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Dear Sir,

Formation of the unusual [M+H-11 Da]+ ion peak in the collision-
induced dissociation mass spectrum of [M+H]+ ion of hydrochloroth-
iazide

Hydrochlorothiazide (HCT) is one of the diuretics that is banned in
sport by the World Anti-Doping Agency (WADA). In continuation of
our diuretics confirmation work for anti-doping purposes, the tandem
mass (MS/MS) spectrum of the HCT under low-energy collision-induced
dissociation (CID) mass spectrometry with positive electrospray ionization
(ESI) was investigated and interpreted in detail. The CID of the
protonated HCT at m/z 298 generated the unexpected product ion at
m/z 287 corresponding to the [M+H-11 Da]+ ion of HCT on a 3D-
ion trap mass spectrometer (MS). Although it is well known that ions
undergo gas-phase rearrangements under low-energy CID conditions,
the formation of this unexpected product ion could not be easily
explained by the conventional mechanism.[1 – 8] Therefore, the aim of
the present study is essentially to rationalize the uncommon behavior
resulting in the unusual [M+H-11 Da]+ ion peak under the low-
energy CID.

CID experiments were performed using three MS systems: Agilent 1100
series LC/MSD (3D) ion trap, Thermo hybrid-linear (2D) ion trap/Orbitrap
and Sciex API-2000 triple-quadrupole (TQ) mass spectrometers, each
equipped with an electrospray interface using nitrogen gas. Samples
(10 µg/ml) in MeOH/water/formic acid (50 : 50 : 0.1, vol : vol : vol) solution
were infused into the ESI source in a positive ion mode at a rate of
5 µl/min via a syringe pump. For ion traps and the TQ mass analyzer,
ion spray voltage was adjusted to 4500 and 5500 V, respectively.
Helium and nitrogen were used as collision gases for the tandem
mass spectrometric experiments. For accurate mass measurement, high-
resolution (R = 60 000) and high-accuracy 2D ion trap mass spectrometric
analyses were conducted using a Finnigan LTQ Orbitrap mass spectrometry
(Thermo Fisher Scientific Inc., MA, USA) operated in a positive-ion
electrospray mode, whereas others followed the 2D ion trap mass
spectrometer.

The MS/MS spectrum of the protonated HCT (m/z 298) on the
2D-ion trap MS is depicted in Fig. 1(A). Representative fragment ions
of HCT were observed at m/z 287, 281 and 269, and the product
ions at m/z 281 and 269 could be rationalized by the neutral loss
of NH3 (17 Da) and NH CH2 (29 Da), respectively. As shown in
Fig. 1(B) and (C), the product ion at m/z 269 was not observed in
the 3D-ion trap MS and it was shown to have a relatively high
intensity on TQ MS. Among these product ions, we were especially
interested in the ion at m/z 287 corresponding to the unusual [M+H-11
Da]+ ion.

In order to examine the origin of the unexpected ion at m/z 287, the
respective ions at m/z 287 and 269 were isolated and then subjected to
collisional activation in 2D-ion trap MS. As shown in Fig. 2, the attempt
to isolate the ion at m/z 269 was unsuccessful, and the ion at m/z
287 was constantly present. When the ion at m/z 269 regenerated
by the CID of the ion at m/z 287 was isolated, the same result was
observed. Consequently, ‘ping-pong’ MSn experiments between the
ions at m/z 269 and m/z 287 were allowed.[9] These results strongly
suggest that there is a correlation between the ions at m/z 287 and
269, and the interesting ion at m/z 287 was generated by an 18 Da
increase from the ion at m/z 269. The fact that the ion at m/z 287
was 18 Da greater in mass than the ion at m/z 269 allowed us to
speculate that the m/z 287 ion might have one more H2O molecule
than the m/z 269 ion. The accurate mass of the ions at m/z 269
and 287 was measured as 268.94529 and 286.95586 Da using LTQ
Orbitrap mass spectrometry and was identical to the calculated mass
of the even electron cation C6H6O4N2

35Cl32S2
+ (268.94520 Da) and

C6H8O5N2
35Cl32S2

+ (286.95576 Da) with errors of 0.317 and 0.316 ppm,
respectively.

Figure 1. MS/MS spectra of protonated HCT obtained from 2D ion trap (A),
3D ion trap (B) and triple-quadrupole (C) mass spectrometry.
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Figure 2. Isolation and MSn spectra of the ions at m/z 287 (A) and 269 (B) generated from MS2 of protonated HCT (m/z 298).

The MS/MS spectra of chlorothiazide (CT) and hydroflumethiazide
(HFT) as structural analogs on the 2D-ion trap MS are depicted in
Fig. 3. Surprisingly, the unusual fragment ion as well as the aminoben-
zenedisulfone ion corresponding to the neutral loss of 29 Da of the
HCT was not observed in the CID of protonated CT and HFT. Further-
more, the CID of bendroflumethiazide, benzthiazide and polythiazide
showed the same results (data not shown). When considering the struc-
tural similarity, these results revealed that the generation of the unusual
fragment ion was essentially initiated from the aminobenzenedisulfone

ion, and the proton affinity to the 4-position of thiadiazinane moiety
played a significant role in the formation of the aminobenzenedisul-
fone ion.

A mechanism for the formation of the ions at m/z 287, 281 and 269
is proposed in Fig. 4. We suggest two possible protonation sites for
the HCT. The formation of protonated HCT, in which the protonation
occurred on -NH2 of benzenesulfonamide could dissociate to the even-
electron cation (EE+) at m/z 281 and the neutral molecule of 17 Da
(NH3) via heterolytic cleavage of an S–N bond. On the other hand,
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Figure 3. MS/MS spectra of protonated CT and HFT obtained from 2D ion
trap mass spectrometry.

the protonation on -NH- at the 4-position of thiadiazinane moiety
could give rise to the even-electron cation at m/z 269 and the neutral
molecule of 29 Da (NH CH2) via heterolytic cleavage of the N–C
and N–S bond, subsequently leading to the generation of the even-
electron cation at m/z 287 by ion–molecule reaction with the water
molecule.

Similar phenomena that in the ion trap certain ions undergo
ion–molecule reactions with background-solvent molecules such as water
under positive ESI conditions were reported in the CID of isoquinolines,
ilicicolin H, perlatolinic acid, amiloride and guanosine.[9 – 12] The CID of
these compounds generated common arylacylium-like fragment ions, and
it was revealed that arylacylium-like fragment ions undergo ion–molecule
reactions with the water molecule. To our knowledge, it may be the first
report that the arylsulfonium ions of HCT can undergo ion–molecule
reactions with the water molecule.

To date, there have been two possibilities to the source of the water
molecule in the collision cell.[10,12] One is the contamination from ion
source and the other is the origin from collision gas. In order to

examine the source of the water molecule, we performed an infusion
experiment with modified solvents (methanol, ethanol, etc). The formation
of other adducts was not observed (data not shown). As a result, based
on the evidence by Esmans et al.[12] , we indirectly suggest that this
reaction of arylsulfonium ion results from the residual water molecule
of collision gas, but alternative suggestions for this reaction cannot be
excluded.

In conclusion, these data collectively suggest that the arylsulfonium ion
can undergo the ion–molecule reaction with the water molecule under
the low-energy CID condition. Additionally, the reaction was observed
only for HCT. This reaction was rationalized by the reaction with the
water molecule originating from collision gas via the formation of the
aminobenzenedisulfone ion, but alternative suggestions for this reaction
cannot be excluded.

Yours,

SANG KYU LEE, HO JUN KIM, CHANGBAE JIN AND JAEICK LEE∗
Doping Control Center, Korea Institute of Science and Technology, PO Box 131,
Cheongryang, Seoul, South Korea
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