosts into consideration to enhance
the accuracy of the model. Third, we plan to implement the
FESTAL in a real cloud system to further test its performance.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, and I. Stoica, “A view of cloud

computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[2] B. Nicolae and F. Cappello, “Blobcr: virtual disk based checkpoint-
restart for hpc applications on iaas clouds,” Journal of Parallel and
Distributed Computing, vol. 73, no. 5, pp. 698–711, 2013.

[3] X. Qin and H. Jiang, “A novel fault-tolerant scheduling algorithm
for precedence constrained tasks in real-time heterogeneous systems,”
Parallel Computing, vol. 32, no. 5, pp. 331–356, 2006.

[4] S. Ghosh, R. Melhem, and D. Mossé, “Fault-tolerance through schedul-
ing of aperiodic tasks in hard real-time multiprocessor systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 8, no. 3, pp.
272–284, 1997.

[5] G. Manimaran and C. S. R. Murthy, “A fault-tolerant dynamic schedul-
ing algorithm for multiprocessor real-time systems and its analysis,”
IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 11,
pp. 1137–1152, 1998.

[6] R. Al-Omari, A. K. Somani, and G. Manimaran, “Efficient overloading
techniques for primary-backup scheduling in real-time systems,” Journal
of Parallel and Distributed Computing, vol. 64, no. 5, pp. 629–648,
2004.

[7] Q. Zheng, B. Veeravalli, and C.-K. Tham, “On the design of fault-
tolerant scheduling strategies using primary-backup approach for com-
putational grids with low replication costs,” IEEE Transactions on
Computers, vol. 58, no. 3, pp. 380–393, 2009.

[8] X. Zhu, X. Qin, and M. Qiu, “Qos-aware fault-tolerant scheduling
for real-time tasks on heterogeneous clusters,” IEEE Transactions on
Computers, vol. 60, no. 6, pp. 800–812, 2011.

[9] J. Balasangameshwara and N. Raju, “Performance-driven load balancing
with a primary-backup approach for computational grids with low com-
munication cost and replication cost,” IEEE Transactions on Computers,
vol. 62, no. 5, pp. 990–1003, 2013.

[10] K. Plankensteiner, R. Prodan, T. Fahringer, A. Kertesz, and P. Kacsuk,
“Fault-tolerant behavior in state-of-the-art grid worklow management
systems,” Inst. On Grid Information, Resource and Worklow Monitoring
Services, CoreGRIDłNetwork of Excellence, Technical Report, 2007.

[11] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[12] K. Plankensteiner and R. Prodan, “Meeting soft deadlines in scientific
workflows using resubmission impact,” IEEE Transactions on Parallel
and Distributed Systems, vol. 23, no. 5, pp. 890–901, 2012.

[13] R. Al-Omari, A. K. Somani, and G. Manimaran, “An adaptive scheme
for fault-tolerant scheduling of soft real-time tasks in multiprocessor
systems,” Journal of Parallel and Distributed Computing, vol. 65, no. 5,
pp. 595–608, 2005.

[14] S. Antony, S. Antony, A. Beegom, and R. M S, “Task scheduling algo-
rithm with fault tolerance for cloud,” in IEEE International Conference
on Computing Sciences. IEEE, 2012, pp. 180–182.

[15] P. Samimi, Y. Teimouri, and M. Mukhtar, “A combinatorial double
auction resource allocation model in cloud computing,” Information
Sciences, p. http://dx.doi.org/10.1016/j.ins.2014.02.008, 2014.

[16] D. Warneke and O. Kao, “Exploiting dynamic resource allocation for
efficient parallel data processing in the cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 6, pp. 985–997, 2011.

[17] C.-H. Hsu, K. D. Slagter, S.-C. Chen, and Y.-C. Chung, “Optimizing
energy consumption with task consolidation in clouds,” Information
Sciences, vol. 60, no. 6, pp. 452–462, 2014.

[18] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity
provisioning system for the cloud,” in IEEE International Conference
on Distributed Computing Systems. IEEE, 2011, pp. 559–570.

[19] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[20] N. Vasic, D. Novakovic, S. Miucin, D. Kostic, and R. Bianchini,
“Dejavu: accelerating resource allocation in virtualized environments,”
ACM SIGARCH Computer Architecture News, vol. 40, no. 1, pp. 423–
436, 2012.

[21] P. Graubner, M. Schmidt, and B. Freisleben, “Energy-efficient man-
agement of virtual machines in eucalyptus,” in IEEE International
Conference on Cloud Computing. IEEE, 2011, pp. 243–250.

[22] G. Le, K. Xu, and J. Song, “Dynamic resource provisioning and schedul-
ing with deadline constraint in elastic cloud,” in IEEE International
Conference on Service Science. IEEE, 2013, pp. 113–117.

[23] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Harmony:
dynamic heteroheneity-aware resource provisioning in the cloud,” in

0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2366751, IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. ×, NO. ×, 2014 14

IEEE International Conference on Distributed Computing Systems.
IEEE, 2013, pp. 511–519.

[24] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[25] B. Xu, C. Zhao, E. Hu, and B. Hu, “Job scheduling algorithm based on
berger model in cloud environment,” Advances in Engineering Software,
vol. 42, no. 7, pp. 419–425, 2011.

[26] L. Wu, S. Kumar Garg, and R. Buyya, “Sla-based admission control
for a software-as-a-service provider in cloud computing environments,”
Journal of Computer and System Sciences, vol. 78, no. 5, pp. 1280–1299,
2012.

[27] S. Sadhasivam, N. Nagaveni, R. Jayarani, and R. V. Ram, “Design and
implementation of an efficient two-level scheduler for cloud computing
environment,” in IEEE International Conference on Advances in Recent
Technologies in Communication and Computing. IEEE, 2009, pp. 884–
886.

[28] M.-Y. Tsai, P.-F. Chiang, Y.-J. Chang, and W.-J. Wang, Heuristic
scheduling strategies for linear-dependent and independent jobs on
heterogeneous grids. Springer, 2011.

[29] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, and D. Hensgen, “A
comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,” Journal of
Parallel and Distributed computing, vol. 61, no. 6, pp. 810–837, 2001.

[30] Y. Ma, B. Gong, R. Sugihara, and R. Gupta, “Energy-efficient deadline
scheduling for heterogeneous systems,” Journal of Parallel and Dis-
tributed Computing, vol. 72, no. 12, pp. 1725–1740, 2012.

[31] W.-J. Wang, Y.-S. Chang, W.-T. Lo, and Y.-K. Lee, “Adaptive scheduling
for parallel tasks with qos satisfaction for hybrid cloud environments,”
The Journal of Supercomputing, vol. 66, no. 2, pp. 783–811, 2013.

[32] W. Luo, X. Qin, X.-C. Tan, K. Qin, and A. Manzanares, “Exploiting
redundancies to enhance schedulability in fault-tolerant and real-time
distributed systems,” IEEE Transactions on Systems, Man and Cyber-
netics, Part A: Systems and Humans, vol. 39, no. 3, pp. 626–639, 2009.

[33] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “En-
tropy: a consolidation manager for clusters,” in ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. ACM,
2009, Conference Proceedings, pp. 41–50.

[34] “Google cluster data v2,” https://code.google.com/p/googleclusterdata/wiki.
[35] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “An approach for

characterizing workloads in google cloud to derive realistic resource
utilization models,” in Service Oriented System Engineering. IEEE,
2013, pp. 49–60.

[36] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., White Paper, 2011.

Ji Wang received the B.S. degree in informa-
tion systems from National University of De-
fense Technology, China, in 2008. Currently, he
is a M.S. student in the School of Information
System and Management at National University
of Defense Technology. His research interests
include real-time systems, fault-tolerance, and
cloud computing.

Weidong Bao received the Ph.D. degree in in-
formation system from the National University of
Defense Technology in 1999. He is currently a
professor in the College of Information Systems
and Management at National University of De-
fense Technology, Changsha, China. His recent
research interests include cloud computing, in-
formation system, and complex network.

Xiaomin Zhu received the Ph.D. degree in com-
puter science from Fudan University, Shanghai,
China, in 2009. He is currently an associate pro-
fessor in the College of Information Systems and
Management at National University of Defense
Technology, Changsha, China. His research in-
terests include scheduling and resource man-
agement in green computing, cluster computing,
and cloud computing. He has published more
than 50 research articles in refereed journals
and conference proceedings, such as IEEE TC,

IEEE TPDS, and JPDC. He is a member of the IEEE, the IEEE
Communication Society, and the ACM.

Laurence T. Yang research fields include net-
working, high performance computing, embed-
ded systems, ubiquitous computing and intelli-
gence. He has published around 300 papers in
refereed journals, conference proceedings and
book chapters in these areas. He has been
involved in more than 100 conferences and
workshops as a program/general/steering con-
ference chair and more than 300 conference
and workshops as a program committee mem-
ber. Currently is the chair of IEEE Technical

Committee of Scalable Computing (TCSC), the chair of IEEE Task
force on Ubiquitous Computing and Intelligence, the co-chair of IEEE
Task force on Autonomic and Trusted Computing. He is also in the
executive committee of IEEE Technical Committee of Self-Organization
and Cybernetics for Informatics, and of IFIP Working Group 10.2 on
Embedded Systems.

Yang Xiang received his PhD in Computer Sci-
ence from Deakin University, Australia. He is
currently a full professor at School of Information
Technology, Deakin University. He is the Director
of the Network Security and Computing Lab (N-
SCLab). His research interests include network
and system security, distributed systems, and
networking. In particular, he is currently lead-
ing his team developing active defense systems
against large-scale distributed network attacks.
He has published more than 150 research pa-

pers in many international journals and conferences, such as IEEE TC,
IEEE TPDS, and IEEE TISF. Two of his papers were selected as the fea-
tured articles in the April 2009 and the July 2013 issues of IEEE TPDS.
He has served as the Program/General Chair for many international
conferences such as ICA3PP 12/11, IEEE/IFIP EUC 11, IEEE TrustCom
13/11, IEEE HPCC 10/09, IEEE ICPADS 08, NSS 11/10/09/08/07. He
has been the PC member for more than 60 international conferences
in distributed systems, networking, and security. He serves as the
Associate Editor of IEEE TC, IEEE TPDS, Security and Communication
Networks (Wiley), and the Editor of Journal of Network and Computer
Applications. He is the Coordinator, Asia for IEEE Computer Society
Technical Committee on Distributed Processing (TCDP). He is a Senior
Member of the IEEE.

