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Bone-resorbing osteoclasts play an essential role in normal bonehomeostasis, aswell as in various bonedisorders
such as osteoporosis and rheumatoid arthritis. Previously we showed that the Tec family of tyrosine kinases is
essential for the differentiation of osteoclasts and the inhibition of Btk is a promising strategy for the prevention
of the bone loss in osteoclast-associated bone disorders. Here we demonstrate that an orally available Btk inhib-
itor, ibrutinib (PCI-32765), suppresses osteoclastic bone resorption by inhibiting both osteoclast differentiation
and function. Ibrutinib downregulated the expression of NFATc1, the key transcription factor for osteoclastogen-
esis, and disrupted the formation of the actin ring in mature osteoclasts. In addition, genome-wide screening
revealed that Btk regulates the expression of the genes involved in osteoclast differentiation and function in
both an NFATc1-dependent and -independent manner. Finally, we showed that ibrutinib administration amelio-
rated the bone loss that developed in a RANKL-induced osteoporosis mouse model. Thus, this study suggests
ibrutinib to be a promising therapeutic agent for osteoclast-associated bone diseases.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Bone tissue homeostasis is tightly regulated by bone-forming osteo-
blasts and bone-resorbing osteoclasts [1,2]. While osteoblasts contrib-
ute to the formation of the bone matrix by providing the necessary
bone matrix proteins and minerals, osteoclasts degrade the bone by
producing proteases for matrix protein digestion and protons for the
dissolution of the minerals in bone. An imbalance in bone formation
and resorption is the underlying cause of various bone disorders, and
bone loss in osteoporosis and rheumatoid arthritis (RA) mainly results
from enhanced osteoclastic bone resorption [3–5]. Thus, it is an attrac-
tive therapeutic strategy to protect bone tissues by the inhibition of
osteoclastic bone resorption.

Osteoclasts aremultinucleated cells that attach to the bonematrix by
the use of an actin ring, an actin-rich structure, and degrade bonematrix
by the secretion of protons and proteases into a space that forms be-
tween the osteoclasts and the bone surface through a specialized
y, Graduate School of Medicine,
113-0033, Japan.
nagi).

ghts reserved.
structure known as ruffled border membranes [6]. The differentiation
of osteoclasts is regulated by three signals mediated by the colony stim-
ulating factor 1 receptor (Csf1r, also known as c-Fms orM-CSF receptor),
tumor necrosis factor receptor superfamily member 11a (Tnfrsf11a, also
known as receptor activator of NFκB, RANK), and certain immunoglobu-
lin (Ig)-like receptors, including OSCAR, TREM-2, SIRP1β and PIR-A [2].
While M-CSF receptor signaling supports cell proliferation and the sur-
vival of the osteoclast precursor cells during osteoclastogenesis [7], the
differentiation process is activated by the RANK signal in cooperation
with the Ig-like receptors. The RANK signal activates NFκB and Fos,
both of which are transcription factors essential for the osteoclast differ-
entiation [2]. Ig-like receptors transmit a signal to activate phospholipase
Cγ (PLCγ) through their adaptors, immunoreceptor tyrosine-based
activation motif (ITAM)-harboring molecules DAP12 and FcRγ [8].
PLCγ induces calciumoscillation,which leads to the activation of calcine-
urin, a Ca2+/calmodulin-dependent phosphatase [9]. Finally, RANK and
Ig-like receptor signals are integrated by the master transcription factor
of osteoclastogenesis, nuclear factor of activated T-cells c1 (NFATc1),
which induces the expression of molecules required for the bone-
resorbing activity of osteoclasts, such as cathepsin K,MMP9, the chloride
channel CLC-7 and the H+-ATPase subunits [9].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bone.2013.11.025&domain=pdf
http://dx.doi.org/10.1016/j.bone.2013.11.025
mailto:takayana@m.u-tokyo.ac.jp
http://dx.doi.org/10.1016/j.bone.2013.11.025
http://www.sciencedirect.com/science/journal/87563282
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The tyrosine kinases Btk and Tec are expressed in B lymphocytes and
myeloid lineages and play important roles in the development
and function of these lineages [10]. Previously, we demonstrated that
Btk and Tec are also expressed in osteoclast lineage cells, and Btk−/−

Tec−/− mice exhibit severe osteopetrosis due to a defect in osteoclast
differentiation [11]. These kinases are activated in response to RANKL
stimulation, and interact with B-cell linker (BLNK) and lymphocyte cy-
tosolic protein 2 (Lcp2, also known as SLP-76), which are phosphorylat-
ed downstreamof the Ig-like receptors. The adaptormolecules also bind
PLCγ to induce efficient phosphorylation by the kinases contained in the
complexes. Thus, Btk and Tec are kinases that link RANKwith the Ig-like
receptors. Based on the respective phenotypes of Btk−/− and Tec−/−

mice, it is suggested that Btk has a more important role in osteoclast
differentiation than Tec. In addition, the broad-based Btk inhibitor
LFM-A13 had a therapeutic effect on inflammatory bone destruction
and bone loss in an osteoporosis model [11]. Thus, a Btk inhibitor is a
promising drug for the bone diseases associated with the increased
activity of osteoclasts.

The Btk inhibitor ibrutinib binds covalently to a specific cysteine res-
idue (Cys 481) in the active site of Btk so as to inhibit its enzyme activity
irreversibly [12]. Oral administration of ibrutinib leads to 24 hour target
inhibition supporting once daily dosing [12], suggesting that ibrutinib is
a first of its kind, orally available Btk inhibitor. It has already been
demonstrated that ibrutinib has therapeutic effects against certain
types of leukemia [13] and autoimmune diseases, such as arthritis
[14], in mice. Importantly, in the RA models, ibrutinib treatment
protected the bone destruction in the joints by targeting B lymphocytes,
macrophages and mast cells, all of which are involved in the RA pathol-
ogy [14]. Although the suppressive effects of ibrutinib on osteoclasts
in vitro have been shown [15], it remains unclear whether ibrutinib
has a similar effect on osteoclasts in vivo. In this study, we aimed to
investigate the effect of ibrutinib on osteoclast differentiation and func-
tion both in vitro and in vivo in an effort to develop a novel strategy for
the treatment of osteoclast-associated bone diseases.

Materials and methods

In vitro kinase assay

In vitro kinase assay with ibrutinib was performed as described
previously [12] with slight modifications. Briefly, serial dilutions of
ibrutinib were incubated with various kinases in basic reaction buffer,
20 mM Hepes (pH 7.5), 10 mM MgCl2, 1 mM EGTA, 0.02% Brij35,
0.02 mg/ml BSA, 0.1 mM Na3VO4, 2 mM DTT, and 1% DMSO with
poly(Glu, Tyr) as a substrate followed by the addition of 33P-ATP (specific
activity 500 μCi/μl) into the reaction mixture to initiate the reaction. The
kinase reaction was performed at room temperature for 120 min.

In vitro osteoclast differentiation

In vitro osteoclast differentiation has been described previously
[11]. Briefly, bone marrow cells were cultured with 10 ng/ml M-CSF
(R&D Systems) for 2 days to obtain bone marrow-derived monocyte/
macrophages (BMMs). The BMMs were cultured in an osteoclastogenic
medium containing 50 ng/ml RANKL (Peprotech) and 10 ng/ml M-CSF
in the presence of ibrutinib at the indicated concentration for a further
3 days. Osteoclastogenesis was evaluated by tartrate-resistant acid
phosphatase (TRAP) staining, and TRAP-positive multinucleated cells
(TRAP+ MNCs; more than three nuclei) were counted.

In vitro osteoblast differentiation

Cells derived from calvaria were cultured in an osteogenic medium
(50 μM ascorbic acid, 10 nM dexamethasone and 10 mM β-
glycerophosphate) in the presence of ibrutinib and subjected to an
analysis of the activity of alkaline phosphatase (after 7 days) and bone
nodule formation (after 21 days), as described previously [16].

Proliferation and cell survival assays

A proliferation assay based on incorporation of 5-bromo-2′-
deoxyuridine (BrdU) was used to investigate the effect of ibrutinib on
osteoclast precursor cells. BMMs were cultured in the osteoclastogenic
mediumwith or without ibrutinib for 24 h. One hour before the collec-
tion of cells, BrdU (Roche) was added. The cells were fixed in ice-cold
70% ethanol, washed with FACS buffer, resuspended with 2 N HCl
and the residual acid neutralized with 0.1 M sodium borate. Finally,
the cells were washed, FITC-conjugated anti-BrdU antibody (BD
Pharmingen)was added and the cells were analyzed by flow cytometry,
FACS Canto II and Diva software (BD Biosciences). Apoptosis of the
osteoclast precursor cells was evaluated 24 h after RANKL stimulation
using an In Situ Cell Death Detection Kit, Fluorescein (Roche), according
to the manufacturer's instructions, and analyzed by flow cytometry,
FACS Canto II and Diva software (BD Biosciences).

Pit formation assay

Bone marrow cells were cultured on RepCell® (CellSeed Inc.) to
generate mature osteoclasts as described above, and an equal number
of osteoclasts were transferred onto dentin slices. Two days after
the culture with ibrutinib at various concentrations in the presence of
M-CSF and RANKL, the dentin slices were stained with 0.5% toluidine
blue. The resorption pit areawas thenmeasured, as described previous-
ly [17]. The effect of ibrutinib on the apoptosis of themature osteoclasts
was analyzed with cells transferred on a 24-well plate, and cultured in
the presence of M-CSF and RANKL with or without ibrutinib for
2 days. The number of TUNEL-positive apoptotic cells labeled with In
Situ Cell Death Detection Kit Fluorescein (Roche) was counted using a
fluorescein microscopy.

GeneChip analysis

BMMs were cultured with RANKL and M-CSF in the presence of
10 nM ibrutinib for 3 days. Affymetrix GeneChip analysis was per-
formed as previously described [11]. The preparation of NFATc1-
deficient [16] and DAP12/FcRγ-deficient cells [8] is described
elsewhere.

Real-time PCR analysis

BMMs or differentiated osteoclasts were cultured with RANKL/
M-CSF in the presence of ibrutinib for 3 days (Fig. 2) or 24 h (Fig. 3), re-
spectively. Real-time PCR was performed using specific primers for
Nfatc1, Acp5 and Ctsk as described previously [17].

Western blot analysis

For the detection of tyrosine phosphorylation of PLCγ1 and PLCγ2,
the BMMs were treated with RANKL for 24 h and then serum-starved
for 4 h with or without ibrutinib. The cells were treated with RANKL
(50 ng/ml) for 10 min. Detection of the tyrosine phosphorylation of
PLCγ1 and PLCγ2 was performed as described previously [11]. The ex-
pression of Src was detected with an anti-Src antibody (Cell Signaling).

Ca2+ measurement

BMMs were cultured with RANKL and M-CSF for 48 h with or with-
out ibrutinib (10 nM). The concentration of intracellular calcium was
measured as described previously [11].
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Analysis of actin structure

Osteoclasts cultured on dentin slices were treated with 10 nM
ibrutinib for 8 h. Cells were fixedwith PBS containing 4% paraformalde-
hyde, permeabilized with PBS containing 0.2% Triton-X100, and treated
with Rhodamine-labeled phalloidin (Molecular Probes). The images
were taken using a confocal laser scanning microscopy Leica TSC SP5
(Leica Microsystems) as described previously [17].

RANKL-induced bone loss in mice

GST-RANKL recombinant protein was purified from BL21 cells as
previously described [18]. After purification using glutathione-
Sepharose 4B and Mono-Q column (GE Healthcare), the protein
was further purified with the ToxinEraser™ Endotoxin Removal
Kit (GenScript). We confirmed the endotoxin level to be less than
50 EU/mg protein. Female C57BL/6JJc1 mice, aged 8 weeks, were intra-
peritoneally injected with 0.5 mg/kg of GST-RANKL three times at 24-h
intervals. Ibrutinib was administered by oral gavage 1 h before the first
GST-RANKL injection. One and one-half hours after the last injection, all
of the mice were sacrificed and subjected to microcomputed tomogra-
phy (microCT) and bone histomorphometrical analyses. MicroCT and
bone histomorphometrical analyses were performed as described pre-
viously [17]. All animal experiments were performed with the approval
of the Animal Study Committee of TokyoMedical and Dental University
and conformed to all relevant guidelines and laws.

Statistical analysis

All experimentswere performed at least three times. Statistical anal-
ysis was performed using Student's t-test (⁎P b 0.05, ⁎⁎P b 0.01,
⁎⁎⁎P b 0.005, n.s.: not significant, throughout the paper). In Fig. 4, sig-
nificant differences are indicated with asterisks (saline versus the
RANKL-treated group; ⁎P b 0.05, ⁎⁎P b 0.01, ⁎⁎⁎P b 0.005, n.s.: not
significant) and hash marks (RANKL-treated versus the RANKL- and
ibrutinib-treated group; #P b 0.05, ##P b 0.01, ###P b 0.005, n.s.: not
significant).

Results

Ibrutinib inhibits osteoclast differentiation

We previously reported that ibrutinib (PCI-32765) is a potent inhib-
itor of Btk [12]. To determine the biochemical activity of ibrutinib, we
performed an in vitro kinase assay using various kinases with serial
dilutions of ibrutinib. Since the drug is a covalent inhibitor with a high
systemic clearance, only those kinases with a high homology to Btk
and containing a cysteine residue aligned with Cys 481 in Btk, such as
other Tec family kinases (Bmx, Txk and Tec), B lymphocyte kinase
(Blk), and ErbB4/HER4 were inhibited, thus affording selectivity over
the kinases that are inhibited reversibly (Table S1).

We evaluated the effect of the ibrutinib on osteoclast differentiation
in a culture system of bone marrow-derived monocytes/macrophages
(BMMs) stimulated with RANKL and M-CSF. The formation of tartrate-
resistant acid phosphatase (TRAP)-positive osteoclasts was potently
suppressed by ibrutinib in a dose-dependent manner (Figs. 1A, B) in
the same dose range as blocked the activation of B lymphocytes.
While TRAP-positive mononuclear cells were observed at 3 and
10 nM, no TRAP-positive cells were detected at higher doses (Fig. 1A).
We also analyzed the cell proliferation and survival of osteoclast precur-
sor cells by BrdU incorporation and TUNEL assays, respectively, and
there was no significant difference between the control and ibrutinib-
treated cells (Figs. 1C, D), suggesting that ibrutinib affects osteoclast
differentiation by inhibiting RANKL but notM-CSF signaling. In contrast,
the differentiation of osteoblasts was not affected by ibrutinib at con-
centrations that inhibit osteoclastogenesis (Figs. 1E, F, G). These results
are consistentwith the previous observations showing that osteoclasto-
genesis, but not osteoblastogenesis, was impaired in Btk-deficient cells
[11], suggesting that ibrutinib specifically inhibits bone resorption
without affecting bone formation.

Suppression of osteoclast gene expression by ibrutinib

Wenext analyzed the signaling events stimulated by Btk in response
to RANKL. The tyrosine phosphorylation of PLCγ1 and γ2 induced by
RANKL stimulation was attenuated by the treatment with ibrutinib
dose-dependently (Fig. 2A). Furthermore, the calcium oscillation ob-
served during osteoclast differentiation was completely blocked by
10 nM ibrutinib treatment (Fig. 2B). The expression of NFATc1, themas-
ter transcription factor of osteoclast differentiation [9], was increasingly
suppressed by increasing doses of ibrutinib (Fig. 2C). Consistent with
this, real-time PCR analysis revealed that the expression of the
osteoclast-specific genes Acp5 encoding TRAP and Ctsk was decreased
by the treatmentwith ibrutinib (Fig. 2D).We also examined the expres-
sion of RANKL-induced genes in osteoclast differentiation using a
genome-wide approach. Affymetrix GeneChip analysis revealed that
the genes thought to be important for osteoclast differentiation and
function, such as Ppargc1b [19], Fosl2 [20], Nfkb2 [21], Atp6v1h encoding
a subunit of the proton pump [22], Clcn7 [23], Src [24] and Itgb3 [25],
were suppressed by ibrutinib (Fig. 2E). These results suggest that
ibrutinib blocks osteoclast differentiation through the inhibition of
NFATc1 expression and thus the subsequent expression of osteoclast-
related genes.

Ibrutinib inhibits bone-resorbing activity of osteoclasts

Src tyrosine kinase is essential for proper osteoclastic bone resorp-
tion [24] and previous data suggests that Src expression is dramatically
induced after RANKL stimulation [11]. Consistent with this, our
GeneChip data showed that Src expression was induced during osteo-
clast differentiation and that this induction was suppressed by ibrutinib
treatment (Fig. 3A). The suppression of Src expression was confirmed
by Western blot analysis (Fig. 3B). Interestingly, the expression of Src
was normally induced in NFATc1- as well as DAP12/FcRγ-deficient
cells 3 days after RANKL stimulation of BMMs (Fig. 3C), suggesting
that ibrutinib suppressed Src expression in an NFATc1-independent
fashion. These results led us to analyze the effect of ibrutinib on the
bone-resorbing activity of osteoclasts. Pit formation assay revealed
that ibrutinib inhibited osteoclastic bone-resorbing activity partially at
10 nM but completely at 100 nM (Fig. 3D). Since the rate of apoptosis
was not changed by the ibrutinib treatment (Fig. 3D), ibrutinib sup-
pressed the bone-resorbing activity without affecting cell survival. In
this condition, Src expression was decreased by ibrutinib treatment
(Fig. 3E). Furthermore, we analyzed the expression of genes related to
bone resorption, and found that protein tyrosine kinase 2 (Ptk2; also
known as Focal adhesion kinase, FAK), Ptk2b (also known as Pyk2)
and Talin 1 (Tln1), which have important roles in the regulation of the
actin ring in cooperation with integrins and Src [26,27], were signifi-
cantly suppressed by ibrutinib (Figs. 3F, G). In accordance with these
observations, the actin ring essentially disappeared within 8 h after
ibrutinib treatment (Fig. 3H), suggesting that the suppression of bone-
resorbing activity by ibrutinib is due to the disruption of the actin ring.

Ibrutinib protects against bone loss in a RANKL-induced osteoporosis model

We investigated whether ibrutinib would exert in vivo effects in a
mouse model of osteoporosis associated with enhanced osteoclastic
bone resorption [18]. Eight-week-old female mice were injected with
GST-RANKL at a 24-h interval for 3 days. Ibrutinib was administered
with a single oral treatment 1 h before the initial RANKL injection.
Three-dimensional images of thedistal region of the femur showed a ro-
bust trabecular bone loss, and microCT analysis revealed a marked
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reduction in bone volume, thickness and trabecular number, alongwith
an increase in trabecular separation in the RANKL-injected mice
(Fig. 4A). The treatment with ibrutinib protected against the trabecular
bone loss induced by the RANKL injection (Fig. 4A). The bone volume,
trabecular thickness and trabecular numberwere increased, and trabec-
ular separationwasdecreased by ibrutinib administration (Fig. 4A). Fur-
thermore, histological analysis revealed that the loss of trabecular bone
induced by RANKL was canceled by ibrutinib injection (Fig. 4B). In-
creased osteoclast parameters, such as the eroded bone surface, osteo-
clast surface, and osteoclast number after RANKL injection, were
suppressed dose-dependently by ibrutinib treatment (Fig. 4B). Serum
level of calcium and C-telopeptide of type 1 collagen (CTX), which
was enhanced by RANKL injection, was inhibited dose-dependently
(Fig. 4C), suggesting that enhanced bone resorption was suppressed
by the ibrutinib treatment. Serum alkaline phosphatase (ALP) level
was also elevated by RANKL injection as reported previously [18] but
there was no effect of the ibrutinib treatment on the serum ALP level.
In addition, serum phosphate level was not changed in this model
(Fig. 4C). Taken together, these results suggest that ibrutinib amelio-
rates the bone loss induced by enhanced osteoclast activity by a direct
effect on osteoclasts.

Discussion

Previously we demonstrated that the tyrosine kinases Btk and Tec
are essential for the osteoclast differentiation, and the Btk inhibitor
LFM-A13 blocks osteoclast formation both in vitro and in vivo [11].
LFM-A13 was originally developed to block the kinase activity of Btk
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by binding to the catalytic site in its kinase domain [28], and exhibited
Btk inhibitory activity along with Tec inhibitory activity [29]. However,
since LFM-A13 is not orally available and has high cell toxicity, its usage
has been limited to in vitro experiments. The in vitro osteoclast differen-
tiation was significantly suppressed, with an IC50 of approximately
30 μM, andwas completely blocked at 100 μM. In contrast, we observed
that ibrutinib completely inhibited the in vitro osteoclast differentiation
at 1 nM. Furthermore, ibrutinib has an advantage over LFM-A13 in
terms of toxicity. The mice treated with LFM-A13 at the effective dose
often were debilitated and subsequently died (data not shown), but
such adverse events were not observed in the mice treated with
ibrutinib. Since LFM-A13 inhibits not only Tec kinases but also Janus ki-
nases (JAKs) [30] and Polo-like kinases (PLKs) [31], which might be the
reason for the unexpected side effects in mice. In contrast, ibrutinib
treatment did not affect serum levels of a variety of components
determined by blood chemistry tests in a various mouse model [14],
and there was no effect of ibrutinib on liver and renal functions even
in humans [32–34], suggesting that ibrutinib has no severe side effects.
Collectively, the usage of ibrutinib in the clinical treatment of osteoclast-
associated bone diseases warrants further investigation.

The master transcription factor NFATc1 is essential for the expres-
sion of osteoclast-related genes [4]. The initial induction of this
transcription factor is largely dependent on Fos and NFκB, which are ac-
tivated by RANKL stimulation in the early phase of osteoclast differenti-
ation, and subsequently activated through dephosphorylation by
calcineurin, a protein phosphatase regulated by calcium signaling [9].
The promoter region in the Nfatc1 gene contains NFAT-binding se-
quences as well as the Fos- and NFκB-binding sites, which enable the
autoamplification of NFATc1 in order to maintain the high expression
level that is required during the course of osteoclastogenesis [35]. Con-
comitant with the autoamplification of NFATc1, it has been shown that
NFATc1 also activates the gene expression of various molecules associ-
ated with osteoclast differentiation and function, such as TRAP,
OSCAR, cathepsin K, the chloride channel and the proton pump sub-
units. The data show that calcium oscillation and NFATc1 expression
were significantly suppressed in the cells treated with ibrutinib,
resulting in the inhibition of the osteoclast differentiation through the
down-regulation of a wide range of NFATc1 targets.

Our results also suggest that Btk regulates gene expression indepen-
dently of NFATc1 in osteoclasts. Src is evidently essential for osteoclastic
bone resorption, because mice deficient in Src exhibit severe
osteopetrosis due to a lack of the bone-resorbing activity of osteoclasts
[24]. However, the mechanism of Src expression in osteoclasts has
long been largely unknown. Our data indicate that Src expression was
not suppressed in NFATc1-deficient cells. In addition, the expression
of Ptk2, Ptk2b and Tln1, was also expressed in NFATc1-deficient cells
(Fig. S1), suggesting that the expression of these genes is independent
of NFATc1 but dependent on Btk. In contrast, it is well known that ex-
pression of CtsK and Acp5 is under the control of NFATc1 [9,36]. Since
ibrutinib inhibited expression of both NFATc1-dependent (CtsK and
Acp5) and -independent (Src, Ptk2, Ptk2b and Tln1) genes, Btk regulates
the gene expression in the NFATc1-dependent and -independent
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manner in osteoclast linage cells. Previously it has been shown that Btk
controls gene expression by regulating activity of transcription factors
NFκB [37], AT rich interactive domain 3A (Arid3a, also known as Bright)
[38], and signal transducer and activator of transcription 5 (Stat5) [39].
Since these transcription factors are expressed in the osteoclast lineage
(data not shown), it is conceivable that Btk regulates gene expression
through these factors in osteoclasts as well.

For the treatment of osteoclast-associated bone diseases, such as
osteoporosis and RA, the therapeutic regulation of osteoclastic bone re-
sorption is critically important [9]. Bisphosphonates, which inhibit the
survival and the bone-resorbing activity of osteoclasts, are widely
used for osteoporosis treatment [40]. More recently, an anti-RANKL an-
tibody was developed and shown to be an effective therapeutic agent
for the treatment of osteoporosis [41]. It also has been shown that bio-
logical agents against TNF [42] and IL-6 [43], which are commonly
used for RA treatment, effectively prevent the bone destruction in RA
by a direct or indirect inhibition of osteoclast differentiation and
function, as well as the suppression of immune cell function. However,
considering the side effects and cost, the development of novel drugs
for the treatment of osteoclast-associated bone diseases is still greatly
desired. A previous study revealed that ibrutinib ameliorates the inflam-
mation and subsequent bone destruction which occurs in RA mouse
models, suggesting that ibrutinib is a promising drug for RA [14].
Taken together with our results, it is clear that ibrutinib suppresses
bone destruction by targeting both immune cells and osteoclasts. Fur-
thermore, the direct effect of ibrutinib on osteoclasts also suggests a
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potential application to osteoporosis. Although further detailed investi-
gation is required, the administration of ibrutinib is suggested to be an
interesting new strategy for the treatment of osteoclast-mediated
bone diseases.

Conclusion

It was demonstrated that ibrutinib inhibits osteoclast differentiation
and function in vitro by regulating the expression of osteoclast-
associated genes. Furthermore, this study showed that oral administra-
tion of ibrutinib protects against bone loss in amousemodel of osteopo-
rosis, suggesting that this Btk inhibitor is a potential therapeutic agent
for certain osteoclast-related diseases, such as osteoporosis and RA.
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