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Prolonged and Enhanced Secretion of
Glucagon-like Peptide 1 (7-36 Amide)
After Oral Sucrose Due to
a-Glucosidase Inhibition (Acarbose) in
Type 2 Diabetic Patients
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GLP-1, an incretin hormone of the enteroinsular axis with insulinotropic and glucagonostatic
activity, is secreted after nutrient ingestion. GLP-1 is mainly produced by intestinal L-cells
in the lower gastrointestinal tract (GIT); simple carbohydrates are absorbed in the upper
GIT and a-glucosidase inhibition leads to augmented and prolonged GLP-1 release in
normal subjects. In a cross-over study, 100 mg acarbose or placebo was administered
simultaneously with 100 g sucrose to 11 hyperglycaemic Type 2 diabetic patients poorly
controlled with diet and sulphonylureas. Plasma levels of GLP-1, insulin, C-peptide,
glugacon, GIP, glucose and H2-exhalation were measured over 6 h. Differences in the
integrated responses over the observation period were evaluated by repeated measurement
analysis of variance with fasting values used as covariates. With acarbose, sucrose reached
the colon 60–90 min after ingestion as indicated by a significant increment in breath
hydrogen exhalation (p = 0.005). After an early GLP-1 increment 15 min after sucrose
under both conditions, GLP-1 release was prolonged in the acarbose group (p = 0.001;
significant from 210 to 360 min.). Initially (0–150 min), glucose (p = 0.001), insulin
(p = 0.001), and GIP (p,0.001) were suppressed by acarbose, whereas later there were
no significant differences. Glucagon levels were higher with acarbose in the last 3 h of
the 6 h observation period (p = 0.02). We conclude that in hyperglycaemic Type 2 diabetic
patients, ingestion of acarbose with a sucrose load leads to elevated and prolonged GLP-
1 release.  1998 John Wiley & Sons, Ltd.
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Introduction

Glucagon-like peptide (7-36 amide, GLP-1) is a physiologi-
cal incretin, produced by proteolytic processing of prepro-
glucagon in intestinal L-cells of the lower gastro-intestinal
tract (GIT).1–4 After nutrient intake GLP-1, like gastric
inhibitory polypeptide or GIP, another incretin hormone
secreted from duodenal K-cells,5–7 participates in the
regulation of postprandial glucose homeostasis due to its
insulinotropic and glucagonostatic activity.8–11 As a result
of the secretion and action of incretin hormones, glucose
administered orally enhances insulin secretion in normal
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subjects more than intravenous glucose—the incretin
effect.12–14

Although the magnitude of the incretin effect has been
reported to be less pronounced in Type 2 diabetic
patients,15 recent studies have shown that pharmacologi-
cal doses of GLP-1 (7-36 amide) retain much of
their insulinotropic action9,16 and can normalize fasting
hyperglycaemia in this population.17

Since L-cells are mainly located in the lower GIT
(ileum, colon, rectum)1,2,18–20 and can be stimulated by
luminal glucose,21,22 it is no surprise that a delay in
carbohydrate absorption through inhibition of the luminal
brush border enzyme a-glucosidase protentiates GLP-1
(7-36 amide) release after sucrose loads in normal sub-
jects.23,24

In metabolically healthy, normoglycaemic subjects,
only a minor influence of elevated GLP-1 concentrations
on insulin, glucagon or glucose concentrations can be
expected, because both the insulinotropic8,17,25 and the
glucagonostatic17 actions strongly depend on some degree
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of hyperglycaemia. This, however, might be different in
patients with Type 2 diabetes mellitus (DM), where GLP-
1 (7-36 amide) secretion induced by acarbose ingestion
might explain the reduction in fasting glycaemia that has
been reported to occur after acarbose treatment26,27

which is not explained by its primary mode of action.
It was the aim of the present study to evaluate GLP-

1 (7-36 amide) release and associated changes in plasma
glucose, insulin, C-peptide, and GIP levels after oral
sucrose combined with 100 mg acarbose in comparison
to placebo in Type 2 diabetic patients. Preliminary results
have been reported in abstract form.28

Subjects, Materials and Methods

Study Protocol

The study was approved by the ethics committee of the
medical faculty of the Ruhr University Bochum on 20
March 1995 (registration number 608). Written informed
consent was obtained from all participants.

Subjects

Eleven Type 2 diabetic patients (6 male, 5 female with
a mean age of 63 ± 9 years) were studied. Fasting
hyperglycaemia ($7.8 mmol l−1) on two occasions was
an inclusion criterion. HbAlc was 9.7 ± 1.4 % (non-
diabetic range: 4.0–6.2 %) under therapy with diet alone
(n = 3) or glibenclamide (n = 8). This medication was
continued throughout the study. In 7 patients, the
glibenclamide dose was 10.5 mg day−1; in the remaining
patient, it was 7 mg day−1. Body mass index was
30.1 ± 2.5 kg m−2. No patient had been on metformin or
insulin treatment.

Study Design

In randomized order, acarbose (100 mg) or placebo was
administered orally together with a 100 g sucrose load
on days 1 and 3, respectively. Previous data have
indicated that almost all acarbose after a large single
oral dose (300 mg) is excreted within a 24 h period,
with negligible quantities remaining after 48 h.29 A
regular meal and drug schedule was allowed for 1 day
between the experiments. All experiments were started
in the morning after at least a 10 h fast.

Experimental Procedures

The patients were in a semi-recumbent position through-
out the tests. A teflon cannula (Vasofix, 1.2 mm diameter,
B. Braun, Melsungen, Germany) was inserted into a
distal forearm vein and kept patent with isotonic saline
for blood sampling. Baseline samples were collected at
−30, −15, and 0 min. One hundred grams sucrose,
dissolved in 400 ml tap water, were ingested rapidly,
simultaneously with 100 mg a-glucosidase inhibitor
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acarbose as tablets (Glucobay, Bayer AG, Leverkusen,
Germany) or with a placebo tablet. Venous blood
samples were collected every 15 min during the first
hour, every 30 min from the second to the fourth hour
and every 60 min during the last 2 h of the 360 min
sampling period.

Breath samples for measurement of forced end-expira-
tory H2-concentrations were collected simultaneously
with blood sampling throughout the study as an indicator
for bacteria-mediated decomposition of carbohydrate
reaching the colon.30 An electrochemical H2 detector
was used (GMI Medical Ltd, Stimotron, Windelstein,
Germany).

Blood was drawn into tubes containing ethylenediami-
netetraacetic acid (EDTA) and aprotinin (Trasylol; 20.000
KIU ml−1, 200 ml 10 ml−1 blood; Bayer AG, Leverkusen,
Germany). A sample was stored in sodium fluoride
(Microvette CB 300, Sarstedt, Nümbrecht, Germany) for
the subsequent measurement of glucose. After centrifug-
ation, plasma for hormone analyses was kept frozen
at −30°C.

Laboratory Determinations

Glucose was measured using a glucose oxidase method
(Beckman Instruments, Munich, Germany). Insulin was
measured using an insulin microparticle enzyme immu-
noassay (MEIA, IMx Insulin, Abbott Laboratories, Wies-
baden, Germany). Results show a correlation coefficient
of 0.982 in comparison to RIA 100 (Pharmacia, Freiburg,
Germany), the assay used in our previous study in normal
subjects.24 Intra-assay coefficients of variation were less
than 4.0 % C-peptide was measured using an enzyme
immunoassay (DRG Instruments GmbH Marburg,
Germany) Human insulin and C-peptide were used as
standard. GIP was determined using antiserum R65 and
synthetic human GIP for the preparations of standards
and 125I-GIP tracer (purified by HPLC).31 IR-GLP-1 was
measured in ethanol-extracted plasma,32 using antiserum
89390 (final dilution 1:150 000) and synthetic GLP-1 (7-
36 amide) (Peninsula Laboratories, St Helens, UK) for
tracer preparation and as standard. This antiserum reacts
specifically with the amidated carboxy-terminus of GLP-
1 (7-36 amide), and therefore the measurements largely
represent the gut-derived, truncated GLP-1 (7-36
amide).33 The intra-assay coefficient of variation was
6 %. Pancreatic glucagon was assayed in ethanol-
extracted plasma using antibody 4305.34 All plasma
samples from one patient were assayed at the same time
to avoid errors due to inter-assay variation.

Statistical Analyses

Patient characteristics are given as mean ± standard
deviation (SD), results are reported as mean ± standard
error of the mean (SEM). Integration was carried out
according to the trapezoidal rule. Glycaemic excursions
and secretory responses were analysed as area under
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curve. The significance of differences were tested using
repeated measures analysis of variance (RM-ANOVA),
with baseline values used as covariates. If appropriate,
data were transformed logarithmically for this purpose.
Significances of differences at individual time points
were estimated from respective 95 % confidence intervals
as calculated by the analysis of covariance (ANCOVA)
model. A p-value ,0.05 was taken to indicate significant
differences. Calculations were carried out using SAS
Version 6.08 on a DEC VAX 3100 computer.

Results

At 15–30 min after sucrose ingestion, plasma levels of
GLP-1 (7-36 amide) reached their maximum (Figure 1).
After the first hour, GLP-1 levels decreased but this was
delayed with acarbose. With placebo, GLP-1 concen-
trations remained significantly (p,0.05) elevated over
mean baseline concentrations until 210 min after inges-
tion of sucrose, whereas with acarbose, they remained
elevated for the whole study period (360 min). The
timing of elevated GLP-1 levels after acarbose was
correlated with an increased H2-exhalation (Figure 1),
indicating the presence of sucrose in the colon at that
time. Acarbose maintained significantly higher GLP-1 (7-
36 amide) plasma levels than placebo from 210 to
360 min (by repeated measures analysis of variance:
p = 0.03).

The postprandial elevation in plasma glucose was
lower after acarbose (p,0.001) and this was accompanied
by a smaller rise in insulin concentrations (p = 0.001). A
similar trend was seen for C-peptide concentrations but
the difference was not significant (Figure 2). There was
no difference in plasma glucose, insulin or C-peptide
levels at 150 min after sucrose ingestion and thereafter
(Figure 2), while GLP-1 (7-36 amide) levels remained
significantly elevated (Figure 1). The integrated incremen-
tal area for GLP-1 (7-36 amide) responses was significantly
greater with acarbose, when calculated for the whole
6 h period (p = 0.048), whereas this difference was not
significant for the first 4 h after sucrose ingestion.

The plasma levels of gastric inhibitory peptide (GIP)
were clearly reduced (p = 0.001) through a-glucosidase
inhibition by acarbose (Figure 1). Plasma glucagon con-
centrations increased immediately after sucrose ingestion
and remained higher (p,0.001) from 180 min onwards
with acarbose than with placebo (Figure 3).

The patterns of glucose, insulin, C-peptide, GLP,
glucagon, and H2 responses (Figures 1,2 and 3) were
confirmed by the comparison of integrated responses
(Tables 1 and 2).

Discussion

The present study demonstrates an augmented and
prolonged release of GLP-1, when oral sucrose is
administered together with acarbose in patients with
Type 2 diabetes mellitus. These results are similar to
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Figure 1. Breath hydrogen response (A), plasma GLP-1 (7-36
amide) (B), and gastric inhibitory peptide (GIP) concentrations
(C) after oral sucrose (arrow) with (•J•) and without (+--+) the
concomitant ingestion of the a-glucosidase-inhibitor acarbose
(100 mg). Mean ± SEM, n = 11. Repeated measures analysis of
covariance indicated the following p-values regarding treatment
(A), time (B) and the interaction of treatment and time (AB):
H2-exhalation: A: p = 0.005, B: p = 0.001, AB: p,0.001; plasma
GLP-1: A: p = 0.001, B,0.001, AB: p = 0.003; plasma GIP:
A: p,0.001, B: p,0.001, AB: p,0.001. Asterisks indicate
significant differences (p,0.05) at single time points

those obtained in a previous study performed in younger,
non-diabetic subjects.24 The most likely mechanism is
that acarbose prevents rapid hydrolysis of sucrose,
postponing the process of a-glucosidase action to later
time points and more distal areas of the gastrointestinal
tract.35 The consequence is the presence of chyme in
the lower jejunum, ileum and eventually colon; locations
with abundant L-cells.1,18,20 Contrary to the normal
situation, nutrients may, under the influence of acarbose,
come into contact with L-cells and directly trigger release
of GLP-1.21,24,36,37 The presence of sucrose in the colon
can be inferred from H2-generation by colonic bacteria
and occurred at approximately the same time as the
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Figure 2. Responses of plasma glucose (A), insulin (B), and C-
peptide (C) concentrations after oral sucrose (arrow) with
(•J•) and without (+--+) the concomitant ingestion of the a-
glucosidase-inhibitor acarbose (100 mg). Mean ± SEM; n = 11.
Repeated measures analysis of covariance indicated the follow-
ing p-values regarding treatment (A), time (B) and the interaction
of treatment and time (AB): plasma glucose: A: p = 0.049, B:
p,0.001, AB: p,0.001; plasma insulin: A: p = 0.014, B,0.001,
AB: p,0.001; plasma C-peptide: A: p = 0.16, B: p,0.001, AB:
p = 0.54, Asterisks indicate significant differences (p,0.05) at
single time points

onset of exaggerated GLP-1 responses. The situation is
different in the case of GIP, which stems from the
duodenum.5,6 As shown in previous studies,24,38 GIP
release is reduced by acarbose because it is not the
presence of appropriate nutrients in the GIT lumen
but their absorption39 that leads to GIP secretion. a-
glucosidase inhibition prevents carbohydrate absorption
in the upper gastrointestinal tract.35

In comparison to our previously studied group of
healthy volunteers, the difference in GLP-1 concentrations
was smaller in the diabetic patients (28 % based on 4 h
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Figure 3. Plasma glucagon concentrations after oral sucrose
(arrow) with (•J•) and without (+--+) the concomitant ingestion
of the a-glucosidase-inhibitor acarbose (100 mg). Mean ± SEM;
n = 11. Repeated measures analysis of covariance indicated
the following p-values regarding treatment (p = 0.02), time
(p,0.001), and the interaction of treatment and time (p,0.001).
Asterisks indicate significant differences at single time points

areas under the curve vs 200 % in normal subjects24).
Rather, a prolonged effect of acarbose was observed,
with a significant difference in 6 h AUCs, and a significant
difference remained at the latest time point (6 h) studied
(Figure 1). Since the previous study24 was performed in
younger (25 ± 4 years) subjects, this difference may relate
in part to age, but there may be quantitative differences
between acarbose effects on GLP-1 concentrations in
normally glucose tolerant and Type 2 diabetic subjects.
The most likely explanation is provided by the finding
of enhanced a-glucosidase activity in diabetic versus
non-diabetic animals,40,41 possibly due to non-enzymatic
glycation and reduced turnover. A pre-existing excess of
a-glucosidase activity in the gut mucosa of Type 2
diabetic patients could compensate for acarbose effects
or require a larger dose to get a similar degree of enzyme
inhibition. This hypothesis, however, is only supported
by animal experiments.

Exogenous administration of larger amounts of GLP-1
stimulates insulin and reduces glucagon.16,17,42 There is
no evidence for a similar effect of the smaller, endogenous
elevation of GLP-1 from the present data, because during
the period characterized by elevated GLP-1 plasma
concentrations (210 to 360 min), insulin concentrations
were not higher and glucagon levels were not lower in
the experiments with acarbose. Furthermore, plasma
glucose was not lower. This apparent discrepancy
may be explained by insufficient increments in GLP-1
concentrations, by continuing inflow of glucose and
fructose from the gut during the 6 h study period and
by differences in hepatic glucose output.43,44 It appears
likely that acarbose treatment can lead to a decreased
suppression of hepatic output after the ingestion of
carbohydrate meals.

Acarbose will profoundly influence the time course of
postprandial glucose metabolism, leading to prolonged
absorption at a lower rate and a reduced stimulation of
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Table 1. Integrated responses (AUC, trapezoid rule) over 6 h after a 100 g sucrose load with and without ingestion of 100 mg
acarbose as calculated by the ANCOVA model (crossover design)

Parameter Measured Calculated by ANCOVA model

Acarbose Placebo Difference (95 % confidence p-value
interval)

H2-exhalation 20832 ± 4365 8478 ± 4636 14886 (5585 to 24186) 0.0062
(ppm·min)
GLP-1 (pmol·1−1 min) 6786 ± 1021 5302 ± 738 1325 (13 to 2640) 0.048
GIP (pmol·l−1 min) 4912 ± 849 11185 ± 2032 −5856 (−9084 to −2634) 0.003
Plasma glucose 4077 ± 255 4350 ± 261 −309 (−556 to −61) 0.02
(mmol·1−1 min)
Insulin (nmol·l−1min) 30.7 ± 5.4 36.5 ± 6.1 −4.8 (−10.0 to 0.5) 0.07
C-peptide (nmol·l−1min) 596.0 ± 59.5 593 ± 43.2 −21.8 (−72.7 to 30.3) 0.37
Glucagon (pmol·l−1min) 4425 ± 354 3941 ± 354 +576 (204 to 949) 0.007

Mean ± SEM.

Table 2. Integrated responses (AUC, trapezoid rule) over 4 h after a 100 g sucrose load with and without ingestion of 100 mg
acarbose as calculated by the ANCOVA model (crossover design)

Parameter Measured Calculated by ANCOVA model

Acarbose Placebo Difference (95 % confidence p-value
interval)

H2-exhalation 12017 ± 3040 6433 ± 3521 7740 (332 to 15150) 0.042
(ppm·min)
GLP-1 (pmol·l−1 min) 5333 ± 920 4331 ± 662 802 (−425 to 2026) 0.17
GIP (pmol·l−1 min) 3810 ± 627 9723 ± 1573 −5574 (−8220 to −2880) 0.001
Plasma glucose 2889 ± 182 3224 ± 182 −367 (−554 to −179) 0.002
(mmol·l−1 min)
Insulin (nmol·l−1 min) 22.4 ± 4.1 29.3 ± 5.2 −5.5 (−9.9 to −1.1) 0.02
C-peptide (nmol·l−1min) 405.0 ± 33.7 436.0 ± 33.3 −31.1 (−67.3 to 5.1) 0.08
Glucagon (pmol·l−1min) 3053 ± 253 2921 ± 274 270 (5.4 to 535.2) 0.047

Mean ± SEM.

insulin secretion, especially since GIP release is blunted.
The latter incretin however may be less important in
Type 2 diabetic patients, because physiological doses of
GIP are nearly ineffective as an insulinotropic agent in
Type 2 diabetic patients.9 As a result, there is an
effect of acarbose on postprandial plasma glucose
concentrations which probably explains the differences
in glucagon during the latter part of our study.

In conclusion, GLP-1 increments are augmented and
prolonged by acarbose in hyperglycaemic Type 2 diabetic
patients, too. The effect, however, appears to be some-
what smaller in hyperglycaemic Type 2 diabetic patients
than in previously studied healthy volunteers.
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