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Abstract: Three metabolic models for the production of
ethanol, glycerol, and carbohydrates in yeast are opti-
mized with respect to different production rates. While
originally nonlinear, all three optimization problems are
reduced in such a way that methods of linear program-
ming can be used. The optimizations lead to profiles of
enzyme activities that are compatible with the physiol-
ogy of the cells, which guarantees their viability and fit-
ness, and yield higher rates of the desired final end prod-
ucts than the original systems. In order to increase etha-
nol rate production at least three times, six enzymes
must be modulated. By contrast, when the production of
glycerol or carbohydrates is optimized, modulation of
just one enzyme (in the case of glycerol) or two enzymes
(in the case of carbohydrates) is necessary to yield sig-
nificant increases in product flux rate. Comparisons of
our results with those obtained from other methods
show great similarities and demonstrate that both are
valid methods. The choice of one or the other method
depends on the question of interest. © 1997 John Wiley &
Sons, Inc. Biotechnol Bioeng 55: 758–772, 1997.
Keywords: Optimization; metabolic systems; linear pro-
gramming; S-system representation; ethanol; glycerol;
carbohydrates; Saccharomyces cerevisiae

INTRODUCTION

The development of strains with increased performance in
the production of a desired product is one of the main tasks
in biotechnology. The procedure for this task has tradition-
ally been a series of iterations of mutagenesis followed by

selection. Although this procedure has been enormously
successful in the past—with some of the new strains pro-
ducing over 100 times more than the original parent strain—
the rate of progress in increasing yield has slowed down
considerably in many cases. Confounding this trend is the
fact that the experimenter has a priori no control over the
mutations produced or their effects. It is becoming increas-
ingly evident that new approaches to this problem are nec-
essary.

Development in two fields of investigation are promising.
The first one is a significantly better understanding of the
structure of metabolic systems and of the kinetics and ther-
modynamics of the chemical reactions that take place in
living cells. In many cases this understanding is not merely
qualitative but quantitative; that is, it can be expressed in
terms of kinetics equations. The second development is oc-
curring in molecular biology. Current techniques and the
development of numerous useful vectors enable the micro-
biologist not only to change the protein content of a given
organism but also to alter its enzymatic profile specifically
in such a way that the synthesis of a given end product or
intermediate is enhanced. The combination of these two
developments permits modifications of the metabolic struc-
ture of an organism and improvements in biotechnological
yields.

Kinetic information has been traditionally expressed
within the mathematical framework of Michaelis–Menten
equations and their generalizations, and these equations are
sometimes integrated in models of comprehensive bio-
chemical systems (e.g. Galazzo and Bailey, 1990; Heinrich
et al., 1977; Reich and Sel’kov, 1981). These models can, in
principle, address questions about which enzymes should be
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altered in order to improve a desired product or flux. How-
ever, the rational functions underlying these approaches
have turned out to be mathematically inconvenient (e.g.,
Savageau, 1992; Schuster et al., 1991). In particular, the
complex nonlinear structure of these models has limited
attempts to optimize metabolic systems with mathematical
methods to a small number of cases with scarse results
(Pettersson, 1992; Schuster et al, 1991; Schuster and Hein-
rich, 1991).

To alleviate this situation, new approaches to capturing
the behavior of biochemical systems have been devised. Of
particular relevance among these are biochemical systems
theory (BST; Savageau, 1969a, 1971, 1976) and metabolic
control analysis (MCA; Heinrich and Rapoport, 1974; Kac-
ser et al., 1973). Within the framework of MCA, Westerhoff
and Kell (1987) proposed an approach for designing optimal
enzyme activity profiles leading to a maximal yields. This
approach requires knowledge of the kinetic properties of
enzymes and is not suitable for large changes in activities,
as they are possible with genetic manipulations. More re-
cently Kacser and Acerenza (1993) presented a strategy
(henceforth called the Kacser and Acerenza method) for
increasing the production of a metabolite of interest, while
preserving conditions necessary for cell viability. Their
method enables the researcher to specify the minimum num-
ber of enzymes to be manipulated by using fairly basic
information about the pathway structure of the system.

Within the framework of BST, optimization methods
were developed for biochemical processes represented as
S-systems (Hatzimanikatis et al., 1996; Regan et al., 1993;
Torres et al., 1996; Voit, 1992). We recently applied one of
these methods to the citric acid production inAspergillus
niger (Torres et al., 1996) and predicted alternate enzyme
profiles that promised higher yields. Our results also indi-
cated that to achieve such yields at least seven enzymes had
to be made available in prescribed quantities.

The great advantage of optimizations with S-systems is
the fact that the optimization problem is strictly linear, even
though S-system models themselves are nonlinear and rich
enough to model virtually any set of differentiable functions
or differential equations (Savageau et al., 1987a). The rela-
tive simplicity of the optimization problem derives from the
fact that the steady-state equations of S-systems are linear
when represented in logarithmic coordinates and that rel-
evant constraints on variables and fluxes also become linear
upon logarithmic transformation. As a consequence, the en-
tire theory of linear programming applies, and optimizations
can be executed very efficiently with widely available soft-
ware.

If a biochemical system is not represented as an S-system,
such an optimization procedure is usually not possible. For
instance, there are no general methods even to compute
steady states analytically if the systems are modeled with
Michaelis–Menten kinetics or in the otherwise closely re-
lated form of a generalized mass action (GMA) system.
Since steady-state conditions are important in many types of
optimization, this lack of analytical computability is a real

hindrance. The researcher is thus faced with the decision
either to forego the advantages of linear optimization or to
make the pathway model adhere to the S-system form. In
the former case, problems of nonlinear programming are
involved which may or may not be solveable. In the latter
case, the researcher has to ask whether the S-system form is
an appropriate representation of a biochemical or metabolic
pathway. As with any model, this question cannot be an-
swered in general, outside the answer that the quality de-
pends on the given situation.

Very often, Michaelis–Menten (MM) models are consid-
ered the gold standard for biochemical analysis, and other
approaches are measured against this standard. In particular,
discrepancies between a MM model and an alternative rep-
resentation are almost automatically considered a problem
with the latter. This strong reliance on MM models may in
some instances be unjustified, since these models, like any
other models, are based on assumptions that may not always
be satisfied. MM models have had a long history of suc-
cessful application to pathways in vitro, but there are also
well-documented cases in which their applicability and ana-
lytical features have been questioned (e.g., Hill et al., 1977;
Shiraishi and Savageau, 1992).

Power-law models are relatively younger, but they do
have a 25-year track record of successful application to
biochemical phenomena. Comparative analyses have shown
that the dynamic and steady-state responses of power-law
models are rather similar to those of MM models, if varia-
tions about a common operating point are not too extreme.
For large deviations, power-law and MM models may pre-
dict significantly different responses, but since no good ex-
perimental data are available to assess their accuracy, it
would be premature automatically to identify the MM mod-
els as closest to the truth. There has been extensive discus-
sion in the literature about the advantages and disadvantages
of alternative models for biochemical systems. Between the
MM and power-law models (GMA and S-systems), the
question of underlying mechanisms has been an issue. The
former were often considered more appropriate because
they were based on intuitively appealing concepts of the
formation and splitting of enzyme complexes, whereas the
latter were argued to yield a valid and often more general
reflection of the complexity encountered in biochemical
systems. Between the two variants within BST, GMA sys-
tems were sometimes considered to be more realistic since
they model each flux with an individual power-law term,
whereas S-systems aggregate all synthesizing fluxes of a
pool into one power-law term and all degradating fluxes
into a second power-law term. For small variations about an
operating point of choice, typically a steady state, the dif-
ferences between the three models are negligible, but for
larger variations the differences become more pronounced.
In particular, the S-system formulation is less accurate with
respect to flux stoichiometry, whereas the GMA formula-
tion is less accurate with respect to mass conservation, at
least when measured against MM models. Overall, it can
only be stated with certainty that all models are approxima-
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tions, and as such simplifications, of the true metabolic
pathway, whose characteristics are not known in sufficient
detail to declare one of the models superior to the other two
in all situations.

Whichever model may be most appropriate for analyzing
a biochemical system, it seems indisputable that optimiza-
tion questions are most easily approached with S-system
models for reasons outlined above. This suggests the ques-
tion: If we use the S-system strategy to optimize a pathway,
but the more appropriate model in fact is of MM or GMA
type, how significant an error do we have to expect? This
question is the object of the present analysis. It is addressed
in the following manner. We perform optimizations based
on S-system models and subsequently compare the results
with results of corresponding MM and GMA models. The
article thus serves two purposes: first, to extend the previous

methods to the indirect optimization of other nonlinear sys-
tem description and, second, to evaluate the accuracy of
optimizations that are solely based on S-systems. We apply
this indirect optimization method(IOM) to ethanol, glyc-
erol, and carbohydrate production inSaccharomyces cerevi-
siaeand show with different optimization criteria how pre-
dictions based on S-system optimization compare with
simulation results of the corresponding MM and GMA
models.

INDIRECT OPTIMIZATION METHOD

The implementation of the method can be subdivided into
three main steps, which are diagramatically represented in
Figure 1.

Figure 1. Flow diagram of the indirect optimization method (IOM).

760 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 55, NO. 5, SEPTEMBER 5, 1997



1. Design of the mathematical model, translation into the
corresponding S-system form, and quality assessment.Bio-
chemical pathways are traditionally formulated as differen-
tial equations containing MM rate laws and their generali-
zations. The resulting models integrate kinetic data and
other available information about metabolites and effector
concentrations as well as fluxes obtained from experimental
observations in vivo or in vitro (step 1.1). A first alternative
to this approach is the formulation of a pathway in the form
of a GMA system. This representation can be developed
directly from experimental data or it can be obtained from a
corresponding MM model through approximation. In the
GMA formulation, the representation of fluxes is simplified
from sometimes unwieldy rational functions to products of
power-law functions that are better suited for mathematical
analysis.

An important shortcoming of both, the MM and the GMA
approaches, is the fact that it is apparently not possible to
compute steady states with analytical methods. This limita-
tion can be overcome when we design models directly, or
reformulate previous MM or GMA models, as S-systems
(Savageau, 1976; Shiraishi and Savageau, 1992; Voit,
1991), which is possible in a straightforward, analytical
manner (step 1.2; Savageau, 1976; Voit, 1991). The S-
system representation is particularly advantageous in that it
facilitates analytical and numerical quality assessments,
which allow us to check (i) the stability of the steady state,
which is a fundamental prerequisite for any model of an
actual experimental system; (ii) the robustness of the model,
indicating whether the model is able to tolerate small struc-
tural changes; and (iii) dynamic features that characterize
the transient responses to temporary perturbations or per-
manent alterations. These analyses often pinpoint problems
of consistency and reliability of the mathematical represen-
tation (step 1.3; see Ni and Sabvageau, 1996a,b; Okamoto
and Savageau, 1984, 1986).

2. Linearization, linear programming and optimization.
The key advantage of formulating the biochemical pathway
as an S-system model is the fact that the steady state in this
representation is characterized by a system of linear alge-
braic equations (Savageau, 1969b). The formulation of
these linear equations constitutes step 2.1. In addition to the
steady-state equations, typical objective functions and con-
straints on fluxes and metabolites can be formulated as lin-
ear equations or linear inequalities (step 2.2), so that the
entire problem becomes one of straightforward linear opti-
mization (see Torres et al., 1996; Voit, 1992). Upon formu-
lating a biochemical pathway as an S-system, the problem
of optimizing a particular flux under typical constraints
reads as follows:

Linear Program:

(1) maximize ln(flux) subject to
(2) steady-state equations, expressed in logarithms of

variables
(3) ln(dependent or independent variable)ø constant
(4) ln(dependent or independent variable)ù constant

(5) ln(dependent or independent variable)4 constant
(6) ln(variable) unrestricted
(7) ln(flux) ø constant
(8) ln(flux) ù constant
(9) ln(flux) unrestricted

(10) ln(flux1/flux2) ø constant

In this formulation, (1) is a typical objective function that is
linear in the logarithms of the involved dependent and in-
dependent variables; (2) assures that the optimized system is
in a steady state, no matter what the altered enzyme con-
centrations are; (3) and (4) constrain variables to stay within
certain limits; (5) forces the variable to be at a given value,
whereas (6) is an option that permits any real value for the
logarithm of a variable and thus any positive real value for
the variable itself; (7)–(9) are the corresponding constraints
on fluxes; and (10) represents that the logarithm of the flux
ratio flux1/flux2 should remain below a certain limit. Nu-
merical examples for these constraints are discussed in the
following section where we design linear programs for the
optimization of ethanol, glycerol, and carbohydrate produc-
tion in S. cerevisiaeunder conditions of a suspended cell
culture at pH 4.5.

The optimization (step 2.3) is executed with any of the
available linear optimization packages, such as LINDO PC
5.3 (LINDO Systems INC.) or KLP (Kinetics Software,
1390 Fell Street, 103, San Francisco, CA 94117). The op-
timized enzyme concentration profiles and their correspond-
ing steady states are ‘‘S-solutions’’ in the sense that they
constitute the optimized steady state of the S-system model,
which may differ from the steady state of the original MM
or GMA model. These differences typically become appar-
ent as inaccuracies in the flux stoichiometry at branchpoints,
which is due to the aggregation of fluxes in the S-system
formalism (cf. Savageau et al., 1987a,b). It has been docu-
mented, however, that the S-system approximation in many
cases is sufficiently accurate for predicting the dynamic and
steady-state properties of the system over a reasonably wide
range of variation in conditions (Sorribas and Savageau,
1989; Voit and Savageau, 1987).

Since the optimization itself does not address questions of
stability, the steady-state solution of the S-system must be
checked with respect to stability and possibly with respect
to robustness. Both types of analyses can be executed ana-
lytically (Savageau, 1969b, 1976) or with computational
means (e.g., Torres et al., 1996). Unstable steady-state so-
lutions are normally discarded (step 2.4). Since the actual
fermentation system is stable, emerging instabilities in the
altered system must be due to constraints on some variables
or fluxes that are too slack. The system is to be revisited
(step 2.2) with more stringent constraints.

It is noted that if we allow changes in the constraints up
to several multiples of the original, it is necessary to check
for differences between the S-system representation and the
GMA or MM model. If significant discrepancies in numeri-
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cal predictions or even in stability are detected, it might be
advisable to execute the optimization in several smaller
steps.

3. Transfer of results to the original model.In cases
where the pathway is modeled originally as an S-system,
this step is unnecessary (step 3.1). In other cases, the S-
system may have been derived as an approximation of a
different pathway model. In this latter situation, the enzyme
concentration profile of the S-solution is now used as input
to the original model (step 3.2). In the most common case of
a Michaelis–Menten representation, this is accomplished by
substituting the optimized enzyme concentrations in a simu-
lation program that allows dynamical evaluations of the
MM model. If the original model is expressed in the GMA
representation, this can be done straightforwardly by using
the simulation package ESSYNS (Voit et al., 1990).

The steady state of the GMA or MM model, implemented
with the new enzyme concentrations, cannot typically be
computed analytically, but it can be solved numerically, for
instance with a Newton method. Alternately, the differential
equations can be solved numerically until the system has
approached the steady state sufficiently closely (step 3.1).
Either way, the result is an optimized steady-state solution
that is consistent with the GMA or MM model, respectively.
This solution is not necessarily the true optimum, since it is
computed via S-system approximation, which is accompa-
nied by some unknown approximation error. This is the cost
to be paid for reducing the arbitrarily complex nonlinearities
of a traditional biochemical system model to a linear pro-
gram. The following examples will demonstrate the differ-
ences between the steady states of the original and the S-
system models are often small in comparison to the experi-
mental accuracy and in light of other uncertainties involved
in any modeling effort (see discussion in Torres et al.,
1996).

A possible outcome of the present step is that some of the
metabolite concentrations exceed the imposed limits or that
the traditional model is unstable (step 3.3). If the discrep-
ancies in metabolites are physiologically significant, or if
the system is unstable, some of the constraints in step 2.2
must be changed accordingly. Once a satisfactory solution is
obtained, the optimized profile of enzyme concentrations
serves as a target in the development of modified strains of
the microorganism.

In summary, the previously developed optimization
method (Regan et al., 1993; Voit, 1992; Torres et al., 1996),
which assumed that an S-system represented the true path-
way with sufficient accuracy, was extended here to situa-
tions in which the S-system representation is an approxima-
tion of another model, such as an MM or GMA model. By
performing the optimization with the approximating S-
system model, the resulting solution is only an ‘‘approxi-
mately optimal solution,’’ but it is obtained in a straightfor-
ward fashion that circumvents the often considerable diffi-
culties posed by the nonlinearity of other models.

THE EXPERIMENTAL SYSTEM

The proposed optimization method is now applied to etha-
nol, glycerol, and carbohydrate production in the yeastS.
cerevisiae.The specific system under consideration (see
Fig. 2) produces the target metabolites through the anaero-
bic fermentation of glucose in a suspended cell culture at pH
4.5 (Galazzo and Bailey, 1990, 1991).

The metabolic system and the experimental conditions
were chosen for a number of reasons. First, the kinetics and
fluxes involved in the formation of ethanol, glycerol, and
carbohydrates in vivo as well as the intracellular concentra-
tions of substrates, intermediate metabolites, and effectors
at the considered steady-state conditions are well known
(Galazzo and Bailey, 1990, 1991). Moreover, the steady
state of this system was recently characterized in some de-
tail (Cascante et al., 1995; Curto et al., 1995), and the qual-
ity of different alternate representations was analyzed (Sor-
ribas et al., 1995). These studies showed that the steady state
is locally stable, as indicated by eigenvalues with all the real
parts negative, thus meaning that the system variables will
return to their reference values after a small perturbation in

Figure 2. Anaerobic fermentation pathway of the yeastS. cerevisiae,
according to Galazzo and Bailey (1990,1991). The suspended cell culture
transforms glucose to ethanol, glycerol, and polysaccharides at pH 4.5.
Metabolites (regular typeface) are numbered 1–5:X1 (Glcin, intracellular
glucose);X2 (G6P, glucose-6-phosphate);X3 (FDP, fructose diphosphate);
X4 (PEP, phosphoenol pyruvate);X5 (ATP). Enzymes and other effectors
(bold typeface) are numbered from 6 to 14:X6 (Vin, sugar transport sys-
tem); X7 (VHK, hexokinase);X8 (VPFK, phosphofructokinase);X9 (VGADP,
glyceraldehyde 3-phosphate dehydrogenase);X10 (VPK, pyruvate kinase);
X11 (Vcarb, glycogen synthetase);X12 (Vgro, glycerol 3-phosphate dehydro-
genase, proportional to PK);X13 (VATPase, ATPase);X14 (NADH/NAD+).
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the dependent concentrations. Furthermore, the system is
characterized by low parameter sensitivities: only 4 of the
55 sensitivities have absolute values between 1 and 5,
whereas all the other sensitivities have values lower than 1
(Sorribas et al., 1995). These sensitivities quantify the ef-
fects of changes in the parameters of the system, thereby
providing a measure of the robustness of the model. Finally,
the system quickly returns to the predisturbance steady state
after an increase or decrease in a dependent or independent
variable, a response that is to be expected from a well-
functioning system. In summary, regarding the system re-
sponse after an increase or decrease of a dependent or in-
dependent variable, the present system showed quick re-
turns to the predisturbance steady state, the response being
an appropriate behavior. In summary, the present system is
well determined under the chosen conditions, and the pre-
viously developed mathematical models seem to correspond
well to the pathway in vivo.

Second, the metabolic system is complex enough for ex-
ploring nontrivial aspects of reliability, practical implemen-
tation, and accuracy of the method. The metabolic pathway
has two branchpoints, one leading to glycogen and trehalose
(Vcarb) and the other leading to glycerol (Vgro). Also, there is
an inhibitory feedback loop from glucose-6-phosphate to
V1

+, and an activating feedforward loop from fructose di-
phosphate toV4

− (see Fig. 2). Finally, the pathway contains
some splitting reactions, as well as some steps, associated
with coupled cofactors, in which the molecularity is 2 and 3,
respectively. These features are very interesting because
they create a situation that allows us to test various aspects
of the IOM strategy.

Third, a considerable body of academic and technical
knowledge is available, which renders feasible the actual
implementation of DNA vectors in modified strains ofS.
cerevisiaewith optimized profiles of enzyme activities
(Davies et al., 1992; Heinish, 1986; Schaaff et al., 1989).

APPLICATION TO ETHANOL, GLYCEROL AND
CARBOHYDRATE PRODUCTION IN
SACCHAROMYCES CEREVISIAE

Mathematical Description

The Michaelis–Menten Representation

The mathematical model of the pathway, expressed in terms
of MM rate laws, was recently published by Galazzo and
Bailey (1990, 1991) and is not reproduced here. For our
comparison of methods, this model is taken as the ‘‘true’’
representation of the pathway, and we will not discuss
whether this representation or a power-law model is more
adequate. The rate equations and the parameter values used
here are also taken from Galazzo and Bailey (1990, 1991).

The S-System Model

The corresponding S-system and GMA models for sus-
pended cells at pH 4.5 were developed by Curto and co-

workers (1995). The S-system is given as a set of five
differential equations with two power-law terms each:

dX1/dt = 0.8122X2
−0.2344X6

−2.866999105X1
0.7464X5

0.0243X7 = V1
+ − V1

−

dX2/dt = 2.866999105X1
0.7464X5

0.0243X7

−0.524046743X2
0.739X5

−0.394X8
0.999X11

0.001

= V2
+ − V2

−

dX3/dt = 0.522758878X2
0.7318X5

−0.3941X8

−0.0148443752X3
0.584X4

0.03X5
0.119X9

0.944X12
0.056

X14
−0.575= V3

+ − V3
−

dX4/dt = 0.022074642X3
0.6159X5

0.1308X9 X14
−0.6088

−0.094712323X3
0.05X4

0.533X5
−0.0822X10 = V4

+ − V4
−

dX5/dt = 0.09133492X3
0.333X4

0.266X5
0.024X9

0.5 X10
0.5 X14

−0.304

−3.211579932X1
0.198X2

0.196X5
0.372X7

0.265X8
0.265

X11
0.0002X13

0.47= V5
+ − V5

− (1)

The kinetic orders in this representation were calculated by
Curto and co-workers (1995) from published experimental
data, and the values ofai andbi were determined from the
kinetic order values and steady-state concentration values of
metabolites, as is commonly done in power-law approxima-
tions (e.g., Voit, 1991, Ch. 2). The steady state of the S-
system model under the given conditions is consistent with
experimental observations (Galazzo and Bailey, 1990,
1991), and eigenvalue analysis confirmed its stability (Sor-
ribas et al., 1995). The quality of the representation was
subsequently analyzed with standard tools of biochemical
system theory, and it was shown that the model captured a
realistic picture of the pathway in vivo (Sorribas et al.,
1995).

Maximization of fluxes

Objective Functions

The first step in setting up a linear program is the definition
of the objective function. We considered three optimization
tasks:

Maximization of the rate of ethanol production: The rate
of ethanol production is given directly by the flux through
the pyruvate kinase reaction,V4

− [cf. Eq. (1)]:

V 4
− 4 0.094712323X3

0.05 X4
0.533 X5

−0.0822X10 (2)

The objective function for this linear program in logarithmic
coordinates reads

0.05y3 + 0.533y4 −0.0822y5 + y10 (3)

Maximization of the rate of glycerol and carbohydrate pro-
duction: In these cases we need to use the corresponding,
power-law representation of the individual fluxes (Curto et
al., 1995):
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Vgro = 0.092717816X3
0.05X4

0.533X5
−0.0822X12 (4)

Vcarb= 8.9038457252 10−4 X2
8.6107X11 (5)

After taking logarithms in the above expressions, we obtain,
as the linearized objective functions,

0.05y3 + 0.533y4 − 0.0822y5 + y12 (6)

8.6107y2 + y11 (7)

for the glycerol and carbohydrate production, respectively.

Steady-State Constraints

The second step is the formulation of the steady-state con-
straints, again expressed in terms of the logarithms of the
variables. In the three cases considered these constraints
take the following form:

− 0.7464y1 − 0.2344y2 −0.024y5 + y6 − y7 = 1.2612
0.7464y1 − 0.739y2 + 0.418y5 + y7

− 0.999y8 − 0.001y11 = −1.699
0.7318y2 − 0.584y3 + 0.03y4 − 0.513y5 + y8 − 0.944

y9 − 0.056y12 + 0.575y14 = −3.5615
0.5659y3 − 0.533y4 + 0.213y5 + y9 − y10 − 0.608y14

= 1.4564
− 0.198y1 − 0.196y2 + 0.333y3

+ 0.266y4 − 0.348y5 − 0.265y7 − 0.265y8

+ 0.5y9 + 0.5y10 − 0.002y11 − 0.47y13

− 0.304y14 = 33.039 (8)

Constraints on Enzyme Concentrations

Next we define which enzyme concentrations may vary and
by how much. We generally allow the enzymes to vary
between 1 and 50 times the base values. These limits are
consistent with the range of variations made possible by
recombinant DNA technologies (Guarante et al., 1980). In
all cases, the values of those enzymes diverting flux from
the target product were kept constant at the base steady-state
values. This was so in order to ensure that the rest of me-
tabolism remains unperturbed. With these settings, we ob-
tain the following constraints on the control variables for
each of the flux maximization tasks.

Ethanol maximization:

2.980ø y6 ø 6.892

4.226ø y7 ø 8.138

3.456# y8 # 7.368

3.910# y9 # 7.822

8.143# y10 # 12.055

y11 = 2.66

y12 = 5.313

3.222# y13 # 7.134

Glycerol maximization:In this particular case we initially
allowed the enzymes to vary in concentration between 1 and

50 times their base value. However, analysis of the opti-
mized solution revealed significant differences between the
S-solution and the solution to the MM model (step 2.4), and
we subsequently changed the maximum to 10 times the base
value, thereby avoiding the former problems:

2.980ø y6 ø 5.283

4.226ø y7 ø 6.529

3.456ø y8 ø 5.758

y9 = 3.91

y10 = 8.143

y11 = 2.66

5.313ø y12 ø 7.615

3.222ø y13 ø 5.525

Carbohydrate maximization:

2.980ø y6 ø 6.892

4.226ø y7 ø 8.138

3.456ø y8 ø 7.368

y9 = 3.91

y10 = 8.143

2.66ø y11 ø 6.57

y12 = 5.313

3.222ø y13 ø 7.134

Constraints on Metabolite Concentration

Analogous to the constraints on enzymes, we limit the range
of variation of the dependent variables, which represent the
metabolite concentrations. For all three optimization tasks,
the lower and upper limits of the dependent variables,X1,
. . ., X5, were set to 0.8 and 1.2 the base values, which
corresponds to 20% variation about the steady-state levels.
There is no hard evidence on how wide a range in a me-
tabolite can be tolerated without causing losses in growth
rate or fitness and subsequently leading to poor yield or rate
in product synthesis. We arbitrarily allow changes of up to
20% around the steady-state levels. This threshold presum-
ably can be considered small enough to avoid significant
changes in the overall metabolism in vivo.

The ratio NADH/NAD,X14, was set constant and treated
as an independent control variable. This ratio was consid-
ered constant since fluorescence measurements performed
by Galazzo and Bailey (1990) indicated small variations in
this ratio. Accordingly, the mathematical formulation, in
logarithmic coordinates, leads to the following constraints
on the metabolite concentrations:

−3.604ø y1 ø −3.199
−0.213ø y2 ø 0.192
1.989ø y3 ø 2.395

−4.879ø y4 ø −4.474
−0.109ø y5 ø 0.304
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Stoichiometric Conservation Constraint

In the optimization process, the system deviates from the
original steady-state operating point, and as a consequence
of the particular approximation that underlies the S-system
model, some of the stoichiometric relationships that hold in
the base solution are no longer satisfied. In order to avoid
significant stoichiometric deviations, we add a restriction
that reflects the required dependency between fluxes. To
this end, we impose a stoichiometric conservation constraint
in the following form:

(V1
+)/(V4

−) > 0.5

This constraint ensures that the rateV4
− (ethanol production)

cannot be greater than twice the input flux, which accounts
for the splitting of each fructose diphosphate molecule into
two molecules of phosphoenol pyruvate (X4).

After substituting from Equations 1 and taking loga-
rithms, we obtain as the flux constraint

−0.2344 y2 −0.05 y3 −0.533 y4 +0.0822 y5
+ y6 − y10 > −2.84204967 (9)

To optimize the system under these conditions, we thus
maximize Equation (3), (6), and (7) and require that the
stoichiometric conservation constraint [Equation (9)] be sat-
isfied.

It should be noted that different stoichiometric conserva-
tion constraints could be imposed instead, or in addition to,
Equation (9). For instance, we could require that the flux
through the branchpoint fructose diphosphate, (FDP;X3)
cannot be greater than the glucose input flux [(V3

−)/V1
+) < 1]

or that the flux toward glycerol should be less than twice the
glucose uptake [(Vgro)/(2 z V1

+) < 1]. Again, these constraints
become linear upon logarithmic transformation. Only Equa-
tion (9) was considered here; the other options are consid-
ered in the Discussion.

RESULTS

The results of our analysis can be evaluated in different
ways. The main purpose of this study was to show that
different types of biochemical system models can indirectly,
yet validly, be optimized by optimizing the corresponding
S-system model. This is important, because the optimization
of S-system models constitutes a straightforward linear
problem, whereas the optimization of the other models is
nonlinear and thus more complicated. A secondary, though
related, result of our analysis is the observation that Mi-
chaelis–Menten, GMA, and S-system models are dynami-
cally rather similar. Of course, all three coincide at the
operating point at which the models are defined to be
equivalent. But it is interesting to note that they also are
similar qualitatively and quantitatively when the systems
move away from the operating point. Since the three models
have different mathematical structures, there is no guarantee
that this is always the case, but the present observation of
similarity, along with a large body of previous experience

with these models, suggests that all three models can be
employed with some reliability. The comparison of the
three models will not be discussed further, and the following
sections focus on the primary goal of optimizing production
rates.

Ethanol Maximization

Table I shows the results of the maximization of ethanol. At
step 2.2 the lower and upper limits of the metabolite con-
centrations (X1 to X5) were set to 0.8 and 1.2 the base values
(20% variation about the steady-state levels), while the
NADH/NAD ratio, X14, was kept constant. The enzyme
concentrations were allowed to vary within a range of 1 and
50 times the base values. The flux stoichiometric conserva-
tion constraint was the expressed as shown in Equation (9).

Inspection of eigenvalues confirms that the optimized S-
solution is stable. All rates of synthesis increase, and the
rate of ethanol production is enhanced by a factor of 3.2.
Changing the lower or upper limits of the enzyme concen-
trations (with ranges varying from 0.01 to 50) does not alter
these enhancements (details not shown), and the control
variables remain unaltered. When we raised the limits for
the metabolite concentrations, allowing up to 90% variation
about the base levels, the ethanol production increased to
5.23 the original value (details not shown). In all cases, the
yield of ethanol production (expressed as 100z 0.5z V4

−/V1+)
was 100, and the deviation of the total output flux from the
total input flux was 2.1%. The latter results indicate the
relatively small magnitude of error introduced by aggregat-
ing fluxes in the S-system representation.

The optimum profile of enzyme concentrations is also
shown in Table I. It can be seen that the optimized solution
requires only moderate levels of overexpression of the en-
zymes involved (factors ranging from 3.15 to 4.25) which
can be attained without major difficulties in yeast (see Dav-
ies and Brindle, 1992; Guarante et al., 1980; Heinish, 1986;
Schaaff et al., 1989). This profile was then implemented in
both the GMA version of the system (Curto et al., 1995) and
the original Michaelis–Menten model (Galazzo and Bailey,
1990). In both cases we obtained a stable steady state with
metabolite and flux profiles shown in Table I.

In the GMA model, the optimized solution corresponds to
a steady state with an ethanol rate 3.14 times greater than
the base steady state. In this case, only one metabolite de-
viates slightly from the imposed boundaries (X5, ATP). The
solution of the Michaelis–Menten model corresponds to a
steady state that leads to an increased rate of ethanol pro-
duction (3.48 times the base steady-state rate). This solution
is close to the limits of physiological acceptability for the
pools. Three intermediates exceed the imposed limit of 20%
variation around the steady state:X2, glucose-6-phosphate
showing the biggest deviation observed (73%);X3, fructose-
diphosphate, with 42% deviation; andX4, phosphoenol–
pyruvate, with 57% deviation. It is interesting to note that
most fluxes are only slightly elevated in the Michaelis–
Menten model, whileVcarb is significantly higher (83.84
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times the base value) than predicted by both the S-solution
(4.8) and the GMA solution (4.22). The overall ethanol
yield is 95.82%, which is comparable to the yield of the
base steady state, but with a rate of ethanol production that
is more than three times higher. In any case we can reduce
the observed deviation in the metabolite concentrations at
the MM model either by imposing more narrow limits to the
metabolite concentrations constraints or eventually by im-
posing more constraints.

Kacser and Acerenza (1993) acknowledge limitations in
the applicability of their optimization method to pathways
involving bimolecularities, as they occur with coupled co-
factors such as ATP/ADP and NAD/NADH. The limitation
is particularly relevant in the present case since these cou-
plings occur at various points of the pathway. In order to
overcome this problem, the authors suggest that in many
instances the concentrations of the cofactors could be
treated as control variables, which is a dangerous assump-
tion (see Shiraishi and Savageau, 1992). To maintain quasi-
constancy, without being too restrictive, we limited the
variation of the ATP/ADP pool to 20% about the base
steady state, but kept the NAD/NADH pool concentration
constant at the optimized solution, as explained above (see
the section on Constraints on Metabolite Concentration).
The resulting optimal solution was generally found to be in
good agreement with the solution of the Kacser and Ace-

renza (1993) method as judged by the amplification factors
in enzyme activities and fluxes,Xi/Xi,BaseandVij /(Vij)b. An
exception isVcarb, which remains unaffected in Kacser and
Acerenza’s approach, whereas it is increased by a factor of
about 83.84 in our solution. However, the magnitude of this
flux in relation to the total final output flux is not significant
(0.019%), which makes this deviation irrelevant. Further-
more, in the present optimization procedure, as well as in
the following procedures, the amplification factorXi/Xi,Base

does not decrease for each flux from output to input as
predicted by the Kacser and Acerenza method. This is pre-
sumably due to the fact that the splitting reactions (X9 and
X12) change molecularity. This aspect will be considered in
more detail in the Discussion.

Glycerol Maximization

In addition to the obvious task of increasing ethanol pro-
duction rate, we also employed the IOM approach to pro-
duce larger quantities of glycerol and carbohydrates. We are
aware that glycerol and carbohydrates are secondary outputs
and consider the system primarily as a model system that
allows us to study the versatility of the method in optimiz-
ing and redesigning a given metabolic pathway with respect
to a chosen aim.

Again we set the lower and upper limits of the dependent

Table I. Optimization of the carbohydrate metabolism ofS. cerevisiaeunder conditions of ethanol
production in suspended cells at pH 4.5.

Metabolite
Base,
Xi,Base

S-solution,
Xi /Xi,Base

GMA solution,
Xi /Xi,Base

MM solution,
Xi /Xi,Base

K&A solution,
Xi /Xi,Base

X1 3.4 × 10−2 0.8 0.8 0.96 1
X2 1.01 1.2 1.18 1.73 1
X3 9.14 1.2 1.17 1.42 1
X4 9.5 × 10−3 1.2 1.15 1.57 1
X5 1.13 0.8 0.77 0.85 1

Enzyme Xi,Base Xi /Xi,Base Xi /Xi,Base Xi /Xi,Base Xi /Xi,Base

X6 19.7 3.15 3.15 3.15 3.39
X7 68.5 3.58 3.58 3.58 3.39
X8 31.7 2.42 2.42 2.42 3.40
X9 49.9 2.94 2.94 2.94 3.54
X10 3440 2.82 2.82 2.82 3.54
X13 25.1 4.25 4.25 4.24 —

Flux Base Vij /(Vij)Base Vij /(Vij)Base Vij /(Vij)b Vij /(Vij)b

V1
+ 15.96 3.02 3.03 3.48 3.39

Vgro 1.77 1.11 1.08 1.25 1
Vcarb 1.4 z 10−2 4.80 4.22 83.84 1
V 4

− 30.11 3.20 3.14 3.48 3.54

Note: The baseline, reference steady state, the S-solution, the GMA solution, the Michaelis–
Menten (MM) solution, and the solution according to the method of Kacser and Acerenza (1993)
(K&A) are given. The objective here was to maximize ethanol synthesisV4

− [cf. Equations (2) and
(3)]. The metabolite pools were allowed to vary up to 20% about their baseline steady-state levels and
the enzyme activities between 1 and 50 times the base levels. Only variables allowed to vary are
shown. Enzyme activities and fluxes are given in mM/min and concentrations in mM. The ethanol
yield of each optimized solution was 94.32% (Base); 100% (S-system); 97.76% (GMA); 95.82%
(MM); and 94.32% (K&A).
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variables (X1 to X5) to 0.8 and 1.2 the base values (20%
variation about the steady-state levels), while the NADH/
NAD ratio, X14, is set constant. Also, the limits of variation
in enzyme concentrations were allowed to vary between 1
and 50 times the base values, except for the previous branch
point (X11) and the enzymes downstream from fructose di-
phosphate (X3), namely,X9, X10, andX13, which were kept
constant. This design facilitates the flux toward glycerol
without decreasing other fluxes below the base steady-state
level. The flux stoichiometric conservation constraint was
again expressed as shown in Equation (9).

The main result was quite surprising: The S-solution was
stable, but the corresponding GMA and MM solutions were
not. This prompted us to change the upper limits for varia-
tions in enzymes, with the result that the GMA and MM
solutions were unstable for upper limits above 10 and 15
times the base enzyme activity, respectively. This fact could
be explained in terms of the dynamics of the system. We
realized that intracellular glucose accumulates steadily
while the ATP concentration diminishes to almost zero:
Any increase in the activity ofX12 of more than 10 times
causes most of the fructose diphosphate to be converted into
glycerol. This leaves no chance for ATP to be synthetized,
and consequently no glucose phosphorylation is possible at
the hexokinase step, which in turn causes instability of the
system.

A second explanation for the instability could be given:
X12 is an enzyme whose activity is already quite high at the
base steady state (203 mM/min). A 50 times increased ac-
tivity may constitute an unreasonable overexpression that
negatively affects the entire organism. Even if the enzyme
activity is increased 15-fold, the MM solution is unaccept-
able, since phosphoenol pyruvate (X4) and ATP (X5) exceed
by far (131% and 91%, respectively) the allegedly reason-
able maximal increase by 20%. Whatever the reason for the
discrepancy the results suggested a revision of the numeri-
cal definition of the constraints.

When we let both enzymes vary up to a maximum of 10,
the system was stable, but the metabolite constraints were
violated in some instances. The most significant deviation
was observed in the case ofX5 where deviations of 59% and
62% were detected in the GMA and MM models, respec-
tively. Also, X2 attained a steady-state value above the 20%
allowed, although the magnitude in this case was less (43%
and 30%, for GMA and MM, respectively; see Table II). Of
course, when the upper limit for variation in enzyme activity
was reduced, the deviations also diminished (results not
shown). In the S-solution, the only enzyme to be overex-
pressed is glycerol-3-phosphate dehydrogenase (X12) whose
concentration should be raised to 10 times the steady-state
base value. Again, as was discussed before, this value is
well within the limits of actual feasibility. It can thus be

Table II. Optimization of the carbohydrate metabolism ofSaccharomyces cerevisiaeunder con-
ditions of ethanol production in suspended cells at pH 4.5.

Metabolite
Base,
Xi,Base

S-solution,
Xi /Xi,Base

GMA solution,
Xi /Xi,Base

MM solution,
Xi /Xi,Base

K&A solution,
Xi /Xi,Base

X1 3.4 × 10−2 0.8 0.92 0.89 1
X2 1.01 0.8 0.57 0.70 1
X3 9.14 1.2 1.06 0.93 1
X4 9.5 × 10−3 1.2 0.74 1.01 1
X5 1.13 0.96 0.41 0.38 1

Enzyme Xi,Base Xi /Xi,Base Xi /Xi,Base Xi /Xi,Base Xi /Xi,Base

X6 19.7 1.20 1.20 1.20 1.43
X7 68.5 1.49 1.49 1.49 1.43
X8 31.7 1.47 1.47 1.47 1.43
X12 203.0 10 10 10 8.81
X13 25.1 1.0 1.0 1.0 —

Flux Base Vij /(Vij)Base Vij /(Vij)b Vij /(Vij)b Vij /(Vij)b

V1
+ 15.96 1.26 1.37 1.31 1.43

Vgro 1.77 10.95 9.05 8.81 8.81
Vcarb 0.014 0.15 0.007 0.049 1
V4

− 30.11 1.11 0.92 0.88 1

Note: The baseline, reference steady state, the S-solution, the GMA solution, the Michaelis-Menten
(MM) solution, and the solution according to the method of Kacser and Acerenza (1993) (K&A) are
given. The objective here was to maximize glycerol synthesisVgro [cf. Equations (4) and (6)]. The
metabolite pools were allowed to vary up to 20% about the base steady-state level and the enzyme
activities between 1 and 50 times the base levels, except forX12, which was allowed to vary between
1 and 10. Only variables allowed to vary are shown. Enzyme activities and fluxes are given in
mM/min and concentrations in mM. The glycerol yield of each optimized solution was 5.54% (Base);
48.18% (S-system); 36.63% (GMA); 37.29% (MM); and 37.29% (K&A).
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concluded that in the optimized solution the rate of glycerol
production increases by a factor of 10.95, while ethanol
production (V4

−) remains almost unaltered. The rate of car-
bohydrate synthesis decreases to 15% of the base value and
glucose uptake rate,V1

+, increases by 26%. The GMA so-
lution exhibits a similar pattern, but with smaller increases
in Vgro and larger decreases inV4

− and Vcarb. Overall, all
solutions produce more glycerol with some loss in ethanol
synthesis in some cases and, thus, constitute a more suffi-
cient system if the target product is glycerol.

It is worthwhile noting that in order to obtain the above
increases in fluxes, the main enzyme to be modulated isX12,
which is the step responsible for glycerol synthesis from
fructose diphosphate. The other enzymes remain almost un-
altered, which greatly simplifies the experimental imple-
mentation of the improved solution. In the optimized solu-
tion of the MM model, the glycerol production is more than
8 times greater than at the base steady state. Also remark-
able is the fact that the overall yield of the conversion of
glucose into glycerol is 37.29%, which is considerably
higher than the 5.54% of the base steady state. These results
suggest that the present system is suitable for glycerol pro-
duction and that it involves lesser changes in enzyme ac-
tivities than for the optimization of ethanol.

The solution of the S-system, GMA, and MM model were
found to be strongly correlated with that obtained from ap-
plication of Kacser and Acerenza’s method.

Carbohydrate Maximization

Again we define the lower and upper limits of the dependent
variables (X1 to X5) as 0.8 and 1.2 of the base values and
keep the NADH/NAD ratio (X14) constant. The limits for
the control variables are set at 1 and 50 times the base
values, except for the glycerol branchpoint (X12), and the
enzymes downstream from glucose diphosphate,X2,
namely,X8, X9, X10, andX13, are kept constant. As in the
glycerol maximization, this design facilitates the direct con-
version of glucose into carbohydrate at the expense of the
glycerol and ethanol synthesis.

Table III shows some of these optimizations. In the S-
solution, the only enzyme that has to be overexpressed is
glycogen synthetase (X11), the enzyme that diverts the flux;
its concentration should be raised to the maximum of 50
times over the original steady-state value. While such an
increase approaches the limits of technical and physiologi-
cal feasibility (see Guarante et al., 1980), it is important to
note that any significant increase in this enzyme can be
expected to show improvements in the rate of carbohydrate
synthesis. In our particular solution, the production of car-
bohydrates increases by a factor of 234.33, while ethanol
and glycerol production and glucose uptake remain almost
unaltered. Overall, this solution produces more carbohy-
drates without a concomitant loss in ethanol synthesis.
Thus, if the end products of interest are ethanol and carbo-

Table III. Optimization of the carbohydrate metabolism ofS. cerevisiaeunder conditions of etha-
nol production in suspended cells at pH 4.5.

Metabolite
Base,
Xi,Base

S-solution,
Xi /Xi,Base

GMA solution,
Xi /Xi,Base

MM solution,
Xi /Xi,Base

K&A solution,
Xi /Xi,Base

X1 3.4 × 10−2 0.8 0.84 0.86 1
X2 1.01 1.19 1.02 1.09 1
X3 9.14 1.14 1.10 1.13 1
X4 9.5 × 10−3 1.20 1.06 1.13 1
X5 1.13 1.09 0.92 0.97 1

Enzyme Xi,Base Xi /Xi,Base Xi /Xi,Base Xi /Xi,Base Xi /Xi,Base

X6 19.7 1.15 1.15 1.15 1.18
X7 68.5 1.30 1.30 1.3 1.18
X11 14.31 50.0 50 50 106.8
X13 25.1 1.0 1.0 1.0 1

Fluxes Base Vij /(Vij)Base Vij /(Vij)Base Vij /(Vij)b Vij /(Vij)b

V1
+ 15.96 1.10 1.14 1.17 1.18

Vgro 1.77 1.07 1.02 1.07 1
Vcarb 0.014 234.33 59.38 106.77 106.77
V4

− 30.11 1.10 1.04 1.07 1

Note: The baseline, reference steady state, the S-solution, the GMA solution, the Michaelis-Menten
(MM) solution, and the solution according to the method of Kacer and Acerenza (1993) (K&A) are
given. The objective here was to maximize carbohydrate synthesisVcarb [cf. Equations (5) and (7)].
The metabolite pools were allowed to vary up to 20% about the base steady-state level and the
enzyme activities between 1 and 50 times the base levels. Only variables allowed to vary are shown.
Enzyme activities and fluxes are given in mM/min and concentrations in mM. The ethanol yield of
each optimized solution was 0.087% (Base); 18.74% (S-system); 4.58% (GMA); 8.09% (MM); and
7.97% (K&A).
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hydrates, the S-solution characterizes a system that is more
efficient than the baseline model. The same holds true for
the GMA and the MM solutions, although to a lesser degree.
The optimized enzyme profile in these systems leads to an
increased carbohydrate production of 59.38 times (GMA)
and 106.77 times (MM) the original, which constitutes
4.58% and 8.09% of the total output flux, respectively. The
other fluxes are rather similar in the s-solution, the GMA
and the MM solution, except forVcarb, whose GMA value is
less than in the S-solution. The MM solution of the present
optimization is stable, and the concentrations of all inter-
mediates (X1 to X5) satisfy the predefined 20% constraint on
variation (see Table III). Overall, the optimized system
shows a higher rate of carbohydrate synthesis and better
yields than the base system. However, the system is rather
inefficient in transforming glucose into carbohydrates.

A comparison of increases in enzyme activities predicted
by the Kacser and Acerenza (1993) method and the MM
solution shows fairly good agreement. In both cases, the
enzyme to be modulated isX11, while the other enzymes
remain practically unaltered in the optimized solutions. It is
noted that, in order to obtain this increase in carbohydrate
production, the only enzyme to be modulated is the one
responsible for carbohydrate synthesis from glucose diphos-
phate (X11), while the other enzymes remain almost unal-
tered. This greatly simplifies the actual implementation of
the improved solution.

Optimization of Subsets of Enzymes

The solutions obtained in the previous section require quan-
titatively prescribed changes in all enzyme activities. Such
an implementation necessitates considerable experimental
work and requires either the introduction of strong promot-
ers or the use of additional copies of the relevant genes, for
instance, by integration or by using multicopy vectors. A
pertinent question, therefore, is whether similar results
could be achieved with the modulation of fewer enzymes.
Accordingly, we systematically searched for the minimum
subset of enzymes necessary to produce the previously cal-
culated optimum solution or a solution that would only be
slightly inferior to the optimum. The results for the maxi-
mization of ethanol, glycerol, and carbohydrates are shown
in Table IV. For each number of modulated enzymes, the
combination of steps shown in Table IV yields a stable,
feasible solution with the highest target flux.

Table IV.A shows that in order to obtain significant in-
creases in the ethanol flux, the entire set of six enzymes has
to be modulated. This result follows the same pattern that
emerged when we optimized citric acid production inA.
nigerusing the same mathematical procedures (Torres et al.,
1996). Table IV.A suggests in which order the enzymes
should be modulated to obtain progressively better solu-
tions. Foremost is the substrate uptake rate (X6), followed
closely by ATPase activity (X13). These two steps increase

Table IV. Optimized solutions obtained for combinations of enzymes involved in ethanol (A),
glycerol (B), and carbohydrate (C) production inS. cerevisiae.

No. of
enzymes Modulated enzymes V4

+/(V4
+)base

A. Ethanol
maximization 1 X6, 1.12

2 X6, X13 1.13
3 X6, X8, X10 1.13
4 X6, X8, X9, X10 1.16
5 X6, X7, X9, X10, X13 1.29
6 X6, X7, X8, X9, X10, X13 3.54

No. of
enzymes Modulated enzymes Vgro/(Vgro)base

B. Glycerol
maximization 1 X12, 5.91

2 X6, X12 7.93
3 X6, X7, X12 8.34
4 X6, X7, X8, X12 8.81
5 X6, X7, X8, X12, X13 8.81

No. of
enzymes Modulated enzymes Vcarb/(Vcarb)base

C. Maximization
of carbohydrates 1 X11 33.17

2 X6, X11 106.77
3 X6, X7, X11 106.77
4 X6, X7, X11, X13 106.77

Note: Metabolite pools were allowed to vary up to 20% about the base steady state, while the
enzyme activities were allowed to vary from 1 to 50 times the baseline steady-state activity (except
for glycerol production, for which the upper limit forX12 was set to 10 times the base value).
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flux by about 10%. The next enzymes to be modulated
should be phosphofructokinase (X8) and the pyruvate kinase
(X10). While least important when modulated alone, addi-
tional modulation of GADP (X9) and the hexokinase (X7)
leads to significant flux increases.

An entirely different situation occurs when we maximize
glycerol (Table IV.B) or carbohydrate (Table IV.C) produc-
tion. In the first case we found that by modulating just one
enzyme we can already amplify glycerol production over
five times. Subsequent modulation ofX6 and X7 further
increases glycerol synthesis to about eight times the base
value. In fact, modulation of three enzymes produces es-
sentially the same flux as modulation of five enzymes.

When we optimize carbohydrate production, modulation
of X11 alone produces a 33-fold increase in flux, while the
simultaneous modulation ofX6 andX11 further elevates the
flux to its maximum (106.77 times the base flux). These
results are of practical interest, because they save a signifi-
cant amount of experimental work when the task is to op-
timize glycerol or carbohydrate production. They are also
interesting from an academic point of view. It appears that
all available experimental means have been explored to op-
timize the system with respect to ethanol production and
that further improvements will require rather complicated
alterations of several enzymes simultaneously. By contrast,
the system has not been optimized as thoroughly with re-
spect to glycerol and carbohydrates, and even ‘‘simple’’
means of improvement may not have been fully exploited
yet.

It is interesting to note that all effective optimizations of
the rate of glycerol production (Table IV.B) include modu-
lation ofX12, the enzymatic step involved in the synthesis of
glycerol from fructose-1,6-diphosphate, while all optimiza-
tions of carbohydrate production (Table IV.C) involveX11,
the enzyme responsible for the synthesis of carbohydrates
from glucose-6-phosphate. This observation suggests that
manipulation of the last step is a strong candidate for modi-
fication, if not other information is available. By the same
token, the uptake activity (X6) is the second most influential
enzyme in both cases.

DISCUSSION

The question of which mathematical model is the best rep-
resentation of a metabolic pathway in vivo is yet unan-
swered. Traditionally, Michaelis–Menten models and their
generalizations have often been taken as ‘‘true’’ descrip-
tions, but quantitatively more sophisticated analyses in re-
cent times have cast some doubt on the universal adequacy
of these established models, (e.g., Hill et al., 1977; Sav-
ageau, 1992). As alternatives, various types of power-law
models have been proposed, and again, it is not yet decided
which of these might be the best choice for a particular
purpose. If one agrees that it is too early to identify the best
modeling structure, one has to ask how methods developed
for one model might translate into other models. One such
comparison has been discussed in this article.

Expanding on a previous method for optimizing bio-
chemical and metabolic network models in S-system form,
we have applied this approach to the optimization of other
types of biochemical network models. The key idea of this
method is to approximate the original model with an S-
system model, to optimize this approximate model, and to
use the resulting profiles of independent variables in the
original model.

The result of this indirect method is not guaranteed to be
the true optimum, but our findings demonstrate that the
approximate enzyme profiles significantly improve the per-
formance of the original model. The quality of the present
results is supported by a considerable body of evidence
indicating that the approximating S-system is very often a
valid system representation. The advantage of using the
S-system representation as an intermediate structure is a
great reduction in complexity from nonlinear to linear op-
timization. The latter is straightforward, whereas the former
is often plagued by mathematical and computational prob-
lems.

In order to test the quality of our method, we performed
several comparisons. Using different optimization tasks, we
computed the constrained optimum for the approximating
S-system model, and subsequently specified the original
model with the optimized enzyme profiles. The resulting
steady state of the original model then indicated how closely
the S-solution matched the results of the original model. We
also compared the results with a method recently proposed
by Kacser and Acerenza (1993).

In almost all cases, the agreement between the optimized
S-solution and the optimized solution for the other models
was good. The only case of a significant discrepancy oc-
curred in the optimization of glycerol production, for which
the S-solution was stable but the corresponding Michaelis–
Menten solution was not. This discrepancy prompted a re-
view of the optimal enzyme profile and a subsequent reop-
timization with altered constraints. In Figure 1, this corre-
sponded to an additional loop (going back to step 2.2 and
changing constraints on enzyme concentrations) until a
stable steady-state was encountered. While no specific
guidelines were developed for how to alter the constraints,
such redefinitions are no unsurmountable task. Since the
approximation is by construction exact at the baseline
steady state, a stable, feasible solution always exists, and the
redefinition of constraints is a closely confined task.

A well-known feature of the S-system representation is
the aggregation of fluxes at branchpoints, which may lead to
inaccuracies in the stoichiometry of fluxes. This aggrega-
tion is an absolute requirement for the linear optimization of
S-system models. Without aggregation, the model has the
form of a GMA model, which may or may not be more
accurate than the S-system model, but which does not per-
mit the explicit computation of steady states. Therefore, a
straightforward linear optimization is impossible.

The magnitude of the difference between the original and
the S-system model depends on the pathway under consid-
eration and the distance between the baseline and the opti-
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mized steady states. Because of the nonlinear nature of the
models involved, general quantitative predictions about op-
timal states are difficult. However, in the case of S-systems,
the optimization problem is linear, and it is known that all
solutions are bounded by linear hyperplanes, in logarithmic
space. These hyperplanes are defined by the steady-state
and flux equations, as well as constraints imposed on the
dependent and independent variables. The underlying
theory ensures that optimal solutions are found at intersec-
tions of these hyperplanes, this being the reason why and
how the simplex algorithm of linear optimization works.

Which constraints are active in a particular case depends
on the numerical specification of the model. In order to
investigate the question in our case, it is useful to distin-
guish between constraints imposed on metabolites and on
enzymes on the one hand and the stoichiometric constraints
on the other. In all optimizations considered here, increasing
the boundaries for metabolites caused significant increases
in the optimal production rates. By contrast, increases in the
upper limits of enzyme concentrations did not affect the
optimal solutions. Thus, in this particular system, the me-
tabolite constraints turned out to be limiting. Constraints on
the stoichiometry of fluxes had similar effects to those ob-
served in a previous study (Torres et al., 1996). Leaving the
system ‘‘stoichiometrically’’ unconstrained caused the op-
timum solutions to attain larger values of the production
rates (results not shown). However, when other types of flux
constraints were imposed (see below), the solution re-
mained unaffected.

It is easy to measure the degree to which the flux stoi-
chiometry in the approximating S-system deviates at a given
branchpoint and under specified conditions. If the deviation
is too severe, additional constraints can be employed to
control the error. In the present study, such a constraint was
given as Equation (9). Other constraints were imposed and
their effects on the optimal enzyme profile evaluated. For
instance, we limited the flux through the branchpoint FDP,
X3, to be less than the glucose input: (V3

−)/(V1+) < 1. As a
second option, we required that the flux toward glycerol be
less than twice the glucose uptake: (Vgro)/(2 z V1

+) < 1. Third,
we forced the flux toward the target carbohydrates to be less
than the glucose uptake flux: (2z Vcarb)/(V1

+) < 1. These
additional constraints did not affect the optimal enzyme
profiles much when ethanol or carbohydrates were the tar-
get compounds. By contrast, the fluxes in the S-solution
were decreased in the optimization of glycerol when addi-
tional constraints were imposed. In this particular case, the
MM solution showed other problems as well. In particular,
the solution was stable only when the maximal amplifica-
tion of enzyme activities was limited to 15, as opposed to 50
or more in other optimizations. These results point to dis-
crepancies between the original and the S-system model that
are of a numerical nature as long as the system is close to
the base steady state but become structural if the system is
moved too far away from the original state.

Kacser and Acerenza (1993) discuss limitations of their
optimization method that derive from the occurrence of

some rather common kinetic features of metabolic systems.
These include (i) biomolecularity associated with coupled
cofactors, (ii) feedbacks, (iii) allosteric enzymes, (iv) sub-
strate cycles, and (v) nonlinear versus linear kinetics of
enzymes, as they occur in enzyme–enzyme interactions. In
the procedure proposed here, the occurrence of such fea-
tures is explicitly taken into account through the model
design of the pathway and does not constitute a limitation.
For instance, the experimental system of the present study
involves bimolecularity associated with coupled cofactors;
there are a feedback and a feedforward modulation; and the
kinetics of some of the enzymes are allosteric. These fea-
tures are automatically implemented in the S-system repre-
sentation and thus are an integral part of the optimized
linear steady-state system. The experimental pathway does
not contain enzyme–enzyme interactions, but these would
not constitute a limitation to the generality of the method
either, since it has been shown that any type of kinetics or
enzyme–enzyme interaction can be validly represented with
an S-system model (Sorribas and Savageau, 1989). This
generality directly translates into the proposed optimization
method.

At any rate, it is interesting to note that the differences
between the results from the method of Kacser and Ace-
renza (1993) and from the IOM approach outlined here are
minor. Given that both methods are based on different types
of assumptions and that the true mathematical nature of
biochemical systems is unknown, it is as yet impossible to
decide which method produces results that are closer to the
true optimum.

Preliminary results in our laboratory indicate that the op-
timization strategy applied here can directly be applied to
other types of systems, such as bioreactors, for which the
underlying processes and pathway structures are different.
This could be of considerable relevance, since bioreactors
permit extensive control over the system, thereby providing
a better chance of successfully implementing predicted so-
lutions. The linear treatment of nonlinear systems, via the
S-system representation, furthermore suggests generaliza-
tions of the method toward streamlined multiobjective or
multilevel optimization (e.g., Candler and Norton, 1977,
Candler and Townsley, 1982; Clark, 1990; Clark and Wes-
terberg, 1990).
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