Supported Catalysts

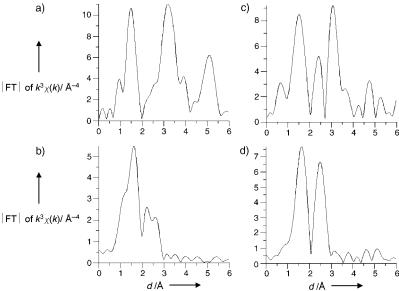
Heterotrimetallic RuMnMn Species on a Hydrotalcite Surface as Highly Efficient Heterogeneous Catalysts for Liquid-Phase Oxidation of Alcohols with Molecular Oxygen**

Kohki Ebitani, Ken Motokura, Tomoo Mizugaki, and Kiyotomi Kaneda*

The creation of a well-defined, active metal site on a solid surface not only opens up an avenue to materials that boost catalytic performance but also aids an understanding of the molecular basis of heterogeneous catalysis.^[1] Modifying the coordination sphere of a metal species with other metals as ligands, which is a basic approach in organometallic and bioinorganic chemistry,^[2] is also being applied to heterogeneous catalysis^[3] because of the potential of performing unique catalytic reactions based on cooperation between diverse metals within a regular arrangement. In addition, this allows local compositional modeling for the strong metal–support interactions (SMSI) seen in supported metal catalysts.^[4]

Hydrotalcite (HT), which is a layered, mixed hydroxide of Mg and Al,[5] has received attention as a material for advanced heterogeneous catalysts[6,7] because of the cation-exchange ability of the Brucite layer, the anion-exchange ability of the interlayer, its adjustable surface basicity, and adsorption capacity. Recently, we created a monomeric Ru^{IV}-OH species on the HT (Ru/HT) surface by adsorption which turned out to be an excellent heterogeneous catalyst for the one-pot synthesis of a-alkylated nitriles by a Rucatalyzed alcohol oxidation coupled with a basepromoted aldol reaction.^[7d] As part of our ongoing project on the functionalization of supported Ru catalysts to achieve environmentally friendly ("green") organic syntheses, we present a novel HTbound heterotrimetallic Ru^{IV}Mn^{IV}Mn^{IV} species that has been structurally characterized on the atomic scale by X-ray absorption spectroscopy. [8] This material is an excellent solid catalyst for liquid-phase alcohol oxidation under mild conditions. This protocol to create a supported mixed-metal species can provide catalytically active compounds that are uniform in composition and distribution on a solid surface by applying concepts from coordination chemis-

 [*] Dr. K. Ebitani, K. Motokura, Dr. T. Mizugaki, Prof. Dr. K. Kaneda Graduate School of Engineering Science, Osaka University
 1–3 Machikaneyama, Toyonaka Osaka 560-8531 (Japan)
 Fax: (+81) 6-6850-6260
 E-mail: kaneda@cheng.es.osaka-u.ac.jp


[**] This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Prof. M. Nomura (KEK, PF) and Dr. T. Uruga (SPring-8) for XAFS measurements.

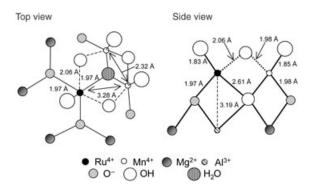
Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

DOI: 10.1002/ange.200462600

try, and bridges the gap between homogeneous and heterogeneous catalysis. $^{[9]}$

We obtained well-defined, heterotrimetallic RuMnMn species on the HT surface (RuMn₂/HT) by immobilizing Mn cations onto Ru/HT. The Ru/HT was prepared by treating HT with an aqueous solution of RuCl₃·n H₂O.^[7d] The retention of the HT interlayer distance (3.0 Å), as shown by XRD (X-ray diffraction), [10] indicated that both metal species are accommodated on the HT surface. The K-edge XANES (X-ray absorption near-edge structure) spectrum of the Ru and Mn of RuMn₂/HT reveals that the surface Ru and Mn cations are in the oxidation state + Iv. In the Fourier transformation of the Ru K-edge k^3 -weighted EXAFS (extended X-ray absorption fine structure) spectrum of RuMn₂/HT (Figure 1b) a peak near 3.5 Å, corresponding to the contiguous Ru sites (Ru–O–Ru), [11] was barely detected.

Figure 1. Fourier transformation (FT) of the k^3 -weighted K-edge EXAFS spectrum of a) RuO₂, b) RuMn₂/HT (Ru K-edge), c) β-MnO₂, and d) RuMn₂/HT (Mn K-edge). The phase shift was not corrected.


The coordination number (CN), distance (R), and Debye–Waller factor ($\Delta\sigma$) of the Ru–O, Ru–Mg, and Ru–Mn bonds, as estimated by a curve-fitting analysis, ^[8] are listed in Table 1. The Ru^{IV} species of RuMn₂/HT are surrounded by six oxygen atoms with different bond distances. The shortest Ru–O bond was assigned to a Ru^{IV}–OH moiety. ^[12] Two bonds of Ru–Mg and Ru–Mn shells, with CNs of 0.9 and 1.9, respectively, prove that the Ru^{IV} species is in the vicinity of the Mg cation within the Brucite-like sheets and two Mn cations on the HT surface. Furthermore, a Mn–Mn shell with a distance of 2.32 Å and CN of 1.1 shows the formation of dimeric Mn^{IV} cation species. ^[13]

The above results show a Ru^{IV}Mn^{IV}Mn^{IV} trimetallic species on the HT surface, as shown in Figure 2, in which dimeric Mn–Mn species are connected to a single Ru^{IV} cation through OH groups and water. To our knowledge, this is the first report of the preparation of heterotrimetallic species

Table 1: Curve-fitting results for K-edge EXAFS of Ru and Mn.

	•	•		
Sample	Shell	CN ^[a]	R [Å] ^[b]	$\Delta\sigma$ [Å ²] ^[c]
RuMn₂/HT	Ru-K			
	Ru-O(1)	2.1	1.97	-0.0079
	Ru-O(2)	2.1	2.07	-0.0045
	Ru-O(3)	1.1	1.83	-0.0088
	Ru-O(4)	0.6	2.61	-0.0087
	Ru-Mg	0.9	3.19	-0.1023
	Ru-Mn	1.9	3.28	0.0499
	Mn-K			
	Mn-O(1)	2.6	1.85	-0.0030
	Mn-O(2)	3.1	1.98	-0.0060
	Mn-Mn	1.1	2.32	-0.0017
RuO ₂ ^[d]	Ru-O(1)	2	1.94	-
	Ru-O(2)	4	1.98	-
β -MnO $_2^{[e]}$	Mn-O	6	1.89	-
	Mn-Mn(1)	2	2.87	_
	Mn-Mn(2)	8	3.42	-

[a] Coordination number. [b] Interatomic distance. [c] $\Delta\sigma$ is the difference between the Debye–Waller factor of the sample and that of the reference sample. [d] Taken from the crystallographic data. [11] [e] Taken from the crystallographic data.

Figure 2. Proposed structure of the heterotrimetallic RuMnMn species on HT.

consisting of metal cations on a support involving metal oxide and metal hydroxides, [14] whereas the preparation of supported heterobimetallic or metal alloy species have been reported. [3] Adjusting the basicity of the hydroxy groups around the Ru^{IV} cation, produced by reaction of the surface OH groups of HT with RuCl₃ species, [7d] brought about selective immobilization of Mn cations in the vicinity of the Ru species to give the unique Ru^{IV}Mn^{IV}Mn^{IV} sites.

The catalytic ability of the RuMnMn species was explored in the oxidation of alcohol with O_2 at atmospheric pressure (Table 2).^[15,16] The trimetallic RuMn₂/HT shows a higher catalytic activity than Ru/HT,^[7d] Ru/Al₂O₃,^[15c,e] and RuO₂,^[15a] which are typical heterogeneous Ru catalysts for the oxidation of benzyl alcohol (1).^[17] Benzyl alcohol was oxidized to benzal-

Table 2: Oxidation of benzyl alcohol (1) in the presence of various Ru catalysts under 1 atm O_2 . [a]

Entry	Catalyst	Conv. [%] ^[b]	Yield [%] ^[b]	
1	RuMn ₂ /HT	100	99	
2	reuse 1 ^[c]	100	99	
3	reuse 2 ^[c]	100	98	
4	reuse 3 ^[c]	100	99	
5	Ru/HT	66	66	
6	$Ru/Al_2O_3^{[d]}$	56	55	
7	$RuO_2 \cdot nH_2O$	5	4	
8	$Mn_2/HT^{[e]}$	0	0	
9	HT	0	0	

[a] Reaction conditions: catalyst (3 mol% Ru), benzyl alcohol (1 mmol), toluene (5 mL), 60°C, 1 atm O_2 , 1 h. [b] Conversions and yields were determined by GC analysis using an internal standard method based on benzyl alcohol. [c] Catalyst recovered and reused. [d] Prepared by the reported procedure. [15c] [e] 6 mol% Mn.

dehyde (2) quantitatively within 1 h in the presence of the RuMn₂/HT catalyst.^[18]

The initial turnover frequency based on Ru for RuMn₂/HT (140 h⁻¹) is almost five times larger than that for Ru/HT. On a 10-mmol scale oxidation of $\bf 1$ in the presence of 0.1 mol-% Ru, the turnover number based on Ru reached 840 at 90 °C. Moreover, the high catalytic ability of RuMn₂/HT was demonstrated by the quantitative oxidation of $\bf 1$ within 10 h, even at 40 °C.

As displayed in Table 3, the RuMn₂/HT catalyst selectively oxidizes a wide variety of alcohols. Primary and secondary benzylic alcohols are converted into the corresponding carbonyl compounds in high yield (entries 1–3). The catalysis is also chemoselective; RuMn₂/HT preferentially oxidizes primary over secondary hydroxy groups, as shown by the selective oxidation of 1-[(4'-hydroxymethyl)phenyl]ethanol to 1-[(4'-formyl)phenyl]ethanol in 98 % yield (Scheme 1).

In the case of cyclopropyl(phenyl)methanol, the hydroxy group was oxidized without cleavage of the cyclopropyl ring

Table 3: Oxidation of various alcohols catalyzed by RuMn₂/HT in the presence of O₂.^[a]

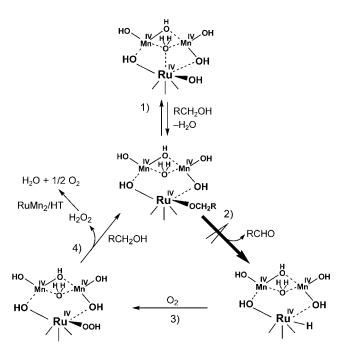
Entry	Alcohol	Product	t [h]	Conv. [%]	Yield [%] ^[b]
1	Benzyl alcohol (1)	Benzaldehyde (2)	1	100	99
2	1-Phenylethanol	Acetophenone	3.5	100	92
3	Benzhydrol	Benzophenone	2	94	93
4	Cyclopropyl (phenyl) methanol	Cyclopropyl phenyl ketone	6	100	99
5	Cinnamyl alcohol	Cinnamaldehyde	1.5	100	97
6	(2-Hydroxymethyl)thiophene	2-Thiophenecarboxaldehyde	2	100	89
7	2-Aminobenzyl alcohol	2-Aminobenzaldehyde	21	100	100

[a] Reaction conditions: catalyst (2 mol% Ru), alcohol (1 mmol), toluene (5 mL), 60° C, O₂ flow. [b] Yields were calculated based on alcohols.

Scheme 1. Selective oxidation of primary hydroxy groups by $RuMn_2/HT$ catalyst

(entry 4). Oxidation of cinnamyl alcohol proceeded smoothly without affecting the carbon–carbon double bond (entry 5). Furthermore, RuMn₂/HT effectively catalyzes the oxidation of (2-hydroxymethyl)thiophene, a heteroaromatic alcohol, to 2-thiophenecarboxaldehyde, in high yield (entry 6), and the oxidation of 2-aminobenzyl alcohol to 2-aminobenzaldehyde, quantitatively (entry 7), in contrast to the homogeneous Pd and Ru complexes.^[16]

The spent RuMn₂/HT catalyst could be readily separated from the reaction mixture by filtration. The EXAFS spectrum of the recovered RuMn₂/HT catalyst confirmed retention of the original RuMnMn structure, and ICP (inductively coupled plasma) analysis of the filtrate indicated no leaching of Ru and Mn species during the oxidation. The RuMn₂/HT catalyst could be reused while maintaining the same high catalytic activity and selectivity (Table 2, entries 2–4). When the catalyst was removed at about 50% conversion of the alcohol, no further oxidation was detected in the filtrate after 3 h under 1 atm O₂ which shows that the present alcohol oxidations proceed at the interface between the catalyst surface and the liquid phase.


To the best of our knowledge, RuMn₂/HT is the most effective, environmentally benign Ru catalyst for the oxidation of benzylic and aromatic allylic alcohols in the liquid phase $^{[15,16c,d,19]}$ with the advantages of 1) high catalytic activity, even with O_2 at 1 atm as the sole oxidant, 2) wide applicability to alcohols, including those containing heteroatoms, 3) simple preparation and work-up procedures, and 4) reusability as a solid catalyst.

The Mn cations in the RuMnMn species evidently play a pivotal role in improving the Ru-catalyzed alcohol oxidation since Mn₂/HT does not catalyze the reaction (Table 2, entry 8). We have proposed a catalytic cycle for the alcohol oxidation (Scheme 2)^[20] that proceeds via a ruthenium alkoxide intermediate, which undergoes β -hydrogen elimination to produce the carbonyl compound and a ruthenium hydride species, as observed by IR spectroscopy. [10] Reaction of this hydride with O₂ and subsequent ligand-exchange with the alcohol completes the catalytic cycle. [15b,c]

A rate equation based on a Michaelis–Menten-type model^[21] for this proposed mechanism [Eq. (1)] agrees well with the kinetic data.

$$Ru-OH + RCH_2OH \stackrel{k_1}{\underset{k_1}{\longleftarrow}} [Ru-OCH_2R] \stackrel{k_2}{\longrightarrow} Ru-H + RCHO$$
 (1)

For the RuMn₂/HT-catalyzed oxidation of **1**, $K_{\rm M}$ and $k_{\rm 2}$ were calculated to be 2.96 mm and 0.047 s⁻¹, respectively, at 60 °C. The rate constant ($k_{\rm 2}$) of β -hydrogen elimination from the ruthenium alkoxide intermediate is therefore almost twice that for the Mn-free Ru/HT. The β -hydrogen elimination is considered as the rate-determining step in the overall alcohol oxidation from the primary kinetic isotope effect in the competitive oxidation of **1** and $C_6D_5CD_2OH$ (4.2). [15b,e] Thus, the Mn cations in the heterotrimetallic sites facilitate β -hydrogen elimination from the ruthenium alkoxide intermediate. Removing the water molecule that binds the Ru and Mn cations improves the situation of the Ru species during β -hydrogen elimination by, for example, producing a coordinately unsaturated Ru site. [16c]

Scheme 2. A proposed mechanism for the oxidation of a primary alcohol by trimetallic RuMnMn sites.

For the secondary alcohol 1-phenylethanol, $K_{\rm M}$ and k_2 were found to be 133 mm and 0.026 s⁻¹, respectively, at 60 °C. Importantly, the $K_{\rm M}$ value is significantly greater than that for the oxidation of 1, which is reflected in the preferential oxidation of primary hydroxy groups by this species.^[22] The formation of metal alkoxide intermediates of primary alcohols is favored over secondary alcohols in the ligand-exchange step.^[23]

In summary, a robust heterotrimetallic Ru^{IV}Mn^{IV}Mn^{IV} species coordinated to a hydrotalcite surface as a macroligand facilitates the highly efficient aerobic oxidation of alcohols. Such cooperative action among high-valence metal cations in a heterometallic species on a solid surface provides a unique protocol for the preparation of functionalized heterogeneous catalysts for environmentally benign organic syntheses.^[24] Ongoing efforts are focused on creating high-valence Ru cation species, that is, Ru^{VI} and Ru^{VII}, based on the redox interaction within a heterometallic site for highly efficient epoxidation and dihydroxylation reactions of alkenes with molecular oxygen.

Experimental Section

Ru/HT^[7d] was treated with an aqueous solution of $MnCl_2\cdot 4H_2O$ to afford $RuMn_2/HT$.^[10] Elemental analysis (%) calcd for $Ru_{0.071}Mn_{0.142}/Mg_6Al_2(OH)_{16}CO_3$: Ru 1.03, Mn 1.12, Mg 21.0, Al, 8.14; found: Ru 1.05, Mn 1.20, Mg 21.4, Al 7.9.

The X-ray absorption spectra were recorded at the BL01B1 beamline in SPring-8 of JASRI, Japan (2003B0944-UXa-np and 2004A489-NXa-np) and at the BL-10B beamline of PF at KEK, Japan (2001G143 and 2002G102). The data were reduced using computer

Zuschriften

systems at the Data Processing Center of Kyoto University according to a previously reported procedure. [25]

Received: November 13, 2004 Revised: December 29, 2004 Published online: April 28, 2005

Keywords: alcohols · heterogeneous catalysis · oxidation · ruthenium · supported catalysts

- [1] a) A. M. Argo, J. F. Odzak, F. S. Lai, B. C. Gates, *Nature* **2002**, 415, 623; b) A. Suzuki, A. Yamaguchi, T. Chihara, Y. Inada, M. Yuasa, M. Abe, M. Nomura, Y. Iwasawa, *J. Phys. Chem. B* **2004**, 108, 5609.
- [2] a) N. Wheatley, P. Kalck, Chem. Rev. 1999, 99, 3379; b) B. H. Holm, E. I. Solomon, Chem. Rev. 2004, 104, 347.
- [3] *Handbook of Heterogeneous Catalysis* (Eds.: G. Ertl, H. Knözinger, J. Weitkamp), VCH, Weinheim, **1997**.
- [4] S. J. Tauster, S. C. Fung, L. R. Garten, J. Am. Chem. Soc. 1978, 100, 170.
- [5] F. Cavani, F. Trifirò, A. Vaccari, Catal. Today 1991, 11, 173.
- [6] For typical catalysis of hydrotalcites as solid bases, see: B. M. Choudary, M. L. Kantam, B. Kavita, C. V. Reddy, K. K. Rao, F. Figueras, *Tetrahedron Lett.* 1998, 39, 3555; T. Honma, M. Nakajo, T. Mizugaki, K. Ebitani, K. Kaneda, *Tetrahedron Lett.* 2002, 43, 6229.
- [7] For typical heterogeneous metal catalysts based on HT, see: a) B. Sels, D. De Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker, P. A. Jacobs, *Nature* 1999, 400, 8565; b) T. Nishimura, N. Kakiuchi, M. Inoue, S. Uemura, *Chem. Commun.* 2000, 1245; c) B. M. Choudary, N. S. Choudary, S. Madhi, M. L. Kantam, *Angew. Chem.* 2001, 113, 4755; *Angew. Chem. Int. Ed.* 2001, 40, 4619; d) K. Motokura, D. Nishimura, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, *J. Am. Chem. Soc.* 2004, 126, 5662.
- [8] X-ray Absorption: Principles, Applications, and Techniques of EXAFS, SEXAFS, and XANES (Eds.: D. C. Köningsberger, R. Prins), Wiley, New York, 1988.
- [9] For a recent review on immobilization of metal species, see: C. Copéret, M. Chabanas, R. P. Saint-Arroman, J.-M. Basset, Angew. Chem. 2003, 115, 164; Angew. Chem. Int. Ed. 2003, 42, 156.
- [10] See Supporting Information.
- [11] P. Triggs, Helv. Phys. Acta 1985, 58, 657.
- [12] Two Ru-O bonds of 1.83 and 2.07 Å are assigned to Ru-OH and Ru-OH₂, respectively. See: P. Dubourdeaux, M. Tavarès, A. Grand, R. Ramasseul, J.-C. Marchon, *Inorg. Chim. Acta* 1995, 240, 657; A. Liobet, D. J. Hodgson, T. Meyer, *Inorg. Chem.* 1990, 29, 3760.
- [13] The Mn-Mn distance is slightly shorter than that in bis-(hydroxo)-bridged Mn^{IV} dimers (2.73–2.93 Å). See: M. J. Baldwin, T. L. Stemmler, P. J. Riggs-Gelasco, M. L. Kirk, J. E. Penner-Hahn, V. L. Pecoraro, J. Am. Chem. Soc. 1994, 116, 11349.
- [14] Generation of heterometallic species has not been reported on HT containing Pd, Os, or W.^[7e]
- [15] For selected heterogeneous Ru catalysts for alcohol oxidation, see: a) M. Matsumoto, M. Watanabe, J. Org. Chem. 1984, 49, 3435; b) K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 2000, 122, 7144; c) K. Yamaguchi, N. Mizuno, Angew. Chem. 2002, 114, 4720; Angew. Chem. Int. Ed. 2002, 41, 4538; d) M. Musawir, P. N. Davey, G. Kelly, I. V. Kozhevnikov, Chem. Commun. 2003, 1414; e) K. Yamaguchi, N. Mizuno, Chem. Eur. J. 2003, 9, 4353. See also T. Mallat, A. Baiker, Chem. Rev. 2004, 104, 3037 as a recent review.
- [16] For representative aerobic alcohol oxidations by homogeneous metal complexes, see: a) A. Hanyu, E. Takezawa, S. Sakaguchi,

- Y. Ishii, Tetrahedron Lett. 1998, 39, 5557; b) G.-J. ten Blink,
 I. W. C. E. Arends, R. A. Sheldon, Science 2000, 287, 1636;
 c) P. A. Shapley, N. Zhang, J. L. Allen, D. H. Pool, H.-C. Liang, J. Am. Chem. Soc. 2000, 122, 1079; d) A. Dijksman, A. Marino-González, A. Mairata i Payeras, I. W. C. E. Arends, R. A. Sheldon, J. Am. Chem. Soc. 2001, 123, 6826.
- [17] See the Supporting Information for typical time courses for the oxidation of 1.
- [18] A control experiment was performed using benzaldehyde in the presence of RuMn₂/HT and water at 60°C in toluene under oxygen. Benzaldehyde was quantitatively recovered showing that it is not oxidized further under these conditions. See Supporting Information.
- [19] RuMn₂/HT is highly effective for the oxidation of benzylic and aromatic allylic alcohols, but not for primary aliphatic alcohols; the oxidation of 1-octanol with RuMn₂/HT (2 mol-% Ru) afforded octanal in 62% yield at 60°C after 5 h. A CoCeRu trimetallic catalyst shows a high activity for the aerobic oxidation of primary aliphatic alcohols: H.-B. Ji, T. Mizugaki, K. Ebitani, K. Kaneda, *Tetrahedron Lett.* **2002**, *43*, 7179; K. Ebitani, H.-B. Ji, T. Mizugaki, K. Kaneda, *J. Mol. Catal. A* **2004**, *212*, 161.
- [20] 1) The addition of a radical scavenger (2,6-di-tert-butyl-p-cresol) did not affect the rate of the oxidation. 2) Treatment of RuMn₂/HT with 1 under argon afforded an IR signal of a Ru-H species at 2120 cm⁻¹. [10,16d] This species disappeared upon exposure to O₂. 3) During the oxidation of 1, the ratio of O₂ consumed to 2 was 1:2.
- [21] R. W. Missen, C. A. Mims, B. A. Saville, *Introduction to Chemical Reaction Engineering and Kinetics*, Wiley, New York, 1999. The initial rate of oxidation of 1 is proportional to the amount of RuMn₂/HT and independent of the oxygen pressure.
- [22] If the second step in Equation (1) is the rate-determining step, the $K_{\rm M}$ value can be regarded as a dissociation equilibrium constant (k_{-1}/k_1) of the first step. See ref. [21].
- [23] A similarly high chemoselectivity for primary alcohols has been observed in the Zr(OAc)₂-catalyzed oxidation of alcohols: K. Kaneda, Y. Kawanishi, S. Teranishi, *Chem. Lett.* 1984, 1481.
- [24] P. T. Anastas, J. C. Warner, *Green Chemistry; Theory and Practice*, Oxford University Press, Oxford, **1998**.
- [25] T. Yamamoto, T. Tanaka, S. Takenaka, S. Yoshida, T. Onari, Y. Takahashi, T. Kosaka, S. Hasegawa, M. Kudo, J. Phys. Chem. B 1999, 103, 2385.
- [26] H. W. Baur, Acta Crystallogr., Sect. B 1976, 32, 220.