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Summary

This paper demonstrates the usefulness of combining simulation with Bayesian estimation methods in analysis of
cost-effectiveness data collected alongside a clinical trial. Specifically, we use Markov Chain Monte Carlo (MCMC)
to estimate a system of generalized linear models relating costs and outcomes to a disease process affected by
treatment under alternative therapies. The MCMC draws are used as parameters in simulations which yield
inference about the relative cost-effectiveness of the novel therapy under a variety of scenarios. Total parametric
uncertainty is assessed directly by examining the joint distribution of simulated average incremental cost and
effectiveness. The approach allows flexibility in assessing treatment in various counterfactual premises and quantifies
the global effect of parametric uncertainty on a decision-maker’s confidence in adopting one therapy over the
other. Copyright # 2002 John Wiley & Sons, Ltd.
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Introduction

Quantification of uncertainty has been attracting
increasing attention in the cost-effectiveness
literature (see, e.g., Manning et al. [1], Briggs
and Sculpher [2] and the Consensus Statement
from the Conference on Economic Modelling
[3]). Uncertainty arising from population varia-
tion, parametric imprecision, and even choice of
model – all should be addressed [4]. Attention to
uncertainty is not just an affirmation of the need to
conduct statistically rigorous research. It should
also reflect that uncertainty is important to
decision-makers.

Bayesian methods may be particularly well
suited to the assessment of uncertainty from a
decision-maker’s perspective [5]. Bayes’ Law is,
after all, one mathematical representation of
mechanisms by which statistically rational deci-
sion-makers might assess their knowledge about
uncertain propositions [6]. Through the ubiquity
of expected utility [7] and games of incomplete
information [8], Bayesian principles have become
intrinsic to microeconomic theory.

Despite being second-nature in theoretical work
[9], Bayesian empirical analysis has been limited by
the scarcity of tractable models based on conjugate
priors (whose posteriors are simple functions of
observed data). However, the advent of cheap, fast
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computation and efficient Markov Chain Monte
Carlo (MCMC) techniques has resulted in a surge
of published Bayesian analyses [10]. MCMC
generates samples from the simulated posterior
distribution of parameters, even under quite
complicated models. It therefore provides useful
glimpses into a Bayesian decision-maker’s poster-
ior knowledge about relationships between treat-
ments, covariates and outcomes.

In this paper, we analyze cost-effectiveness data
collected alongside a clinical trial by estimating a
structural model of resource use and outcomes
using MCMC. We then conduct a number of
simulations using the MCMC parameter samples
to predict the joint distribution of costs and
outcomes under a variety of counterfactual pre-
mises. This approach can quantify the impact of
global parametric uncertainty in terms of the
probability that one technology dominates (both
lower cost and improved outcomes) another in a
variety of settings.

Background

We examine two competing therapies for preven-
tion of cytomegalovirus (CMV) infection in liver
transplant patients. CMV infection generally
remains asymptomatic in the general population.
However, in immunosuppressed patients (such as
those taking anti-rejection medication), CMV
infection can progress to full-blown CMV disease
characterized by tissue invasion [11]. CMV disease
significantly increases morbidity and mortality in
solid organ transplantation [11–15].

CMV seronegative recipients (R�) of organs
from CMV seropositive donors (D+) are at
highest risk of CMV disease [16]. Two recent trials
report that prolonged administration of intrave-
nous or oral ganciclovir reduces CMV disease in
R�/D+ cases [17,18].

We analyze direct medical cost (proxied by
billed charges) and CMV outcomes (infection and
disease) from a randomized trial in which sequen-
tial use of intravenous ganciclovir and high-dose
oral acyclovir (GCV group) resulted in a signifi-
cant reduction in CMV disease in R�/D+ liver
transplant recipients, when compared to high-dose
oral acyclovir alone (ACV group) [19]. A previous
analysis concluded that patients with CMV disease
had 49% higher charges and that R�/D+ patients

in the GCV group had significantly lower charges
than R�/D+ patients in the ACV group [20].

Data

In the trial, 167 patients were enrolled from two
transplant centers over a period of 3.5 years.
Patients were randomly assigned to receive either
800mg oral acyclovir four times daily for 120 days
(ACV group), or 5mg/kg ganciclovir intrave-
nously every 12 h for the first 14 days, followed
by oral acyclovir (800mg four times daily) for the
remaining 106 days (GCV group).

Recipient and donor CMV serologies were
obtained before transplant. CMV infection was
defined to be the isolation of CMV from any body
fluid or tissue other than urine. CMV disease was
defined to be CMV infection together with CMV
syndrome or tissue invasion with CMV such as
pneumonia, enteritis and hepatitis [11].

Of the enrollees, 147 patients (88%) were
transplanted at our institution. Data collection
continued for 120 days, starting from the day of
transplantation. Inpatient and outpatient charges
(in constant 1990 dollars), including professional
fees and charges for acyclovir and ganciclovir were
analyzed. Analysis was restricted to 134 patients
with complete follow-up data.

Outcomes of interest are any CMV infection
(including those who progress to CMV disease),
yC

i 2 f0; 1g, CMV disease, yD
i 2 f0; 1g, ICU days,

yF
i 2 Zþ, non-ICU hospital days, yH

i 2 Zþ and
total charges, yG

i 2 Rþ. Covariates are age, sex,
surgical blood loss (in units), surgical time (in
seconds) and donor/recipient seropositivity. Con-
tinuous covariates were centered around zero and
rescaled by their standard deviations. Untrans-
formed summary statistics are presented in Table 1.

Methods

Statistical model

CMV status, ICU days, non-ICU hospital days
and total charges are modeled as a set of
independent generalized linear models, presented
as a directed graph in Figure 1. We model CMV
status using a sequential probit specification [21].a
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Let xC
i be a row vector of covariates for patient i

that are associated with propensity for becoming
infected with CMV, and c be the associated
parameter column vector. Then the probability
of becoming infected with CMV is PðYC ¼ 1jxC

i Þ ¼
FðxC

i cÞ, where F is the standard normal CDF.
Once infected, some patients will progress to

full-blown CMV disease, while others will have
infection only. Let xD

i be a row vector of
covariates for patient i that are associated with
propensity for progressing to CMV disease, and d
be the associated parameter column vector. Prob-
ability of progression is then PðYD ¼ 1jxD

i ;Y
C
i ¼ 1Þ

¼ YC
i Fðx

D
i dÞ.

A key covariate in both infection and progres-
sion is donor/recipient serostatus, which is classi-
fied into three categories: recipients of seronegative
grafts (D�), seronegative recipients of seropositive
grafts (R�/D+) and seropositive recipients of
seropositive grafts (R+/D+). Because no patient

Table 1. Means of study variables

ACV group GCV group

Independent variables
Age (yrs.) 50.89 49.4
Female (=1) 0.43 0.43
R� =D� ð¼ 1Þ 0.09 0.09
R� =Dþ ð¼ 1Þ 0.17 0.18
Rþ =D� ð¼ 1Þ 0.25 0.26
Rþ =Dþ ð¼ 1Þ 0.49 0.46
Surgery time (s) 24 013.91 22 986.46
Surgical blood use (units) 7.53 6.05

Dependent Variables
Any CMV infection (=1) 0.45 0.25
CMV disease (=1) 0.2 0.11
ICU days 5.54 3.97
Non-ICU days in hospital 12.94 12.45
Total charges (1990 US$) 138 849.58 125 810.36

n 69 65

xi
C : Constant, Age, Gender,

Surgical Blood, D-, R-/D+, GCV,
GCVxD-, GCVxR-/D+

c
yi

C ~ Binomial
Any CMV Infection

yi
F ~ Poisson (λi

F)
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yi
G ~ Gamma(γi

G,b3)
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λi
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F f), b1)

λi
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G g)
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Figure 1. Directed graphical representation of the model
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who received a seronegative graft (D�) went on to
develop full-blown CMV disease, D� would be a
perfect predictor of disease progression. We there-
fore assume that such patients are at zero risk for
CMV disease, and exclude them from the progres-
sion model.b

Treatment with GCV (relative to ACV control)
enters the model as a dichotomous variable, which
equals one when a patient receives GCV. Treat-
ment is also interacted with the serostatus risk
categories, reflecting the hypothesis that ganciclo-
vir may have a different effect for different
serostatus risk categories. Because patients may
also be exposed to CMV through blood, we
include the quantity of surgical blood used as a
predictor of infection. Infection and progression
may also differ by recipient age and sex.

We hypothesize that CMV infectionc and
disease increase the overall length of stay in the
hospital as well as requiring a higher number of
days spent in intensive care. Length of stay in the
ICU is assumed to be a function of CMV status
and covariates and is modeled using a negative
binomial specification [23]. Let xF

i be a row vector
of covariates associated with days in the ICU
(including a constant, age, sex, total surgical time
and the patient’s CMV outcome), and f the
associated column parameter vector. Assume
ICU stay, yF

i , is distributed:

yF
i � PoissonðlFi Þ;

where lFi � GammaðexpðxF
i f Þ; b1Þ.

We assume that a longer stay in the ICU
increases the length of time spent convalescing in
non-ICU areas of the hospital. We therefore
model non-ICU days (with variables superscripted
by H) as a function of CMV status, ICU days and
covariates in a negative binomial framework
identical to the previous equation (excluding
surgical time, which we assume impacts non-ICU
days only indirectly through requiring longer
initial ICU stays).

We hypothesize that CMV status affects direct
medical cost in the following ways: (1) requiring
more resources necessary to treat the infection; (2)
extending the amount of time the patient spends in
an intensive care environment as the infection is
treated; (3) extending the overall hospital stay as
the recipient recovers; and (4) requiring more
intense medical followup after the initial hospita-
lization. The direct cost of GCV treatment may be
offset if GCV improves outcomes. Let xG

i be a row

vector of covariates associated with total charges
(age, sex, ICU days, non-ICU days, CMV infec-
tion only, CMV disease and GCV treatment), and
g the associated column vector of parameters. We
use a gamma model to estimate total charges [24]:

DG
i � GammaðexpðxG

i gÞ; b3Þ:

Simulation

The simulation mirrors the empirical model,
except that the levels of the model are nested
(i.e., each level of the simulation depends on the
simulated result(s) of one or more of the previous
levels). First, all trial participants, regardless of
their actual trial arm, are ‘assigned’ to ACV
therapy by setting the value of the GCV column
in covariate matrices XC, XD and XG to a 134� 1
vector of zeros. Outcomes are then simulated
assuming this assignment to ACV.

Let j index the draws from the MCMC
simulated posterior. Note that there are 35
parameters in the model. Therefore, each MCMC
draw j from the posterior generates a 35� 1 vector
of parameters yj. Given the hypothetical assign-
ment to GCV or ACV, and a draw j, outcomes are
simulated using the procedure outlined below.

Within yj, the 9� 1 CMV parameter sub-vector,
cj is multiplied into covariates XC for all partici-
pants i using the standard normal distribution link
function to obtain CMV infection probabilities for
each patient assuming they have received ACV
(control) therapy. Uniform random numbers
are then drawn to simulate CMV infections
#yyC

i ðx
C
i jGCV ¼ 0; cjÞ in the group. Next, dj is

multiplied into covariates XD for all non-D�
participants who were simulated to become
infected. Similarly, uniform random numbers
are then drawn to simulate whether or not CMV
disease occurs #yyD

i ðx
D
i jGCV ¼ 0; #yyC

i ¼ 1; djÞ for
each patient with simulated infection.

Simulated CMV status for all individuals
becomes a covariate column in XF, which is
multiplied into the draw of ICU day parameters
fj using an exponential link to yield the shape
parameter of the gamma distribution for the mean
number of ICU days. Gamma-distributed random
numbers are then generated for each individual,
which in turn become parameters for the Poisson
distribution for ICU days. Poisson random
numbers are generated to yield a simulated
outcome of ICU days, #yyF

i ðx
F
i jGCV ¼ 0; #yyC

i ; #yy
D
i ; fjÞ,
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for each individual. Simulated ICU days and
simulated CMV status then become covariates in
XH. Given the draw for parameters for hj,
simulated non-ICU hospital days, #yyH

i ðx
H
i jGCV ¼

0; #yyC
i ; #yy

D
i ; #yy

F
i ; hjÞ, are generated in a similar manner.

Finally, simulated CMV status, ICU and non-
ICU hospital days become covariates in XG and
are multiplied into the draw for parameters gj

using an exponential link function to yield shape
parameters for each individual. Gamma-distribu-
ted random numbers are drawn to simulate total
charges, #yyG

i ðx
G
i jGCV ¼ 0; #yyC

i ; #yy
D
i ; #yy

F
i ; #yy

H
i ; gjÞ for

each individual.
The exercise is then repeated, assigning all

participants to GCV therapy by setting the GCV
column equal to a vector of ones. Incremental
outcomes are then calculated at the individual level
by taking the difference (ganciclovir minus acyclo-
vir control). Given simulated charges and out-
comes for each individual under both treatment
and control, for each draw j we calculate average

incremental charges D #YY
G

j , average attributable

CMV infection risk reduction D #YY
C

j and average

CMV disease risk reduction D #YY
D

j over all partici-

pants.d

D #YY
G

j ¼
1

N

XN

i¼1

#yyG
i ðxi jGCV ¼ 1; yjÞ

�

� #yyG
i ðxi jGCV ¼ 0; yjÞ

�

D #YY
C

j ¼
1

N

XN

i¼1

� #yyC
i ðxi jGCV ¼ 1; yjÞ

�

� #yyC
i ðxijGCV ¼ 0; yjÞ

�

D #YY
D

j ¼
1

N

XN

i¼1

� #yyD
i ðxijGCV ¼ 1; yjÞ

�

� #yyD
i ðxi jGCV ¼ 0; yjÞ

�

Repeating the process for each draw of yj yields a
cloud of simulated average incremental charges
and average attributable risk reductions which
captures the remaining uncertainty about model
parameters after the data from the trial have been
incorporated into the posterior via Bayes’ law.

Posterior joint distributions of ðD #YY
G
;D #YY

C
Þ and

ðD #YY
G
;D #YY

D
Þ were then analyzed using a bivariate

kernel density estimator (normal kernel, band-
width set by Silverman’s rule of thumb) [25].

Results
Estimation

To reflect naive beliefs, diffuse, independent,
normal priors (mean=0, precision=1.0E-06)
were chosen. Scale parameters b1 ¼ 0:211651,
b2 ¼ 0:194171, and b3 ¼ 6:86703E – 5 were
estimated separately from the data as the
inverse of the observed ratio of the variance to
the mean of ICU days, non-ICU days and charges,
respectively.e MCMC (using the Metropolis
algorithm of WinBUGS v.1.3) was used to
sample from the simulated posterior distributions
of the parameters using three parallel Markov
chains started from different random initial
values [26].f

Moderate autocorrelation and cross-parameter
correlation was detected during the estimation
procedure, indicating possibly slow mixing for
some parameters. We thinned the Markov chains
(keeping every 20th draw) until 30 000 draws were
collected for each chain, of which, we retained the
second half (15 000 draws). In order to assess
convergence, we monitored the Metropolis accep-
tance rate during estimation, and performed tests
by Geweke [27], Brooks, et al. [28,29], Raftery and
Lewis [30] and Heidelberger and Welch [31] as
implemented in BOA v.1.0.0 [32]. All tests were
consistent with convergence of all three chains,
although the Heidelberger and Welch test sug-
gested that a small number of additional draws be
discarded for a small number of parameters. The
Raftery and Lewis and Heidelberger and Welch
tests both indicated that we had sufficient draws to
estimate the 0.025 and 0.075 percentiles of the
posteriors with acceptable accuracy (Type I error
rate of 5%). After assessing convergence, we
kept only the last 7500 draws from each chain
and combined them to form a collective sample
of 22 500 draws from the simulated posterior
distributions. Posterior means, medians, 95%
credible regions, and Pðy > 0Þ are presented in
Table 2.

We consider the first stage of the sequential
probit, which estimates the probability of infection
conditional on treatment, serostatus risk category,
blood use, age and gender. Note that the excluded
risk category is the medium risk (R+/D+) group.
The results suggest that ganciclovir significantly
reduces infection risk among the medium risk
group (mean=�0:8562; Pð> 0Þ ¼ 0:0064). GCV
effectiveness was reduced somewhat in low-risk
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and high-risk groups, as reflected by positive (but
conventionally non-significant) coefficients on the
interaction terms: (GCV�D� mean=0.3149;
Pð> 0Þ ¼ 0:7036) and (GCV � R�/D+ mean=

0.6246; Pð> 0Þ ¼ 0:8273). Other covariates were
as expected with higher surgical blood use and
R�/D+ serostatus increasing infection risk,
and D� serostatus decreasing infection risk.

Table 2. Results from the empirical model

Model parameter Mean Std
Dev.

MC
error

95% credible interval

Lower Upper Pð> 0Þ

Any CMV Infection
c0 Constant 0.0860 0.2558 0.0023 �0.4089 0.5886 0.6337
c1 Female �0.1962 0.2531 0.0018 �0.6878 0.3007 0.2199
c2 Age (standardized) �0.0285 0.1277 0.0008 �0.2795 0.2231 0.4079
c3 Blood use (standardized) 0.2031n n 0.1247 0.0008 �0.0384 0.4507 0.9502
c4 Donor negative �0.8910n n 0.3748 0.0030 �1.6450 �0.1741 0.0077
c5 Recipient negative/Donor positive 0.7331n 0.4574 0.0037 �0.1682 1.6250 0.9481
c6 Treated with ganciclovir �0.8562n n 0.3492 0.0030 �1.5380 �0.1689 0.0064
c7 Ganciclovir�D� 0.3149 0.6074 0.0047 �0.8567 1.5130 0.7036
c8 Ganciclovir�R�/D+ 0.6246 0.6576 0.0055 �0.7166 1.8520 0.8273

CMV disease conditional on infection
d0 Constant �0.7747n n 0.4175 0.0037 �1.5950 0.0364 0.0272
d1 Female 1.0257n n 0.5065 0.0039 0.0363 2.0220 0.9802
d2 Age (standardized) 0.2014 0.2466 0.0017 �0.2824 0.6832 0.7924
d3 Recipient negative/Donor positive 1.3620n n 0.6431 0.0053 0.1357 2.6430 0.9870
d4 Treated with ganciclovir 1.7972n n 0.7862 0.0070 0.2691 3.3340 0.9933
d5 Ganciclovir�R�/D+ �3.4469n n 1.1156 0.0104 �5.6290 �1.2520 0.0002

ICU days
f 0 Constant 0.1436n 0.1113 0.0009 �0.0785 0.3570 0.9003
f 1 Female 0.0624 0.1434 0.0010 �0.2160 0.3447 0.6694
f 2 Age (standardized) 0.0499 0.0716 0.0004 �0.0890 0.1908 0.7568
f 3 Surgical time (standardized) 0.1673n n 0.0695 0.0005 0.0319 0.3046 0.9887
f 4 CMV infection only 0.0363 0.1856 0.0012 �0.3152 0.4104 0.5840
f 5 CMV disease 0.2743n 0.1878 0.0013 �0.0835 0.6491 0.9252

Non-ICU hospital days
h0 Constant 0.7605n n 0.0885 0.0007 0.5886 0.9345 1.0000
h1 Female 0.0418 0.1089 0.0008 �0.1790 0.2481 0.6536
h2 Age (standardized) �0.0085 0.0517 0.0003 �0.1105 0.0908 0.4318
h3 CMV infection only �0.0791 0.1432 0.0009 �0.3621 0.1976 0.2935
h4 CMV disease 0.1364 0.1468 0.0009 �0.1500 0.4213 0.8242
h5 Days in ICU 0.0389n n 0.0081 0.0001 0.0231 0.0547 1.0000

Total Charges
g0 Constant 2.0329n n 0.0640 0.0006 1.9070 2.1590 1.0000
g1 Female �0.0922 0.0571 0.0004 �0.2011 0.0219 0.0532
g2 Age (standardized) �0.0185 0.0281 0.0002 �0.0733 0.0359 0.2558
g3 CMV infection only 0.0325 0.0733 0.0005 �0.1147 0.1720 0.6744
g4 CMV disease 0.1176n 0.0823 0.0005 �0.0463 0.2775 0.9223
g5 Days in ICU 0.0236n n 0.0068 0.0001 0.0102 0.0370 0.9996
g6 Non-ICU hospital days 0.0075n n 0.0042 0.0000 �0.0010 0.0155 0.9608
g7 Treated with ganciclovir �0.0149 0.0583 0.0004 �0.1261 0.1026 0.4021

nDenotes Posterior Pð> 0Þ or Pð50Þ > 0:90.
n nDenotes Posterior Pð> 0Þ or Pð50Þ > 0:95.
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The second stage of the sequential probit
estimates the probability that those infected with
CMV will progress to full-blown CMV disease,
conditional on treatment, serostatus risk, age and
gender. Recall that since no D� patients devel-
oped CMV disease, such patients were excluded.
The excluded risk category remains the medium
risk (R+/D+) group. The results suggest that
GCV increases the risk of progression of CMV
infection to disease for R+/D+ patients
(mean=1.7972; Pð> 0Þ ¼ 0:9933). However, we
must remember from the first stage that GCV
significantly reduced the overall rate of infection
for such medium risk patients. The results for
the interaction of GCV and R�/D+ (mean=
�3.4469; Pð> 0Þ ¼ 0:0002) suggest that GCV
strongly reduces progression rates for high-risk
patients. As expected, patients in the high-risk
serostatus group were more likely to progress to
CMV disease (mean=1.3620; Pð> 0Þ ¼ 0:9870).
Interestingly, female patients were also signifi-
cantly more likely to progress (mean=1.0257;
Pð> 0Þ ¼ 0:9802).

The associations of CMV infection with ICU
days (mean=0.0363; Pð> 0Þ ¼ 0:5840) and non-
ICU days (mean=�0:0791; Pð> 0Þ ¼ 0:2935) are
relatively weak. CMV disease, on the other hand,
has a strong positive association with days in the
ICU (mean=0.2743; Pð> 0Þ ¼ 0:9252) and a less-
strong positive association with non-ICU days in
the hospital (mean=0.1364; Pð> 0Þ ¼ 0:8242).
As expected, longer surgical time is associated
with a longer stay in the ICU (mean=0.1673;
Pð> 0Þ ¼ 0:9887). As expected, a longer ICU stay
is strongly associated with a longer non-ICU stay
(mean=0.0389; Pð> 0Þ ¼ 1).

Both ICU (mean=0.0236; Pð> 0Þ ¼ 0:9996) and
non-ICU (mean = 0.0075; Pð> 0Þ ¼ 0:9608) hos-
pital days are strongly positively associated with
higher total charges. As expected, ICU days
appear to be more ‘expensive’ than non-ICU days.

CMV infection demonstrates only a weak
positive association with higher charges
(mean=0.0325; Pð> 0Þ ¼ 0:6744). However,
CMV disease (independent from its association
with longer ICU and non-ICU stays) appears
positively associated with higher charges (mean=
0.1176; Pð> 0Þ ¼ 0:9223). Independent of its
association through reducing CMV infection
and disease risk (and resultant changes in
resource use), GCV shows no strong
association with charges (mean=�0:0149;
Pð> 0Þ ¼ 0:4021).

In summary, ganciclovir appears to reduce
CMV infection rates for medium risk R+/D+
cases and reduce progression of infection to full-
blown disease for R�/D+ cases. Lower rates of
CMV disease appear likely to reduce resource use
both directly and through shortened ICU times,
and overall length of stay. The apparent differ-
ences by serostatus group in CMV infection and
disease outcomes under treatment underscores the
desirability of building risk type into our simula-
tions.

Simulation

Simulations were conducted with Gauss (v.3.6)
given the 22,500 MCMC draws. The first set of
simulations examines the original group of trial
participants in their original risk categories. The
left graph of Figure 2 shows a contour plot of the
95% posterior credible region for the joint
distribution of incremental total charges and
attributable CMV infection risk reduction

ðD #YY
G
;D #YY

C
Þ. There appears to be a negative slope

of the credible region, indicating that preventing
CMV infection reduces total charges. The bivari-
ate posterior mean implies that after observing the
trial, a decision-maker can expect a savings of
$4,840 and 18.6% reduction in CMV infection risk
when using GCV prophylaxis relative to ACV.
The decision-maker can have reasonable confi-
dence in the desirability of GCV in this case, given
that 98.1% of the posterior density indicates
improved CMV infection rates and 67.5% indi-
cates lower charges. About 66.5% of the posterior
density lies in the lower-right (dominant) quadrant
indicating both lower expenses and better out-
comes.

The right graph of Figure 2 presents the CMV
disease case. The credible region spans all four
quadrants of the plane, with 85.7% of the poster-
ior density indicating improved CMV disease
rates, 67.5% indicating lower total charges, and
59.4% indicating GCV dominance. The posterior
mean is an incremental charge reduction of $4,840
and 7.2% reduction in CMV disease risk.g

The next set of simulations considers outcomes
if all enrolled patients had actually been high risk
(R�/D+) cases. We can repeat the above simula-
tions, also imposing that R� =Dþ ¼ 1 and D�
¼ 0 for all trial participants.h The left graph in
Figure 3 presents the CMV infection case. Relative
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to the simulations of participants in their actual
risk categories, the R�/D+ CMV infection
credible region is larger (indicating greater global
uncertainty), lower (indicating greater charge
reductions) and more to the left (indicating lower
effectiveness). However, for CMV disease (the
right graph of Figure 3) in the R�/D+ case, the
credible region is lower and more to the right,
indicating larger reductions in charges and CMV
disease rates than in the original risk group
simulation. For CMV disease, 97.6% of the
posterior density indicates that GCV reduces

CMV disease rates, 80.1% indicates lower charges
and 79.0% of the posterior density is in the
dominant quadrant. The posterior mean is a
reduction in charges of $12 249 and 37.3%
reduction in CMV disease risk. This simulation
suggests that for R�/D+ cases, the benefit of
GCV as a protective agent may be more so
through lower rates of progression of infection to
full-blown disease than through lower rates of
infection.

The final simulations suppose that all trial
participants were R+/D+. The left graph of

Any CMV infection: (∆ YG,∆ YC).
^ ^

CMV disease: (∆ YG,∆ YD).
^ ^

Figure 2. Posterior 95% credible region: original risk types

Any CMV infection: (∆ YG,∆ YC).
^ ^

CMV disease: (∆ YG,∆ YD).
^ ^

Figure 3. Posterior 95% credible region: simulated R�/D+
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Figure 4 presents CMV infection risk reduction. In
the R+/D+ simulation, as in the original risk
category simulation, nearly the entire region lies
within the upper and lower right quadrants for
CMV infection. The credible region is larger than
in the original case, reflecting greater global
uncertainty, with 98.5% of the posterior density
indicating lower CMV infection rates and 60.1%
of the posterior density in the dominant quadrant.
The posterior mean is an incremental charge
reduction of $3,594 and a 28.5% reduction in
CMV infection risk. However, for CMV disease in
the R+/D+ simulation (the right graph of Figure
4), a decision-maker would likely be unconvinced
of a risk reduction from GCV use. Only 54.6% of
the posterior density indicates lower CMV disease
rates, 60.8% indicates lower charges, and only
37.2% of the posterior is in the dominant
quadrant indicating both lower disease rates and
charges. The simulations suggest that for R+/D+
cases, the protective effect of GCV is not compel-
ling and seems to come through lower rates of
infection rather than lower rates of progression.

Bootstrap

For comparison with the parametric simulations, a
nonparametric (ideal) bootstrap analysis was also
conducted [33]. Specifically, we resampled with
replacement from our original dataset to create
22,500 replicate datasets of the same length in each
treatment group (n=65 in GCV group; n=69 in

ACV group). We used the percentile-t method and
kernel density estimates to identify the 95%
confidence ellipsoid for the joint distribution of
average incremental cost and outcomes (separately
for infection and disease) [34] as shown in Figure
5. The bootstrap case for GCV is quite strong. The
base case (original sample) mean is a 20.3% lower
CMV infection risk, 9.5% lower CMV disease risk
and $13 039 lower total charges. The bootstrap
confidence intervals show 99.3% of the bootstrap
density associated with improved infection risk,
93.1% associated with improved disease risk, and
approximately 94.2% associated with lower total
charges for both infection and disease. For
infection and disease, 93.7% and 88.6% of the
bootstrap densities lie in the dominant quadrant,
respectively.

Discussion

Limitations

There are a number of limitations to our data.
Restricting analysis to complete responses may
bias estimates if assignment to treatment is
correlated with being a non-completer and if
non-completers have systematically different out-
comes. Our perspective is also limited by reliance
upon billed charges rather than true direct medical
cost. The reasons to prefer standardized measures
of cost over billed charges are well known [35]. The

Any CMV infection: (∆ YG,∆ YC).
^ ^

CMV disease: (∆ YG,∆ YD).
^ ^

Figure 4. Posterior 95% credible region: simulated R+/D+
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difference between costs and charges may be
heterogeneous among the various service and
facility line-items of a patient’s bill. If the
difference varies systematically between treatment
and control groups, then the results of this analysis
may be biased. However, in a single institution,
charges are likely to be proportional to direct
medical resource use. It is unlikely that the sign of
the charge difference differs from the sign of a true
cost difference, but magnitudes may differ. How-
ever, patterns of patient care and resource use may
be different at other institutions. Thus, general-
izability of results may be limited. A related
limitation is that we are unable to model the
potential for transplant center-specific effects,
since all data came from one center.

Furthermore, our outcomes do not consider
other important endpoints, such as enhanced
health-related quality of life or productivity gains
associated with avoidance of CMV disease, in
either the short or long-run. This study therefore is
clearly not from the societal perspective and is not
an example of the US Panel on Cost Effectiveness
‘reference case’ [36]. As such, the study cannot be
used for prioritization of resources in an entire
health economy. However, the limited provider
perspective is still valuable for informing clinical
decision-making.

Additionally, a key source of uncertainty is not
reflected in the analysis. We assume that we have
correctly chosen functional forms and other
elements of model specification in our example.
There is always the potential, for example, that an
omitted variable is correlated with selection (either

into the treatment group, or even into the trial
itself) and outcome.

Furthermore, we have estimated all of the
equations separately and have thus made the
strong assumption that error terms are not
correlated across equations. If an unobservable
variable affects both the probability of developing
CMV infection or disease and also separately
affected length of stay or cost, then our estimates
could potentially be biased. For example, suppose
that there is an unmeasured overall ‘strength’
variable that improves the body’s ability to fight
off CMV and also independently shortens recup-
erative times. Our estimate of the effect of CMV
on length of stay and cost would be biased
upward.i

Our choice of flat, independent priors, may also
be challenged. By assigning such priors, we assume
that the decision-maker has no previous knowl-
edge about the effectiveness of GCV relative to
ACV. A fully Bayesian analysis would have
synthesized the existing literature on prophylactic
treatment for CMV and incorporated that infor-
mation in the priors.

Simulation and uncertainty in technology

assessment

Econometric simulation provides a useful tool for
analysis of cost-effectiveness data collected along-
side clinical trials. It allows for counterfactual
(‘what-if’) questions of potential interest to both

Any CMV infection: (∆ YG,∆ YC).
^ ^

CMV disease: (∆ YG,∆ YD).
^ ^

Figure 5. Bootstrap 95% confidence ellipsoid
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clinical decision-makers and broad policy-makers.
For example, one might ask: How would out-
comes in a group of trial participants have differed
had they all been assigned to treatment (or
control)? or Would outcomes be more favorable
if treatment is restricted to high risk patients?
Simulation affords greater flexibility in controlling
for individual characteristics than simple compar-
isons of average outcomes between treatment and
control groups. Even in a clinical trial context,
where randomization and stratification are used to
control for selection bias and groupwise compar-
ability, a structural model may be desirable to
parse out the effect of confounding covariates so
that results may be extrapolated to other popula-
tions see (Table 3).

One must be careful not to treat the model as if
its parameters are known. Uncertainty about
parameters is often assessed in the current
literature through one or two (or occasionally
three) way deterministic sensitivity analysis. Such
sensitivity analysis is a good check of a model’s
robustness and helps to answer the question: Are
outcomes sensitive to a small set of parameters?

From a decision-maker’s perspective, however,
it might be even more interesting to ask: ‘How
much don’t we know about the relationship
between treatment, covariates and outcomes, and
how much does that lack of knowledge limit our
ability to infer desirability of one technology
relative to another?’ Analysis of the joint posterior
distribution cost-effectiveness given the uncer-
tainty of all parameters is necessary to answer
that question.

Assessing global uncertainty deterministically
requires covering all permutations of the upper
and lower bounds of the confidence intervals for
all parameters. Such an analysis for a simulation
with J parameters requires 2J calculations – which
can quickly get out of hand. ‘Probabilistic
sensitivity analysis’ overcomes this limitation by
randomly drawing vectors from a specified joint
distribution of parameters (see Doubilet et al.
[37]). The distribution can be chosen ad hoc, for
example, as a uniform distribution with upper and
lower limits equal to � 20% of the mean.

Ideally, probabilistic sensitivity analysis ought
to reflect a decision-maker’s state of knowledge in
a systematic, data-driven way. For example,
Manning and Mullahy [38] suggest that using
observed data, one could estimate parameters and
their variance-covariance matrices using maximum
likelihood or other standard techniques and then
draw randomly from the normal distributions
implied by the calculated confidence intervals. In
two recent analyses in the gastroenterology field,
Pasta et al. [39] and Lord and Asante [40] used the
nonparametric bootstrap, rather than relying on
consistent parametric estimates, to generate the
draws for probabilistic sensitivity analysis. Briggs
et al. [41] discuss use of the nonparametric
bootstrap to identify the confidence interval
around the incremental cost effectiveness ratio.

One might reason that the nonparametric boot-
strap, by placing no restriction on the functional
form of the relationships between treatment,
covariates and outcomes, would be more conser-
vative than a parametric model [33]. However,

Table 3. Bayesian simulation expected incremental total charges and attributable risk reduction

Posterior
mean risk

Posterior
probability

Posterior
mean

Posterior
probability

Posterior
probability

Serostatus risk group reduction (%) of improved
outcome (%)

incremental
charges

of lower
charges (%)

of GCV
Dominance (%)

Outcome: any CMV infection
Original risk groups 18.6 98.1 �$4 840 67.5 66.5
Assuming all R�/D+ 7.1 66.2 �$12 252 80.1 55.6
Assuming all R+/D+ 28.5 98.5 �$3 594 60.8 60.1
Assuming all D� 10.6 83.6 �$2 616 58.4 37.2

Outcome: CMV disease
Original risk groups 7.2 85.7 �$4 840 67.5 59.4
Assuming all R�/D+ 37.3 97.6 �$12 249 80.1 79.0
Assuming all R+/D+ 0.8 54.6 �$3 597 60.8 37.2
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through its reliance upon the ‘plug-in’ principle,
the simple non-parametric bootstrap requires that
the empirical distribution sufficiently describes the
population distribution. The non-parametric boot-
strap demands the very strong assumption that the
sample being studied is both representative and
independent and identically distributed [42].

However, we cannot conclude that structural
modeling is superior because it does not require
representativeness.j As mentioned above, one
should be aware that the structural model instead
requires the equally (or even more) strong
assumption of correct specification. In other
words, we assume that the only variables that
systematically affect outcomes are contained with-
in the model. Hence, so long as we believe this
assumption, we can use the model to extrapolate
predictions for any population (collection of
covariates) of interest.

In this study, the non-parametric bootstrap
results seemed less conservative than the structural
model results (see Table 4). Though, strictly
speaking, credible regions and confidence ellip-
soids are not directly comparable [1], the area of
the bootstrapped confidence ellipsoid is substan-
tially smaller than the posterior credible region.
The strong assumption of representativeness may
have contributed to the greater certainty. By
drawing from a relatively small pool of possible
individual outcomes, the variability of differences
in outcomes between groups is also likely to be
small. The statistical model and simulation, on the
other hand, allow for greater variability of
potential individual outcomes.

The bootstrap analysis also shows a larger
incremental reduction in charges associated with
GCV than does the Bayesian simulation. The
nonparametric bootstrap relies upon the randomi-
zation mechanism to equalize all other differences
between the GCV and ACV groups that may affect
outcomes, while a structural model (whether
estimated by maximum likelihood, Bayesian or
other techniques) relies upon randomization only

to assure that treatment selection is exogenous. Of
course, omitted variable bias may always present
problems. However, if the model is correctly
specified, and the parameter estimates are un-
biased, then simulation based on that structural
model can parse out just the differences in
outcomes associated with treatment.

Why Bayesian analysis?

The debate on the nature of Bayesian versus
classical analysis has gone on for decades. Much of
this debate has centered on the notion that while
classical statistics may be intuitive in the context of
often-repeated experiments, interpretation may be
difficult in less controlled or ‘one-shot’ analyses.

In the classical paradigm, the q% confidence
interval represents the range which, if an experi-
ment were repeated an arbitrary number of times,
would contain the ‘true’ parameter q% of the time.
In 1964, Aitchison [43] noted:

While this statement is comforting to a statistician
making repeated use of R [the tolerance region] to
provide his customers with tolerance regions, its
meaning for the individual customer is not at all easy
to specify. The author has recently experienced the
difficulty of trying to sell the frequentist approach to
engineers whose work is crucially concerned with the
problems of tolerance regions . . . The frequentist
might then argue that the probabilistic statement,
while not of direct application to the engineer’s
needs, is intended to give him comfort through the
hope that his particular experiment is one of the
lucky ones belonging to this proportion q in a
population of hypothetical experiments.

In medical technology assessment, we often are
faced with less-than-perfectly controlled experi-
ments. Furthermore, one can make the case that
technology adopters are less like experimentalists
in a lab who can repeat experiments, and more like
engineers who have to ‘get it right the first time’

Table 4. Nonparametric bootstrap simulation expected incremental total charges and attributable risk reduction

Base case risk
reduction (%)

Percent of
bootstrap density
showing improved
outcome (%)

Base case
incremental
total charges

Percent of
bootstrap density
showing lower
charges (%)

Percent of
bootstrap density
showing GCV
dominance (%)

Any CMV infection 20.3 99.3 �$13 039 94.2 93.7
CMV disease 9.5 93.1 �$13 039 94.3 88.6
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when they choose which technology to adopt. The
engineer’s ‘intolerance for ambiguity’ discussed
above may indeed be very similar to the clinician’s
fear of choosing the wrong treatment for an
individual patient.

The Bayesian approach may therefore hold
promise in making the statistical methods of
health technology assessment more believable
and accessible to clinicians. Eddy et al. [44] made
early inroads in this area by using a Bayesian
approach to meta-analysis. Parmigiani et al. [45]
introduced the concept of using Bayesian resam-
pling methods together with a (non-empirical)
Markov simulation to help assess the global
uncertainty over the cost-effectiveness ratio. Briggs
[4] has also drawn a Bayesian linkage between
Monte Carlo simulation and prior knowledge
about population characteristics and chance node
probabilities in decision-analytic models.

Recent work by Craig et al. [46] demonstrates
the usefulness of MCMC in counterfactual simu-
lation based on an observational study. By
using MCMC techniques, the authors were
able to sample from the joint posterior distribution
of an empirical Markov model of the progression
of diabetic retinopathy, accounting for potentially
non-random assignment to treatment. The authors
then used the MCMC draws in a counterfactual
simulation of the disease’s natural progression,
i.e., what would have occurred had observed
patients not received treatment. Our study
builds upon their work, extending it into the
realm of cost-effectiveness alongside clinical
trials.

Heitjan et al. [47] applied Bayesian methods to
sample from posterior joint distributions using
three previously reported clinical trials as exam-
ples. Their approach provides visual representa-
tions of global uncertainty in the incremental cost-
effectiveness plane using contour plots. Al and Van
Hout [48] used conjugate priors to perform a
Bayesian cost-effectiveness analysis of previously
reported data from a clinical trial comparing
stenting to balloon angioplasty. O’Hagan and
Stevens developed a framework for use of MCMC
in cost-effectiveness analysis alongside clinical
trials [49]. While their framework is based on the
same principles as ours, their models for cost and
effectiveness are not conditional. Rather, they
identify a set of parameters related only to group
average cost and effectiveness and do not examine
counterfactual, individual simulations. Our study
extends the concepts of these works into structural

empirical models which are more amenable to
counterfactual simulation.

In future analysis, one might consider the
decision to adopt a new technology as a complex,
empirical, Bayesian hypothesis test, with a fully
specified loss function. Such a loss function might
even value the distribution of outcomes over
individuals (rather than simply the average out-
come) as a factor important to decision-makers
[Mullahy J. Which cost-effectiveness ratio? Evalu-
ating health policies and medical technologies in
stochastic contexts, University of Wisconsin,
Madison; unpublished manuscript]. The MCMC
estimation and simulation approach can be
combined with such loss functions to yield very
useful and powerful statements of the form: ‘Given
prior beliefs pðyÞ, observed outcomes Y and
covariates X under technologies A and B, and
model Y ¼ F ðX ; yÞ, a decision-maker with loss
function LðY Þ would have Z% confidence that
technology A (or B) is preferred.’

Conclusion

Our study suggests that a decision-maker obser-
ving information from a recent clinical trial on
GCV relative to ACV prophylaxis for CMV post
liver transplant would be confident that GCV is
associated with lower total charges and improved
CMV disease outcomes for high risk R�/D+
cases. The decision-maker might have somewhat
less confidence of the relative desirability of GCV
in medium risk R+/D+ cases.

This analysis demonstrates the feasibility of
using MCMC-generated draws from the simulated
posterior distribution of parameters from an
empirical model in analyzing the joint distribution
of incremental cost and effectiveness in a simula-
tion. The impact of parametric uncertainty re-
maining after observing the data is reflected in the
simulations conducted using these MCMC draws.
The combination of Bayesian estimation of
structural models linking treatment, covariates
and outcomes with counterfactual simulation,
may be a useful tool for assessing the impact of
parametric uncertainty in cost-effectiveness analysis.
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Notes

a. An earlier version of the model used a generalized
ordered probit framework [22] with separate hurdles
for infection and disease. That model required the
hurdle for disease to be greater than the hurdle for
infection for all individuals in all MCMC iterations.
Because this condition was violated frequently, we
chose to use the sequential probit specification.
Results from an ordered probit specification in
which we forced the ordering condition to hold by
truncation did not differ substantially from the
sequential probit.

b. Because an earlier version of the model used a
generalized ordinal probit framework, we were able
to include D� and interactions. However, as
expected, the model indicated that D� serostatus
raised the hurdle for CMV disease by an arbitrarily
large amount. An anonymous reviewer noted that
estimating an arbitrarily large coefficient using
MCMC may negatively affect chain convergence.

c. Note that we re-parameterize CMV infection when it
is used as a covariate so that it equals zero when
CMV disease equals one. Therefore, as a covariate,
CMV infection should be interpreted as ‘CMV
infection only,’ i.e., infection that did not progress
to full-blown CMV disease. As a dependent variable,
CMV infection should be interpreted as ‘Any CMV
infection,’ i.e., infection whether or not it progresses
to CMV disease.

d. Note that the negative sign in the summed terms for

D #YY
C

j and D #YY
D

j are necessary to express the outcome

in terms of a benefit (infection and disease
avoidance) rather than a harm (infection and disease
rate).

e. An earlier version of the model treated the scale
parameters as unknown. Though the model success-
fully estimated the parameters, we observed a high
level of correlation between the scale parameter and
the associated constant term in the shape parameter.
Because this correlation may negatively affect
convergence, we chose to estimate the scale para-
meters separately.

f. Code for the MCMC estimation and simulations are
available from the author upon request.

g. As noted by an anonymous reviewer, expected
incremental total charges should be the same
regardless of whether we plot against infection or
disease. Because results reported in the table are the

expected value of the bivariate distribution deter-
mined by numerical integration, they may differ by a
few dollars due to discretization error.

h. If there were a strong correlation between serostatus
and other covariates, such as age and gender, then
changing only the serostatus variable might be a
strong assumption. An alternative, more conserva-
tive, approach suggested by an anonymous reviewer
would be to use only those cases that actually were
high risk. In our study, there is little correlation
between serostatus and other explanatory variables.
Results from the more conservative simulation
(available from the authors on request) were very
similar to results as reported. Researchers using our
method may wish to pay close attention to whether
such correlations exist.

i. We thank an anonymous reviewer for providing this
example.

j. We thank an anonymous reviewer for drawing
attention to this point.
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