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Glutoxim (bisodium salt of oxidized glutathione
(GSSG) containing nanoconcentrations of cis�plati�
num; PharmaVAM, Russia) is a pharmacological
GSSG analogue used as an immunomodulating and
hematopoesis�stimulating agent in the complex ther�
apy of bacterial and viral infections, psoriasis, and in
radio� and chemotherapy of malignant tumors [1].
Molixan (PharmaVAM) is a complex of glutoxim and
inosine with an antiviral, immunomodulating, and
hepatoprotective action used in the therapy of acute
viral hepatitis B and C, mixed hepatitis, and liver cir�
rhosis [1]. Glutoxim and molixan belong to the phar�
macological group of thiopoetines, which affect intra�
cellular redox regulation. However, the cellular and
molecular mechanisms of their action are insuffi�
ciently understood.

In our previous studies, it was first shown that
GSSG, glutoxim, and molixan increased the intracel�
lular Ca2+ concentration ([Ca2+]i) in rat peritoneal
macrophages by mobilizing calcium ions from thapsi�
gargin�sensitive Ca2+ stores and subsequently stimu�
lating the Ca2+ uptake [2–4].

Using a wide range of agents affecting different
components of intracellular signaling systems, we first
identified the principal elements of the signal cascade
triggered by GSSG and glutoxim and resulting in a
[Ca2+]i increase in macrophages, namely, tyrosine
kinases and tyrosine phosphatases [3, 5], phosphati�
dylinositol kinases [6], and the key enzymes of the
phosphoinositide signaling system, phospholipase C
and protein kinase C [7]. It was also found that the
effects of glutoxim and molixan on [Ca2+]i in mac�
rophages were mediated by actin cytoskeleton ele�
ments [8] and microtubules [9].

The involvement of microtubules and the actin
cytoskeleton in the glutoxim and molixan action on

[Ca2+]i in macrophages invites the assumption that
macrophage activation induced by these agents is
mediated by vesicle traffic. It is known that intracellu�
lar trafficking of secretory vesicles depends on micro�
tubules, which regulate the transport efficiency and
organize the vesicle traffic by acting like cellular high�
ways. Agents causing microtubule disintegration have
been shown to inhibit secretion in different types of
cells [10]. In addition, it was reported that glutoxim
could induce vesicle exocytosis in macrophages con�
taining M. tuberculosis [11]. Based on these data, we
considered it worthwhile to investigate the possible
involvement of vesicle transport and small G proteins,
important components of the exocytosis signaling
pathway, in mediating the glutoxim and molixan
effects on the [Ca2+]i level in macrophages.

Experiments were performed on a culture of resi�
dential peritoneal macrophages of Wistar rats at room
temperature (20–22°C) 24–48 h after the beginning
of cell culture. The procedures of macrophage cultur�
ing and the automated device for [Ca2+]i measure�
ments based on a Leica DM 4000B fluorescent micro�
scope (Leica Microsystems, Germany) were previ�
ously described in detail [8]. The levels of [Ca2+]i were
measured using a Fura�2AM fluorescent probe
(Sigma�Aldrich, United States). Fluorescence was
induced at wavelengths of 340 and 380 nm, and emis�
sion was recorded at 510 nm. To avoid photobleach�
ing, measurements were performed at 20 s intervals,
using 2�s irradiation. [Ca2+]i values were calculated
using the Grynkiewicz equation [12]. Statistical anal�
ysis was performed using Student’s t�test. Data were
presented as  ± sd. Figures 1 and 2 show typical
experimental results.

The involvement of small G proteins of the Ras
superfamily in the effects of glutoxim and molixan on
[Ca2+]i was analyzed using a farnesylcysteine analogue,
N�acetyl�S�farnesyl�L�cystein (AFC). AFC inhibits far�
nesylmethyl transferases and prevents methylation,
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membrane binding, and activation of Ras proteins
[13]. The role of vesicle transport in the glutoxim or
molixan effects on [Ca2+]i was studied using brefeldin
A, an inhibitor of vesicle transport. Brefeldin A inacti�
vates small G proteins of the Arf subfamily that are
central to the regulation of vesicle transport [14]. GDP
complexes of Arf proteins are located in the cytosol,
while their GTP�associated forms are strongly bound
to the cellular membrane via their N�terminal
domains. Activated Arf proteins capture vesicle coat

proteins and induce vesicle formation. Thus, activa�
tion of Arf proteins is an important mechanism of acti�
vating vesicle transport [14].

Control experiments showed that the [Ca2+]i levels
in macrophages incubated for 20 min with 100 µg/mL
glutoxim (Fig. 1a) or 100 µg/mL molixan (Fig. 2a) in
nominally calcium�free medium were slowly increas�
ing due to Ca2+ mobilization from intracellular Ca2+

stores. Based on six experiments for either agent, it was
found that a 20�min incubation with either drug
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Fig. 2. Influence of brefeldin A on the molixan effect on the [Ca2+]i level in macrophages. (a) Cells were incubated for 20 min in

a calcium�free medium in the presence of 100 µg/mL molixan; then, Ca2+ uptake was activated by supplementing the culture
medium with 2 mM Ca2+; (b) cells were preincubated with 100 µM brefeldin A for 1 h in a calcium�free medium; then, 100 µg/mL
molixan was added and, within 25 min, Ca2+ uptake was activated by adding 2 mM Ca2+ to the medium. Each recording was
obtained for a group of 40–50 cells and represents a typical result observed in six to ten independent experiments.

Fig. 1. Influence of brefeldin A and a farnesylcysteine analogue, N�acetyl�S�farnesyl�L�cysteine (AFC), on the glutoxim effect
on [Ca2+]i level in macrophages. (a) Cells were incubated for 20 min in a nominally calcium�free medium in the presence of
100 µg/mL glutoxim; next, Ca2+ uptake was activated by supplementing the culture medium with 2 mM Ca2+; (b, c) cells were
preincubated (b) with 100 µM brefeldin A for 1 h or (c) with 50 µM AFC for 15 min in a calcium�free medium; then, 100 µg/mL
glutoxim was added and, within 20 min, Ca2+ uptake was activated by adding 2 mM Ca2+ to the medium. Each recording was
obtained for a group of 40–50 cells and represents a typical result observed in six to ten independent experiments.
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resulted in a [Ca2+]i increase from the basal level of
85 ± 18 nM to 219 ± 20 nM for glutoxim and to 217 ±
19 nM for molixan. In the medium supplemented with
2 mM Ca2+, the levels of [Ca2+]i were observed to
increase further, reflecting the Ca2+ uptake in the
cytosol (Figs. 1a, 2a). During the Ca2+ uptake phase,
the [Ca2+]i levels increased to 327 ± 19 and to
325 ± 17 nM for glutoxim and molixan, respectively
(data from six experiment for either agent).

This study was the first to demonstrate that a pre�
liminary 1�h incubation of macrophages with 100 µM
brefeldin A before adding 100 µg/mL glutoxim (Fig. 1b)
or 100 µg/mL molixan (Fig. 2b) resulted in an efficient
suppression of both phases of the drug�induced Ca2+

response. Based on the data from seven experiments
for either agent, mobilization of deposited Ca2+ was
reduced by 87.1 ± 7.0% and 91.0 ± 6.5%, and Ca2+

uptake, by 69.1 ± 6.2% and 65.3 ± 5.2% for glutoxim
and molixan, respectively.

Similarly, it was found that a 15�min preincubation
with 50 µM AFC prior to adding 100 µg/mL glutoxim
or 100 µg/mL molixan suppressed considerably the
Ca2+ mobilization from cell stores, as well as Ca2+

uptake induced by glutoxim (Fig. 1c) or molixan (data
not shown). According to the data from eight experi�
ments for either drug, Ca2+ mobilization from cell
stores was reduced by 71.0 ± 5.1% and 76.2 ± 6.3%,
and Ca2+ uptake, by 65.0 ± 3.0% and 62.1 ± 4.0%, for
glutoxim and molixan, respectively.

These results suggest that the Ca2+ responses
induced by glutoxim and molixan in macrophages
depend critically on small G proteins of the Ras super�
family, as well as on vesicle traffic.

The above results, along with our previous findings
[2–9], also indicate that the action of glutoxim and
molixan on [Ca2+]i levels in macrophages involves the
same signal proteins and complexes that participate in
exocytosis: tyrosine kinases and tyrosine phos�
phatases, phosphatidylinositol�3� and �4 kinases, pro�
tein kinase C, small G proteins of the Ras superfamily,
vesicle trafficking, and actin and tubulin cytoskeleton
[15]. In addition, we have shown that glutoxim and
molixan themselves induce reorganization of the actin

cytoskeleton [8], which mediates macrophage activa�
tion and facilitates endo� and exocytosis.

Presumably, glutoxim and molixan not only cause
an increase in [Ca2+]i levels, but can also stimulate
Ca2+�dependent exocytosis in macrophages. The sig�
nal cascades triggered by glutoxim and molixan and
inducing [Ca2+]i increase and exocytosis are appar�
ently in a close interaction and crosstalk with each
other.
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