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Although the efficacy of fluvastatin (HMG-
CoA reductase inhibitor) in the treatment of
primary hypercholesterolemia is well docu-
mented, a wide interindividual variation
treatment response has been observed. We
have studied the possible role of the AvaII
(exon 13), HincII (exon 12), and PvuII (in-
tron 15) polymorphisms at the low-density
lipoprotein receptor (LDLR) gene on lipid-
lowering response in 55 patients (36 to 70
years old) with primary hypercholester-
olemia treated with fluvastatin for 16 weeks.
LDLR genotypes were determined by PCR-
RFLP. The results indicate that the AvaII and
PvuII polymorphisms influence the choles-
terol-lowering response of the HMG-CoA

reductase inhibitor Fluvastatin. Patients
carrying A+A+ (AvaII) or P1P1 (PvuII) ho-
mozygous genotypes presented lower re-
duction in total cholesterol, LDL-C and
apolipoprotein B levels after 16 weeks of
treatment with fluvastatin, when compared
to other genotypes (P <0.05). Our data
also support the previous assumption that
the AvaII, HincII, and PvuII polymorphisms
of the LDLR gene are associated with
variation of serum cholesterol levels.
Therefore, the identification of the LDLR
genetic profile may provide better predic-
tion of a patient’s clinical response to
fluvastatin. J. Clin. Lab. Anal. 14:125–131,
2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

High blood cholesterol levels, particularly low-density lipo-
protein cholesterol (LDL-C), increase the risk of coronary ar-
tery disease (CAD), and the lowering of both total cholesterol
and LDL-C has been shown to reduce the incidence of CAD
(1–3). Treatment has been recommended for those patients with
high LDL-C levels (≥4.1 mmol/L) and for those with border-
line high values (3.4 to 4.1 mmol/L) in the presence of defini-
tive CAD or two (or more) risk factors for CAD (4).

The U.S. National Cholesterol Education Program (NCEP)
recommends treatment goals of LDL-C <3.4 mmol/L and trig-
lyceride (TG) levels < 2.3 mmol/L (4). High-density lipopro-
tein cholesterol (HDL-C) also appears to be an independent
risk factor for CAD, with higher levels being protective (5).
Although there does not appear to be a comparable causality
between elevated plasma TG levels and CAD, some TG-rich
lipoproteins can be atherogenic, and high TG concentrations
can produce increases in concentration of several clotting fac-
tors and decreases in fibrinolytic activity (6).

Therefore, treatments that reduce serum LDL-C and TG

and, at the same time, enhance HDL-C levels are ideally suited
to treat hypercholesterolemic patients that do not respond to
dietary intervention.

Recently, several 3-hydroxy-3-methylglutaryl-coenzyme A
(HMG-CoA) reductase inhibitors have been developed (7–
9). These agents reduce endogenous cholesterol biosynthesis
by competitive inhibition of the main rate-limiting enzyme
HMG-CoA reductase. The resulting low intracellular levels
of cholesterol lead to increased production of high-affinity
LDL receptors on hepatocytes and increased hepatic uptake
of circulating LDL (10). In addition, HDL-C levels are in-
creased and TG levels are reduced.
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Fluvastatin was the first, totally synthetic member of this class
of agents. Its absorption is virtually complete (> 98%) and un-
affected by the presence of food. Systemic exposure is limited
due to a characteristically short half-life (< 30 minutes) (11).

The pharmacokinetic and pharmacodynamic properties of
fluvastatin are not modified by age or sex (12). In controlled
clinical trials in young and middle-aged patients with primary
hypercholesterolemia, fluvastatin, at a dose of 20 to 80 mg
once daily, reduced the LDL-C, TG, and apolipoprotein B
(apo B) by 22 to 36%, 12 to 18%, and 19 to 23%, respec-
tively (13,14). Other effects of fluvastatin on the plasma lipid
profile that improve CAD risk include increasing HDL-C lev-
els (3.3 to 5.6%) and decreasing the LDL-C:HDL-C ratio. In
addition, fluvastatin has antiatherogenic, antithrombotic, and
antioxidant effects, can improve vascular function, and may
have immunomodulatory effects (13,15).

Although the efficacy of fluvastatin in the treatment of pri-
mary hypercholesterolemia is well documented (13–18), a
wide interindividual variation treatment response has been
observed in a number of studies (13–21). This variation can
be partially explained by various environmental and genetic
factors that affect the disposition of fluvastatin (i.e., absorp-
tion, distribution, biotransformation, excretion, or a combi-
nation of these) in each individual. However, environmental
and genetic also may exert their effects by modulating sub-
strates and/or structures mandatory for the action of the drug.
Thus, bearing in mind the mechanism of action of fluvastatin,
all factors that alter the function of the LDL receptor (LDLR)
or the ligands for the receptor (i.e., apo B or apo E) might be
expected to contribute to the variation in treatment response
to fluvastatin. This hypothesis is supported by the observa-
tion that approximately 50% of the interindividual variabil-
ity in lipid levels may be attributable to genetic influence (22).

Serum apolipoproteins serve as structural components of
lipoproteins, cofactors for lipid-metabolizing enzymes, and
ligands for receptor-mediated uptake of lipoprotein particles.
These genes are polymorphic and some of the reported poly-
morphisms have been found to be associated with alterations
in serum lipid levels (23).

Recently, our group have associated the AvaII (exon 13),
HincII (exon 12), and PvuII (intron 15) polymorphisms at
the LDLR gene with differences on the serum lipid profiles
in Brazilian individuals with high risk for coronary artery
disease (24,25). In this study, we have investigated the pos-
sible influence of these polymorphisms of the LDLR gene on
treatment response to fluvastatin in 55 Brazilian patients with
primary hypercholesterolemia.

MATERIALS AND METHODS

Subjects

After completing an 8-week placebo period, a total of 55
patients (15 men and 40 women; mean age, 59 ± 3 years)
with type IIA primary hypercholesterolemia, according

to Fredrickson’s classification (LDL-C ≤4.1 mmol/L; TG
≤3.0 mmol/L), were enrolled in a multicenter, randomized
study. After enrollment, 24 patients were treated with a dose
of 40 mg and 31 patients were treated with 80 mg of
fluvastatin daily for 16 weeks.

Patients with secondary forms of dyslipidemia and those
with diabetes mellitus, hypothyroidism, or those controlled
with drug therapy were excluded, as were those who were
obese (Body mass index ≥ 30 kg/m2) or had abnormal liver or
renal function. Patients with neoplasm and who had suffered
acute myocardial infarction or had undergone coronary by-
pass surgery also were excluded. The ethical committee of
our hospital accepted the study protocol. Each patient pro-
vided informed consent before participating in the study.

Lipid Measurements

At end of the placebo period (baseline) and after 16
weeks of fluvastatin treatment, serum lipid levels were
determined from blood samples collected after overnight
(>12 hours) fast. Triglycerides (TG) were determined by
enzymatic assay (26), and total cholesterol (TC) was as-
sayed by the esterase-oxidase method (27). High-density
lipoprotein cholesterol (HDL-C) levels were measured by
enzymatic assay after phosphotungstic acid and magne-
sium precipitation (28). Low-density lipoprotein choles-
terol (LDL-C) was calculated using the Friedewald
equation (29). The serum levels of apolipoprotein A-I and
B were determined by RIA (30).

DNA Analysis

Genomic DNA was extracted from blood leukocytes by a
salting-out procedure modified in our laboratory (31). The
AvaII, HincII, and PvuII polymorphic regions at the LDLR
gene were amplified by polymerase chain reaction (PCR) as
previously described (24,25). Amplified products were di-
gested with AvaII, HincII, or PvuII and the resulting frag-
ments were separated on 2 or 4%-agarose gels stained with
ethidium bromide, and visualized on UV light.

The correct assessment of genotype for AvaII, HincII, and
PvuII polymorphisms at the LDLR gene was evaluated using
a homozygous sample for restriction site (A+A+, H+H+, or
P2P2, respectively) as a positive control. In addition, all gels
were reread blindly by two persons without any change, and
10% of the analysis were repeated randomly.

Statistical Methods

The drug efficacy within and between groups was assessed
by analyzing the percentage changes from baseline after 16
weeks of treatment with fluvastatin. Differences among lipid
and lipoprotein concentrations in different groups of individu-
als were compared using the Student’s t-test (32). Allele fre-
quencies and genotype distribution for each polymorphic site
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were estimated by gene counting. Chi-square analysis was
used to test Hardy-Weinberg equilibrium. The sampling dis-
tributions of all the quantitative variables were tested for nor-
mality, and were loge transformed to obtain normal
distribution. To evaluate the effect of each polymorphism on
the variation of quantitative variables of lipid, one-way
ANOVA was performed (32). Significance was considered to
be at the 5% level.

RESULTS

Drug Efficacy

Table 1 presents lipid parameters at baseline and percent-
age changes after 16 weeks of treatment with different doses
of fluvastatin. Both doses (40 or 80 mg daily) produced sig-
nificant (P < 0.001) reductions in TC (mean, –20%), LDL-C
(mean, –26%) and apo B levels (mean, –21%), and increas-
ing the HDL-C and apo A-I levels. The percentage changes,
observed in Brazilian hypercholesterolemic individuals after
16 weeks of treatment, are similar to that previously described
for other hypercholesterolemic patients treated with fluvastatin
from several populations (13–21). However, the percentage
changes were not significantly different between the two treat-
ment groups.

Considering that the percentage changes after 16 weeks in
lipid parameters were not significantly different between the
two treatment groups, we have grouped the individuals to study
the influence of genetic polymorphisms at the LDLR gene on
serum lipid levels and treatment response to fluvastatin.

LDLR Polymorphisms and Baseline Parameters

The distribution pattern of the AvaII, HincII, and PvuII
polymorphisms of the Brazilian individuals with primary
hypercholesterolemia is shown in Table 2. The allele frequen-
cies are similar to that previously reported for hypercholes-
terolemic subjects from the Brazilian population (24,25).
Moreover, when the Hardy-Weinberg equilibrium (HWE) was
evaluated we observed that AvaII, HincII, and PvuII geno-
type distributions did not differ from what was projected.

As shown in Figure 1 (Panels A–C), significant variability
among AvaII, HincII, and PvuII genotypes was observed for
lipid traits in the hypercholesterolemic patients. Individuals
carrying the A+A+ (AvaII), H+H+ (HincII), and P1P1 (PvuII)
homozygous genotype presented greater TC, LDL-C, and apo
B levels when compared to other genotypes (P < 0.001). These
data are similar to those previously described in Brazilian
individuals with high risk for CAD (24,25).

LDLR Polymorphisms and Treatment Response to
Fluvastatin

The effects of the LDLR genotypes on treatment response
to fluvastatin are shown in Tables 3–5. To study the effect of
LDLR polymorphisms on treatment response to fluvastatin,
we grouped the individuals carrying the A+A– and A–A–,
H+H– and H–H– and P1P2 and P2P2 genotypes for AvaII,
HincII, and PvuII polymorphisms, respectively, due to the
small sample sizes for the A–A–, H–H–, and P2P2 genotypes
(Table 2).

The baseline levels and percentage changes in serum TC,
LDL-C, and apo B in the AvaII genotypes after 16 weeks of
treatment are shown in Table 3. Here individuals carrying
A+A+ homozygous genotype presented lower reduction in
TC, LDL-C, and apo B levels after treatment, when com-

TABLE 1. Baseline levels and percentage changes in lipid parameters after 16 weeks of treatment with fluvastatin in 55
Brazilian patients with primary hypercholesterolemiaa

40 mg (n = 24) 80 mg (n = 31)

Parametersb Baseline Change (%) Baseline Change (%) Pd

TC, mmol/Lc 7.86 ± 1.64 –20 ± 12 7.88 ± 1.61 –21 ± 11 NS
HDL-C, mmol/L 1.25 ± 0.24 5 ± 7 1.24 ± 0.26 6 ± 7 NS
LDL, mmol/Lc 5.83 ± 1.68 –26 ± 12 5.83 ± 1.57 –27 ± 12 NS
Apo B, g/Lc 1.75 ± 0.32 –21 ± 8 1.71 ± 0.40 –21 ± 9 NS
Apo A-I, g/L 1.30 ± 0.34 3 ± 5 1.31 ± 0.29 3 ± 5 NS

aTC, total cholesterol; HDL-C, HDL cholesterol, LDL-C, LDL cholesterol; Apo, apolipoprotein; NS, not significant.
bValues are mean ± SD.
cDifferences between baseline and treatment values were significant (P < 0.001).
dP values from Student’s t-test (% change, 40 mg vs. 80 mg).

TABLE 2. Genotype distribution and relative allele frequency
of polymorphisms at the LDLR gene in 55 Brazilian patients
with primary hypercholesterolemiaa

Polymorphisms Genotype distribution Allele frequency

AvaII b A+A+ A+A– A–A– A+ A–
31% 55% 14% 0.582 0.418

HincII b H+H+ H+H– H–H– H+ H–
31% 51% 18% 0.564 0.436

PvuII c P1P1 P1P2 P2P2 P1 P2
64% 29% 7% 0.782 0.218

aHardy-Weinberg Equilibrium, AvaII Genotypes: χ2 = 0.80 (1 df, P =
NS); HincII Genotypes: χ2 = 0.07 (1df, P = NS); PvuII Genotypes: χ2 =
1.19 (1df, P = NS); NS, not significant.
b+/– indicates the presence/absence of restriction site.
cP1/P2 indicates the absence/presence of restriction site.
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Fig. 1. Lipid parameters at baseline (mean ± SD) in 55 Brazilian indi-
viduals with primary hypercholesterolemia grouped in AvaII (A), HincII (B),
and PvuII (C) genotypes. TC, HDL-C, and LDL-C values are expressed in
mmol/L and apolipoprotein values in g/L. TC, indicates total cholesterol;

HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; Apo, apolipoprotein;
+/–, presence/absence of restriction site and P1/P2, absence/presence of re-
striction site; *P < 0.05 (ANOVA).

TABLE 3. Lipid parameters at baseline and percent change after 16 weeks of treatment with fluvastatin, according to the AvaII
genotypesa

Baseline levels

A+A+ A+A–/A–A– Change at week 16 (%)

Parametersb (n = 17) (n = 38) Pc A+A+ A+A–/A–A– Pc

TC, mmol/Ld 8.42 ± 1.31 7.02 ± 0.55 <0.05 –20 ± 9 –28 ± 12 0.043
LDL-C, mmol/L 5.81 ± 1.43 5.25 ± 0.63 <0.05 –23 ± 9 –27 ± 7 0.023
Apo B, g/L 2.03 ± 0.33 1.62 ± 0.32 <0.05 –20 ± 9 –28 ± 12 0.043

a+/– indicates the presence/absence of restriction site.
bValues are mean ± S.D.
cP values from one-way ANOVA.
dTC, total cholesterol; LDL-C, LDL cholesterol; Apo, apolipoprotein.
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pared to other genotypes (P <0.05). On the other hand, no
differences in percentage changes in TC, LDL-C, and apo B
after 16 weeks of treatment were observed between HincII
genotypes (Table 4).

Table 5 shows the lipid parameters at baseline and per-
centage changes after 16 weeks of treatment with fluvastatin,
according to the PvuII genotypes. Hypercholesterolemic pa-
tients carrying the P1P1 homozygous genotype (with the
absence of restriction site) also presented lower reduction in
TC, LDL-C, and apo B levels, when compared to other geno-
types (P < 0.05).

DISCUSSION

Although the efficacy of many lipid-lowering drugs is well
documented, it also is recognized that within the same diag-
nostic class of hyperlipidemia, with both dietary and drug
therapies, individual patient responses may vary consider-
ably (22).

Several studies have reported (13–21) such interindividual
variation in treatment responses to fluvastatin. It is presumed
that some of this variation is due to a genetic predisposition
for differential metabolic effects of the lipid-lowering inter-
vention. Considering the crucial role of the LDL receptor
(LDLR) in cholesterol homeostasis (33) and the observation
that approximately 50% of the interindividual variability in
lipid levels may be attributable to genetic influences (22), it
is conceivable that common genetic alterations in this gene

also may contribute to variation in hypercholesterolemic pa-
tients’ treatment response to fluvastatin.

In this study, we have investigated (for the first time in a
Brazilian population) the effects of AvaII (exon 13), HincII
(exon 12), and PvuII (intron 15) polymorphisms at the LDLR
gene on treatment response to fluvastatin. As we reported
previously (24,25), these polymorphisms were strongly as-
sociated with differences on serum lipid levels in Brazilian
subjects with high risk for coronary artery disease.

The relative allele frequencies for AvaII, HincII, and PvuII
polymorphisms at the LDLR gene found in hypercholester-
olemic patients (Table 2) are similar to those previously re-
ported by our group in Brazilian individuals (24,25). However,
the A+ allele frequency (0.58) found in the Brazilian hyperc-
holesterolemic (HC) individuals is greater than that observed
in hypercholesterolemic patients from London, Italy, Spain,
Switzerland, and Germany (34,35). On the other hand, the
frequency of the H+ allele (0.56) in HC subjects is similar to
that found in Swiss, Germans, and Spanish hypercholester-
olemic patients (34,35,36).

The relative allelic frequencies of the PvuII polymorphism
found in the Brazilian hypercholesterolemic subjects are simi-
lar to those found in other Caucasian individuals from differ-
ent countries. The relative frequency of the P1 allele (0.78) in
the HC group is similar to that observed in hypercholester-
olemic patients from Italy, Switzerland, Germany, Israel,
Spain, London, The Netherlands, Denmark, and North
America (34,37–41).

TABLE 4. Lipid parameters at baseline and percent change after 16 weeks of treatment with fluvastatin, according to the
HincII genotypesa

Baseline levels

H+H+ H+H–/H–H– Change at week 16 (%)

Parametersb (n = 17) (n = 38) Pc H+H+ H+H–/H–H– Pc

TC, mmol/Ld 8.38 ± 1.32 7.13 ± 0.64 <0.05 –21 ± 11 –20 ± 12 NS
LDL-C, mmol/L 5.82 ± 1.35 5.18 ± 0.83 <0.05 –27 ± 12 –25 ± 12 NS
Apo B, g/L 2.02 ± 0.34 1.53 ± 0.42 <0.05 –21 ± 3 –20 ± 3 NS

a+/– indicates the presence/absence of restriction site.
bValues are mean ± S.D.
cP values from one-way ANOVA.
dTC, total cholesterol; LDL-C, LDL cholesterol; Apo, apolipoprotein; NS, not significant.

TABLE 5. Lipid parameters at baseline and percent change after 16 weeks of treatment with fluvastatin, according to the
PvuII genotypesa

Baseline levels

P1P2 P1P2/P2P2 Change at week 16 (%)

Parametersb (n = 35) (n = 20) Pc P1P1 P1P2/P2P2 Pc

TC, mmol/Ld 8.39 ± 1.32 6.97 ± 0.53 <0.05 –20 ± 9 28 ± 12 0.043
LDL-C, mmol/L 5.87 ± 1.43 5.28 ± 0.64 <0.05 –23 ± 9 –27 ± 7 0.023
Apo B, g/L 2.04 ± 0.29 1.63 ± 0.36 <0.05 –23 ± 9 –27 ± 7 0.023

aP1/P2 indicates the presence/absence of restriction site.
bValues are mean ± S.D.
cP values from one-way ANOVA.
dTC, total cholesterol; LDL-C, LDL cholesterol; Apo, apolipoprotein.
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The strong association between A+A+ (AvaII), H+H+
(HincII), and P1P1 (PvuII) genotypes with higher total cho-
lesterol, LDL-C, and apo B circulating levels found in pa-
tients with primary hypercholesterolemia (Fig. 1), support the
previous assumption (24,25) that the AvaII, HincII, and PvuII
polymorphisms of the LDLR gene are associated with varia-
tion on serum lipid levels in the Brazilian population.

In addition, the present study demonstrates that the response
to the HMG-CoA reductase inhibitor fluvastatin in Brazilian
patients with primary hypercholesterolemia was related, at
least in part, to the AvaII and PvuII polymorphisms at the
LDLR gene. Although all patients have shown a substantial
reduction of serum lipid parameters after fluvastatin treat-
ment, patients who have the A+A+ (AvaII) genotype demon-
strate a statistically significant lower response when compared
to other genotypes (Table 3). Lower response to treatment
also was observed in individuals with the P1P1 (PvuII) geno-
type (Table 5).

The mechanism responsible for the varied cellular responses
to treatment with an HMG-CoA reductase inhibitor remains
unclear. Considering that AvaII and HincII polymorphisms
do not involve an amino-acid substitution (42), and PvuII
polymorphism is located in an intronic region of the LDLR
gene (41), it is conceivable that these polymorphisms have
an indirect effect on cholesterol metabolism. This effect may
be mediated through a functional mutation in this gene—link-
age disequilibrium with these restriction sites—or in a closely
linked gene (42).

Leitersdorf et al. (43) demonstrated that the response to
fluvastatin was profoundly affected by the type of LDLR
mutation in heterozygous familial hypercholesterolemia (FH)
patients. The presence of the Sephardic mutation, which re-
sults in the production of a precursor protein that is not pro-
cessed to its mature form (class IIa), or of the Lithuanian
mutation, which creates a class IIb protein (transport-defec-
tive slow-processing), was associated to lower response to
treatment with 40 mg of fluvastatin.

Recently, several authors (44–46) also have shown the in-
fluence of genotype at the LDLR gene locus on the clinical
phenotype and cholesterol-lowering response to HMG-CoA
reductase inhibitors in patients with heterozygous FH. More-
over, Pedersen and Berg (47) have reported a potential interac-
tion between the PvuII polymorphism at the LDLR gene and
variation in the apo E locus (E2, E3, and E4 isoforms) in deter-
mining plasma lipid levels. Some studies have demonstrated
that the apo E polymorhisms also modulate the response to
HMG-CoA reductase inhibitors in hypercholesterolemic indi-
viduals (22,48). Therefore, future studies will be necessary to
identify the molecular relationship between these polymor-
phisms and other genetic alterations at the LDLR locus or in the
linked gene. However, this will require an increase in interest in
the field, and in teaching effort.

In summary, we have demonstrated that normal genetic
variations at the LDLR locus contributed significantly to the

determination of plasma cholesterol levels and to the varia-
tion of treatment response to fluvastatin in patients with pri-
mary hypercholesterolemia. Therefore, the identification of
the LDLR genetic profile may provide a better prediction of
patients’ clinical response to fluvastatin.
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