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In the wide domain of automatic speech recognition, extracting the
relevant information carried by the speech signal is far from easy. Diversity,
redundancy, and variability, the main characteristics of the speech signal,
make this task particularly difficult. The work reported here presents
a multirecognizer architecture designed to cope with this issue in the
framework of Automatic Speaker Recognition. This architecture, based
on various individual recognizers, exploits different classes of information
conveyed by the speech signal. In this paper, two classes of information are
investigated: information related to the frequency domain, and “dynamic”
information. This multirecognizer architecture is coupled with a block-
segmental approach applied on each classifier. The overall system allows
us to emphasize the most informative temporal blocks and to discard the
least informative ones or those corrupted by noise. The AMIRAL system
developed by the LIA integrates both approaches and was tested during
the NIST/NSA 1999 speaker recognition evaluations. The results of these
experiments for the tasks of Speaker Verification (“One Speaker” and
“Two Speakers”) and Speaker Tracking are provided and discussed.  2000
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1. INTRODUCTION

Speech, as a human faculty, is full of meaning and conveys information
from various origins (linguistics, emotional state of the speaker, etc.). This
richness as well as the complexity of the underlying communication process
make its medium—the speech signal—extremely variable and sensitive to
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the environment. To ensure the robustness of the communication, a strong
redundancy between the various classes of information is present in the
speech signal. This phenomenon may also be observed within a single class
of information in order to transmit a precise message—for instance, stress
(prosodic information) may be expressed simultaneously by pitch variation,
energy variation, and syllable extension.

In the wide domain of automatic speech processing, the variability as well
as the redundancy of the speech signal has to be taken into account. This
work proposes an original architecture designed to cope with these issues in
the framework of Automatic Speaker Recognition.

To take advantage of the redundancy between different types of speaker-
specific information, a multirecognizer approach was proposed in which all the
recognizers worked in parallel [8]. This approach, described in Section 2, is com-
pleted by a segmentation and normalization process applied to each recognizer.
The proposed method allows the most informative temporal blocks to be empha-
sized and the least relevant ones or those corrupted by noise to be discarded.
This “block-segmental” technique is defined in Section 3. Section 4 presents
the AMIRAL system (see Fig. 1), developed by the LIA, 1 which integrates both
proposed approaches and details the experimental conditions used for their val-
idation. Experiments conducted on different multirecognizer architectures in
the framework of Automatic Speaker Verification are commented on in Sec-
tion 5. These architectures involve multiple frequency subbands as well as sev-
eral methods for the exploitation of dynamic information. The adaptation of the
AMIRAL system to the speaker tracking task is presented in Section 6. Finally,
Section 7 discusses the results obtained and proposes further investigation.

2. MULTIRECOGNIZER ARCHITECTURE

Among the huge amount of information conveyed by the speech signal multi-
ple sources of speaker-specific information may be isolated, such as information
carried by short-term and long-term spectra, prosodic information, and phoneti-
cal/articulatory information such as phoneme instantiation, coarticulatory phe-
nomena, or formant trajectory. This nonexhaustive list illustrates the diversity
of information categories used for speaker characterization. The methods and
criteria used to exploit data may differ from one category of information to an-
other. Therefore, these various sources of information require specific process-
ing for speaker recognition tasks.

In this paper, the following classes of information are investigated: informa-
tion related to the frequency bands of short-term spectra (Section 2.1) and the
evolution of these spectra (Section 2.2). The speaker-specific information is em-
phasized thanks to a multirecognizer architecture in which each kind of infor-
mation is associated with a unique recognizer and a specific processing.

1 Laboratoire Informatique d’Avignon.
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FIG. 1. The AMIRAL system. Details of the different modules integrated in the AMIRAL system.

2.1. Frequency Subbands

Splitting the spectral domain into individual subbands has been a widely
used approach in automatic speech recognition [10, 15, 24] and Automatic
Speaker Recognition (ASR) [4, 8]. Two main studies [2, 17] suggest that the
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human-being recognition process is based on individual frequency subbands
processed independently from each other. Besacier et al. [9] demonstrate that
useful information for Automatic Speaker Identification (ASI) is mainly based
on the low (f < 500 Hz) and high (f > 2500 Hz) frequency bands. 2 The above-
mentioned studies show an improvement of performance in automatic speech
recognition and ASI. Few studies report the use of frequency subbands for the
task of Automatic Speaker Verification (ASV). This paper proposes to investigate
in this direction.

In this paper, four different recognizers are designed to deal with the
frequency domain. They are defined as follows:

– FB: full band representing the frequency band 300–4000 Hz.
– SB1, SB2, SB3: subbands representing frequency bands 300–1600 Hz,

1100–3100 Hz, and 2500–4000 Hz, respectively. They are composed of eight
coefficients each.

In contrast to the dynamic information defined in Section 2.2, these bands
will be referred to as static bands and named S-FB, S-SB1, S-SB2, and S-SB3 in
the next sections.

2.2. Dynamic Information
2.2.1. Fundamentals

Soong and Rosenberg have shown in [38] that short-term spectrum infor-
mation (denoted as “static”) and information related to the evolution of these
spectra (denoted as “dynamic”) are complementary and that both of them may
improve speaker verification performance. This study has also revealed that dy-
namic information is more robust to channel variation between training and
testing conditions than static information.

In the use of dynamic information, various issues have to be addressed:
the length of the temporal window and the choice of appropriate front-end
processing or/and modeling.

– Length of the temporal window. The extraction of dynamic informa-
tion requires a temporal window wide enough to capture, for instance, inter-
phoneme transitions or coarticulatory phenomena. On the other hand, a wide
temporal window can make the characterization of the dynamic information
more troublesome due to the computational complexity involved and to redun-
dant/irrelevant data.

– Parameterization. During front-end processing, various kinds of features
can be computed to deal with dynamic information. On one hand, they can result
from an explicit extraction of dynamic features. Time-derived instantaneous
features (delta and delta–delta coefficients) are the most classical ones. They
represent the speed and the acceleration of spectral components [21]. Tracking
the time trajectories of spectral components [29] and tracking the formants
[33] are also parameterizations proposed in the literature. On the other hand,
some approaches do not rely on explicit extraction of dynamic features during

2 Experiments were carried out on TIMIT and NTIMIT databases.
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the paramaterization. Concatenating successive instantaneous feature vectors
is a solution investigated in [23, 25, 27]. In this case, the extended feature
vectors convey information of both static and dynamic nature. Finally, classic
instantaneous features can also be a potential parameterization to deal with
dynamic information. In this case, the dynamic information has to be exploited
by the model itself.

– Suitable models for dynamic information. Predictive models have been
widely proposed in the literature to deal with dynamic information. They consist
in modeling the dynamics of the speech signal by predicting a frame from the
previous frames in the signal. Depending on the prediction function, one can
find predictive models such as autoregressive vectorial models [32] (ARVM),
neural networks [3], time delay neural networks (TDNN) [5]. While predictive
approaches have been designed to model the “dynamic” of the speech signal, i.e.,
to exploit dynamic information intrinsically within the speaker models, other
techniques have been used to handle dynamic information extracted during the
front-end processing. For instance, time-derived features are usually fed into
classical models such as HMM and its variants (mono Gaussian models (MGM),
Gaussian mixture models (GMM), etc.). Another suitable approach consists in
increasing the size of the feature vectors used for the model (HMM, GMM, etc.)
by taking a larger temporal window into account (parameterization based on
the concatenation of several successive feature vectors as seen previously) [1,
18].

2.2.2. Choice of a Suitable “Dynamic” Approach

Fredouille and Bonastre report in [18] that a temporal window extended up
to 100 ms contains sufficient data to exploit dynamic information in the context
of speaker recognition. Depending on this window width, some points can be
discussed:

– ARVM is an attractive approach since it is able to model speech signal
evolution intrinsically. As model complexity increases with the temporal window
size and/or the model order, only second order ARV models are usually
experimented. However, Magrin-Chagnolleau et al. demonstrate in [28] that a
second order ARV model tends to indirectly extract speaker characteristics of a
static nature rather than of a dynamic nature.

– In [3, 5], the approaches based on neural networks or TDNN classifiers
tend to perform quite well in ASI. However, the adaptation of such techniques
for ASV does not seem to be easily feasible. Indeed, few studies have shown
satisfactory results for this kind of technique in the framework of speaker
verification. This is likely due to the large amount of training data required
or to the involved computation complexity.

– Time-derived features are able to handle the overall information con-
tained in such a temporal window easily. Their performance has been well
demonstrated in the literature [21]. However, this front-end processing can be
seen as a process of compression of the information contained in a large tem-
poral window. Indeed, the information related to a large temporal window is
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summarized into a single delta or delta–delta feature vector. Therefore, it can
be assumed that part of the useful information is lost during compression.

– Tracking the time trajectory is an interesting approach. But, similarly
to the time-derived features, this technique relies on a compression process of
dynamic information which might result in a loss of relevant information.

In contrast with the time-derived features or the tracking of the time
trajectory, which tend to extract one kind of dynamic information, this paper
proposes to retain the overall information contained in a temporal window of
100 ms. A selection procedure will be in charge of retrieving the useful dynamic
information afterward. In this context, the concatenation of successive feature
vectors (associated with statistical modeling) seems to be the approach most
suitable to respond to this request. It is detailed in the following section.

2.2.3. “Dynamic” Approach Proposal
Let W be the size of the temporal window required to exploit dynamic

information and t the size of a speech signal frame. Each extended feature vector
is composed of W/t concatenated frames (i.e., W/t successive spectra).

These extended feature vectors are assumed to convey dynamic information
as well as redundant and/or irrelevant information. A selection procedure is
then applied to retrieve speaker-specific information. The choice of an optimal
set of parameters is an issue widely discussed in the literature. In this paper,
the ascendant method proposed in [12] (a variant of the well-known knock-out
method [37]) has been chosen for its reduction of computational complexity.
This selection approach consists in evaluating, at each iterative step, all the
subsets S(n + 1) built by adding to S(n) one coefficient among the p unused
ones (at the first iteration, S(n) = {} and p is equal to the number of potential
coefficients N). Then the best subset is selected and the procedure is repeated
(n= n+ 1 and p = p− 1) until all coefficients are finally added.

This selection approach has been associated with a selection criterion
optimized 3 for the tasks concerned in this paper. This procedure results in
reduced feature vectors representing the subset of optimum parameters. Finally,
a state-of-the-art GMM approach is applied on these reduced feature vectors to
build speaker models.

In this paper, four different recognizers are designed to deal with dynamic
information. They are defined as follows:

– D-FB: a dynamic full band composed of 144 coefficients. 4

– OD-SB1, OD-SB2, OD-SB3: three optimized dynamic subbands 5 in
which the selection 6 procedure has been applied. In average, the rate of
selection of coefficients is 67% for females and 64% for males.

3 The optimum subset of coefficients, estimated on a separate population, tends to maximize the
ratio

likelihood of true speaker X
maxYi (likelihood of speaker Yi different from X)

.

4 For reasons of computational complexity, no selection has been performed for this recognizer.
5 The frequency domain is split into three subbands as detailed in Section 2.1.
6 The selection procedure is gender-dependent.
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3. BLOCK-SEGMENTAL APPROACH

The use of multiple recognizers, each designed to process one kind of
speaker-specific information, seems to be a good way to deal with the intrinsic
complexity of the speech signal. However, due precisely to the differences
between the recognizers, implementing this architecture is not an easy task.
When it comes to merging various recognizer results, difficulties arise from
the heterogeneousness of these outputs, as well as from the nature of the
considered speaker-specific criteria. Furthermore, the recognizers can require
different amounts of data, located at different places in the speech signal, to
yield meaningful scores. In this case, if the system were to output one score per
recognizer and per signal frame, this would introduce substantial redundancy
within the output streams of some recognizers, while making others unable to
produce valid answers.

A solution consists in using a segmental approach. The speech signal is
split into several temporal segments, corresponding to zones where a given
recognizer can find useful information. This means avoiding output redundancy
for this recognizer, results being yielded only once for each segment (of course,
another benefit is the significant decrease in the number of values to be
merged). It also allows robustness to be improved by deleting the zones where
no pertinent information is found [8].

But such a segmentation must obviously be made on a recognizer-by-
recognizer basis, as the usefulness of information varies depending on the
criterion considered. Besides causing more computational complexity, this
implies knowing for each recognizer how to retrieve segments of useful
information. Furthermore, the introduction of asynchronicity between the
outputs of the various recognizers strongly increases the complexity of the
fusion process. Finally, while output normalization is still needed for this fusion,
another kind of normalization is required to merge the segment scores for each
recognizer.

A simpler segmentation-based method is proposed here, as a compromise
between performance and complexity: the speech signal is split into temporal
blocks of fixed length (hence the name “block-segmental approach”), the
segmentation being the same for all the recognizers.

This arbitrary segmentation avoids having to deal with synchronization
problems in the fusion of the recognizer scores, while still decreasing the total
amount of values to merge and preserving the ability to delete noninformative
zones when accumulating the block scores. Having the same amount of data
within every block also eases normalization between blocks for each recognizer.

This segmentation scheme takes its full sense when combined with a
normalization method capable of bringing all scores—for all blocks and all
recognizers—into the same numerical domain. This is done by taking into
account, for each block/recognizer pair, both the intrinsic performance of the
recognizer and the amount of useful information within the block.

Fusion and pruning then become easier tasks, thanks to the complexity being
concentrated in the normalization step.
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3.1. Description of the Block-Segmental Approach
Let Bi be one of the blocks resulting from the fixed-length segmentation

introduced above.
Bi is composed of T speech signal frames (yt )i×T <tr≤(i+1)×T .
Score Sn(Bi | X ) of this block for recognizer n (n ∈ {1, . . . ,N}), given speaker

model X , is defined as

Sn(Bi |X )= f (Sn(yi×T+1 |X ), . . . , Sn(y(i+1)×T | X )), (1)

where Sn(yt |X ) is the score of frame yt yielded by recognizer n, stemming from
the first step—Norm1n—of the normalization process (see Section 3.2).

The value (T ) to be given to the block length obviously depends on the nature
of function f . However, other factors have to be considered. Larger blocks mean
fewer results to merge, thus making the fusion step easier. They should also lead
to more reliable block scores, on which the normalization function may be more
efficient. On the other hand, a small block size helps to carry out a more precise
pruning of noninformative zones.

In this paper, a geometrical mean is used as function f , with a block length
(T ) of 30 frames:

f (Sn(yi×T+1 |X ), . . . , Sn(y(i+1)×T |X ))=
(

T∏
j=1

Sn(yi×T+j |X )
)1/T

. (2)

The choice of the geometric mean is guided by the assumption that all the
frames are homogeneous within a block and have been uttered by the same
speaker.

Given this block score, the second step normalization function (Norm2n)
returns probability Pn(Bi | X ) (for recognizer n) that the speaker corresponding
to X has uttered speech block Bi :

Pn(Bi |X )=Norm2n(Sn(Bi |X )). (3)

The normalization process is detailed in Section 3.2.
The last step is to merge the normalized scores of all blocks for all recognizers.

The scores have to be fused both

– between the various recognizers (vertical axis) and
– along the temporal axis, between the blocks (horizontal axis).

The possibility of temporal accumulation of the block scores allows the inter-
recognizer fusion to be delayed. This fusion process can be achieved at each
temporal block, as in this paper, or delayed until the last block is processed (all
the intermediate fusions are conceivable). The interrecognizer fusion may be
based on any classical fusion technique such as arithmetical mean, geometrical
mean, NBest, NWorst, or majority vote [7, 26].

In this paper, a simple arithmetic mean is applied. A single score P(Bi |X )
is first computed for each block by averaging the outputs of the various
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recognizers:

P(Bi |X )= 1
N

N∑
n=1

Pn(Bi |X ). (4)

Then the resulting scores P(Bi | X ) are merged. While geometric mean would
be a logical choice here, arithmetic mean has proved to perform better during
speaker detection tests on a development dataset. This performance difference,
which may be explained by the lower influence aberrant block scores have on
the final score in the case of arithmetic mean, leads us to use the latter for the
speaker detection task. In the case of the Two Speakers and Speaker Tracking
tasks, the block scores are sorted prior to the merging, thus discarding the
problem of aberrant values (see Section 6 for details) and allowing us to use
geometric mean.

3.2. Normalization

In the proposed architecture, besides dealing with classical speech variability
issues, the normalization method takes the behavior of the various recognizers
into account. Consequently, a normalization function is defined for each
recognizer.

The normalization process consists of two steps, Norm1n and Norm 2n,
combining two normalization techniques used in ASV [20].

The first step consists in computing a ratio between the likelihood of
hypothesis H0: “the speech signal was uttered by the speaker”—summarized
by the similarity measure between the speech signal and the speaker model—
and the likelihood of hypothesis H1: “the speech signal was uttered by another
speaker.” Hypothesis H1 relies on a generic anti-speaker model and is often
represented by a world model in the literature.

Thus, a world-model-based likelihood ratio is computed [11, 35] for each
frame,

Sn(yt |X )= Ln(yt |X )
Ln(yt | X̄ )

, (5)

where Ln(yt | X ) (resp. Ln(yt | X̄ )) is the measure of similarity between signal
frame yt and speaker model X (resp. world model X̄ ) yielded by recognizer n.

The second step corresponds to the Norm2n function introduced in Eq. (3)
(Sect. 3.1). Close to a MAP (Maximum A Posteriori) normalization [31], it
consists in replacing a block score with the a posteriori probability of this
score being a target score (as opposed to a nontarget or impostor score). This
probability is computed according to the Bayes rule, using both

– a priori probabilities for target and impostor scores; these probabilities
actually describe the test conditions (and are obviously the same for all
recognizers);

– a posteriori probability density functions of target and impostor scores
for each recognizer; these functions are estimated on a separate development
data set.
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FIG. 2. World+MAP normalization. Probability density functions of target- and non-target-
block log likelihood ratios obtained on the development data set.

The probability Pn(tar | Sn) of a score Sn—yielded by recognizer n—being a
target score is then defined by

Pn(tar | Sn)= Pn(Sn | tar)× P(tar)
Pn(Sn | tar)× P(tar)+ Pn(Sn | imp)× P(imp)

, (6)

where Pn(Sn | tar) and Pn(Sn | imp) are the probabilities for score Sn given the
a posteriori probability density functions of target and impostor scores for
recognizer n, and P(tar) and P(imp) are the a priori probabilities of target and
impostor scores.

For better understanding of the World+MAP normalization, Figs. 2–4 depict
the different phases of the World+MAP normalization (see [19] for more
details). Indeed, Fig. 2 provides the a posteriori probability density functions
(pdf) of target and impostor (nontarget) block score for a given recognizer.
These pdfs have been yielded on a development data set, defined by the
ELISA consortium and extracted from the NIST 98 evaluations. Target and
impostor scores are world-model-based log likelihood ratios computed on blocks
(Sn(Bi |X ), as defined in Eq. (1)).

From these pdfs, a Bayesian normalization function can be estimated as
mentioned above. In this context, the a priori probabilities for target (P(tar))
and non target (P(non)) scores are set to 0.1 and 0.9, respectively, in order
to match closely the NIST evaluation conditions. Figure 3 illustrates this
normalization function. It is defined by three main parts:

– the first part, in which target representative probabilities, greater than
P(tar) (a priori target score probability), are assigned to log likelihood ratios;

– the second part, in which all the probabilities are smaller than P(tar),
referring to nontarget scores;
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FIG. 3. World+MAP normalization. Normalization function estimated from block log likelihood
ratio pdfs obtained on the development data set.

– the last part, in which probabilities are assigned to the a priori target
score probability, referring to the noninformative log likelihood ratios (e.g.,
unusual ratio values).

The normalization process is assessed by applying the Bayesian normalization
function on a separate evaluation data set. This set has a similar structure
to the development data set (used to learn the normalization function) and
is also defined by the ELISA consortium. From the Bayesian normalization,

FIG. 4. World+MAP normalization. Probability density functions of normalized target and
nontarget scores obtained on the development data set.
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probabilities have been yielded. Figure 4 provides the resulting normalized
target and nontarget score pdfs obtained on the development data set since
they are quite similar to those obtained on the evaluation data set. This figure
demonstrates that:

– As expected, the normalized nontarget scores are mainly concentrated in
the range [0;P(tar)];

– The normalized target scores can be divided into two main parts. In the
first one, corresponding blocks are correctly labeled as belonging to a target
speaker with a confidence dependent on the probability value. The second part
relates to ratios with probabilities smaller than P(tar) which should be labeled
as nontarget scores and may correspond to error-prone blocks due to a lack of
speaker-specific information.

4. EXPERIMENTAL FRAMEWORK

Experiments reported in this paper have been conducted in the context of the
NIST/NSA 99 speaker recognition evaluations.

The AMIRAL system, described in the next section, has been developed by the
LIA in the framework of the ELISA consortium [16], which the LIA is a member
of. Like all software modules developed in the ELISA framework, it will be made
available to all the consortium members for the next NIST evaluations.

4.1. AMIRAL System

AMIRAL is a system dedicated to automatic speaker recognition. It has been
implemented by the LIA in order to respond to the main tasks of ASI and
ASV. The potentiality of AMIRAL relies on the association of a multirecognizer
architecture defined in Section 2 with the block-segmental technique described
in Section 3. The next sections will present the other modules of the AMIRAL
system illustrated by Fig. 1.

4.1.1. Front End Processing
AMIRAL integrates the parameterization module developed within the

ELISA consortium. 7 Among the various parameterization techniques proposed
by this module, AMIRAL uses the classical cepstrum analysis. The speech
signal is characterized, every 10 ms, by 16 cepstrum features, derived from a
filter bank analysis on a 32.5 ms-wide window. A Cepstral Mean Subtraction
(CSM) is applied afterwards on each cepstrum vector in order to minimize the
degradation of speech signal due to the various transmission channels.

No additional feature related to the energy of the speech signal or delta and
delta–delta coefficients is used.

7 The ELISA consortium is composed of European research laboratories working on a shared
reference platform for the evaluation of speaker recognition systems. These labs are ENST (France),
EPFL (Switzerland), IDIAP (Switzerland), IRISA (France), LIA (France), RIMO—Rice (USA) and
Mons (Belgium), RMA (Belgium), and VUTBR (Czech Republic).
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4.1.2. Speaker Modeling
AMIRAL applies different statistical voice-modeling techniques. In this paper,

each speaker is characterized by a mono-state model. The speaker models
implied are the so-called Gaussian mixture models (GMM) [34, 36] trained
with a classical EM (Expectation–Maximization) algorithm [14] based on the
maximum likelihood principle. Let yt be a p-dimensional feature vector of
speech signal uttered by speaker Xs . The mixture density is defined as

p(yt |Xs)=
M∑
i=1

pisN
(
yt ,µ

i
s,6

i
s

)
, (7)

where pis and N (yt ,µis ,6is) are respectively the mixture weights which satisfy
the constraint

∑M
i=1 p

i
s = 1 and the ith Gaussian density summarized by mean

vector µis and covariance matrix 6is .
In this paper, each speaker-dependent Gaussian mixture model is composed

of either 16 components summarized by a full covariance matrix each (static
recognizers) or 128 components summarized by a diagonal covariance matrix
each (dynamic recognizers). In any case, the gender- and handset-dependent
world models, used for the normalization, have the same characteristics as
speaker models. On the other hand, gender-dependent world models have been
used during speaker model training to initialize the EM algorithm.

Finally, the similarity measure between an incoming feature vector, repre-
senting a speech frame, and a model consists in estimating the likelihood for
the speech frame of being emitted by the model.

4.1.3. Normalization
It has to be noticed that no znorm- and hnorm-like normalization is used

here. As opposed to this kind of normalization, the normalization used here (see
Section 3.2) is independent of the test clients; i.e., it makes no use of information
from client models (particularly, no per-client impostor distributions are
computed).

4.1.4. Decision Thresholds
The decision strategies vary depending on the task considered. For the

Speaker Detection and Two Speakers tasks, it consists in a simple comparison
between the final score, issued from the block score merging (see Section 3.1)
and a threshold. For the Speaker Tracking task, a more complex strategy is
applied (see Section 6) that also involves comparison with a threshold.

Decision thresholds are speaker-independent, i.e., no threshold adaptation to
the speakers is carried out, neither in the normalization (see Sections 4.1.3 and
3.2) nor during the decision step.

All the thresholds have been tuned a priori using data set defined by the
ELISA consortium, made of one-speaker segments extracted from the NIST 98
evaluation database. Thresholds for Speaker Detection and Two Speaker tasks
have been optimized for 30-s-long tests. The threshold for Speaker Tracking has
been optimized for tests of 3 s (which is assumed to correspond to the average
duration of a speaker utterance in a conversation).
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4.2. NIST/NSA 99 Speaker Recognition Evaluations
Since 1996, the National Institute of Standards and Technology (NIST)

has coordinated evaluation campaigns of text-independent speaker recognition
systems over the telephone.

Each year, the evaluation conditions aim at focusing on certain specific issues.
Since 1996, focus has been particularly on the effect of handset types. Since
1999, multispeaker recordings have also been of interest.

The research sites (academic or industrial laboratories) involved in these
evaluation campaigns have to supply, for each speaker recognition test, a binary
detection decision as well as a decision score associated with it.

4.2.1. Evaluation of the Speaker Recognition Tasks
In the first years, the NIST/NSA evaluations focused on the task of speaker

verification. It consists in determining whether a test speech segment has been
uttered to a specified speaker and is implied in a context of conversational
telephone speech. In 1998–1999, two new tasks have been introduced. The
first one, called Two Speakers, is quite close to speaker detection but deals
with speech segments containing both sides of a telephone call rather than the
speech of a single speaker. The second one, called Speaker Tracking, consists in
retrieving speech segments of a known speaker involved in a conversation.

A detection cost function (DCF) is used to measure system performance for
the different tasks. This DCF, based on the (binary) detection decision, is defined
as follows:

Cdet = Cfr × Pfr × PTarget +Cfa × Pfa × PTarget. (8)

Cfr (resp. Cfa) is the relative cost of a false rejection (resp. a false acceptance).
PTarget (resp. PTarget) is the a priori probability of a client trial (resp. an impostor
trial).
Pfr and Pfa are the measured false rejection and false acceptance rates. For

the special task of Speaker Tracking, Pfr and Pfa are estimated as follows:

Pfr = # of target frames labeled as nontarget
# of target frames

(9)

Pfa = # of nontarget frames labeled as target
# of nontarget frames

. (10)

In addition, the decision scores are used to produce a Detection Error
Tradeoff (DET) curve [30], illustrating the tradeoff of false acceptances and false
rejections.

4.2.2. Switchboard Database
The 99 evaluation campaign was carried out on a subset of the Switchboard II

corpus composed of 230 male and 309 female speakers. For each speaker, about
2 min of speech were available as training data. Stemming from two different
sessions, these data were used to estimate a model per speaker. Similarly,
various test segments whose length ranged from 2 s to 1 min were extracted
for each speaker.
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TABLE 1

Test Conditions: Number of Tests Depending on the Task

Task Number of tests

Speaker detection 37,620
Two speakers 37,906
Speaker tracking 4000

On the other hand, a subset of the 98 evaluation campaign corpus was
extracted to estimate gender- and handset-dependent world models. This subset
was composed of speech signal recordings 30 s long uttered by 100 female and
100 male speakers.

Table 1 reports the number of tests depending on the task.

5. COMPARISON OF VARIOUS MULTIRECOGNIZER ARCHITECTURES

A series of experiments has been conducted to evaluate the multirecognizer
approach in the framework of One Speaker detection. First, individual recogniz-
ers have been tested to estimate their own performance. Then, different multi-
recognizer architectures have been experimented with. These experiments aim
at demonstrating the following aspects:

– the pertinence of the information coupled with each recognizer;
– the potentiality of the proposed multirecognizer-based approach;
– the potentiality of the dynamic approach proposed in this paper.

5.1. Performance of Individual Recognizers
Figures 5 and 6 give the DET curves of static (S-FB, S-SB1, S-SB2,

and S-SB3) and dynamic (D-FB, OD-SB1, OD-SB2, OD-SB3) recognizers,
respectively. Full band recognizers outperform subband recognizers (S-FB
compared to S-SB1, S-SB2, S-SB3, and D-FB compared to OD-SB1, OD-SB2,
and OD-SB3). Static and dynamic full band recognizers without selection obtain
similar performance (a slight improvement of performance is observed for the
dynamic full band). Finally, S-SB1, S-SB3, OD-SB1, and OD-SB3 have worse
performance than S-SB2 and OD-SB2.

These results show that both static and dynamic subbands yield poor
performance. This behavior tends to demonstrate that the use of frequency
subbands is not pertinent in this context of conversational speech in a real
telephony environment.

5.2. Comparison of Different Architectures
Multiple architectures have been designed from different combinations of

recognizers and tested to compare their performance. They are defined as
follows:
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FIG. 5. Static recognizers. Comparison of the performance obtained by individual static
recognizers for “one speaker” detection.

FIG. 6. Dynamic recognizers. Comparison of the performance obtained by individual dynamic
recognizers for “one speaker” detection.
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(i) Static architecture “SFB”: referring to the single static full band
(frequency recognizer only). This is the reference architecture.

(ii) Hybrid architecture “SFB+DSB”: composed of a static full band
(frequency recognizer only) and three dynamic subbands (combination of
frequency and dynamic recognizers).

(iii) Dynamic architecture “DFB+DSB”: composed of a dynamic full
band and three dynamic subbands (combination of frequency and dynamic
recognizers).

The choice of these architectures has been guided by various aspects.
First of all, the static architecture SFB has been chosen for its low cost in
parameters and resources. Indeed, this architecture is simply a monorecognizer
16 component GMM based on static cepstrum features only. The hybrid
architecture SFB+DSB has been presented to evaluate the correlation between
static and dynamic information. In addition, this architecture has allowed the
use of dynamic subbands to be quantified in terms of performance. Finally, the
dynamic architecture “DFB+DSB” has been introduced in order to observe the
correlation between dynamic full band and subbands.

Figure 7 provides the DET curves obtained by each of these architectures.
The dynamic architecture (DFB+DSB) gives the best performance. The hybrid

FIG. 7. Static versus dynamic. Comparison of different multirecognizer architectures—SFB
(static architecture), SFB+DSB (hybrid architecture), DFB+DSB (dynamic architecture)—for “one
speaker” detection.
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architecture, formed of static and dynamic recognizers, slightly outperforms the
static architecture.

Comparing the DET curve of the dynamic architecture with the curve of the
dynamic full band (DFB) recognizer only (provided in Fig. 6) shows comparable
performance. DFB slightly outperforms DFB+DSB. This tends to question the
use of dynamic subbands or more specifically either the frequency subbands
implied in this architecture or the quality of the selection approach, applied on
the dynamic subbands uniquely.

5.3. Dynamic Approach versus Time-Derived Parameters
Time-derived parameters are classically used to extract dynamic information

from speech signals. Therefore, this approach has been tested in the same
conditions as those used for the dynamic full band recognizer D-FB (without
selection of optimum coefficients) to compare their performance.

5.3.1. Time-Derived Coefficients
To test the approach based on time-derived coefficients, called later the

delta/delta–delta approach, static vectors composed initially of 16 cepstrum
features have been extended with 16 first-derived cepstrum features (delta
coefficients) and 16 second-derived cepstrum features (delta–delta coefficients)

FIG. 8. Dynamic versus delta/delta–delta. Comparison of two dynamic approaches, one based on
the concatenation of successive feature vectors and the other on time-derived coefficients for “one
speaker” detection.



190 Digital Signal Processing Vol. 10, Nos. 1–3, January/April/July 2000

during parameterization. As for static vectors, GMM speaker models have been
estimated.

5.3.2. Results
Figure 8 provides the DET curves of both delta/delta–delta and DFB based

approaches. Few differences in performance between the two approaches have
been observed. Delta/delta–delta slightly outperforms DFB, whereas the latter
uses all the coefficents within the dynamic window. Therefore, there appears
to be redundancy between these coefficients. Carrying out a reduction of the
number of coefficients should lead to a good compromise.

6. THE USE OF AMIRAL FOR THE TWO SPEAKERS AND SPEAKER TRACKING
TASKS

As mentioned in Section 4.2, two new tasks have been recently introduced into
the NIST/NSA evaluation campaigns, dealing with speech segments involving
multiple speakers:

– The Two Speakers task is an extension of speaker detection to multi-
speaker speech segments containing both sides of a telephone call.

– The Speaker Tracking task is a bit more complex as, besides detecting the
presence of a given speaker within a conversation, the goal here is to determine
precisely the boundaries of his utterances.

The AMIRAL system has been only adapted to achieve the Speaker Tracking
task since Two Speakers is considered as the first step of Speaker Tracking.

The flexibility brought by the block-segmental approach has made this
adaptation relatively easy. In fact, the whole process is the same as for speaker
detection, until the end of the interrecognizer fusion. The difference lies in the
fusion of the block scores and the decision step.

The fusion/decision method used here, called Sorted Weighted Geometric
Mean (SWGM), allows simultaneous determination of whether and when the
considered speaker’s voice is present in the conversation. It consists of four
steps:

– The blocks are first sorted according to their scores.
– The second step is the search for the optimal block subset on which the

speaker detection is to be carried out. This is the one whose weighted geometric
mean is maximal. The purpose of the weighting function is to emphasize the
number of blocks in the considered subset, thus compensating the score value
decrease due to the geometric mean. In this paper, the weighting function has
been determined empirically, by observing the behavior of the SWGM on about
30 tests. SWGM is defined as m× ab/n, where m is the geometric mean and n is
the cardinal of the score set. The estimated parameters are a = 0.1 and b = 1.

– The value of the weighted mean for the selected block subset is then
compared to a predetermined threshold. Given whether it is greater or lower,
the target speaker is said to be present or not in the document. In the case of
the Two Speakers task, this decision represents the final result.
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FIG. 9. Two speakers. DET curves for all the participants in the NIST 99 evaluations.

– In the case of Speaker Tracking, the last step consists (if the target
speaker presence has been detected) in extending the selected set by adding
blocks (best scores first) until the weighted mean gets under the decision
threshold. This extended set of blocks is finally attributed to the target speaker.

Figure 9 depicts the DET curve of the AMIRAL system (monorecognizer,
SFB-based system) and of all the other NIST participants for the Two Speakers
task. While correct in view of the novelty of the task, these results stand
definitely behind those of the best systems.

Although the SWGM method has still to be improved (with the use of opti-
mization techniques to refine the wieghting function), poor performance mainly
originates from the underlying architecture (static full band monorecognizer
with no hnorm-like normalization). Indeed, results for this architecture, us-
ing respectively arithmetic mean and SWGM for merging, applied to the One
Speaker speaker verification task (Fig. 10), show little performance difference
between both merging functions.

Results for the Two Speakers tasks should therefore improve with the use
of the best AMIRAL architecture (i.e., using multiple recognizers and dynamic
information) as the base system for SWGM.

Figure 11 shows the DET curve of the AMIRAL system (monorecognizer,
SFB-based system) for the Speaker Tracking task along with that of a more
classical speaker tracking system.



192 Digital Signal Processing Vol. 10, Nos. 1–3, January/April/July 2000

FIG. 10. One speaker detection. Comparison between arithmetic mean and SWGM for block
score merging.

This second system is based on a speaker change detection method [13] which
splits the signal into single-speaker speech segments without using any speaker
model. Speaker verification is then carried out on the resulting speech segments
using the AMIRAL system to determine which segments belong to the target
speaker.

Compared to this classical method, the original approach proposed here
presents the advantage of merging the segmentation and decision steps. Indeed,
rather than carrying out a blind segmentation and using information available
about the target speaker only for the decision phase, it is preferable to exploit
it during the segmentation process as well, thus making this task considerably
easier.

Furthermore, this method leads to a unique decision, taken globally on all the
segments where the target speaker is likely to appear. The verification process
being carried out on a larger amount of data should give decisions more accurate
than ones taken on a segment-by-segment basis.

However, one drawback of the current implementation consists in the
precision of the segmentation process: indeed, in order to follow the underlying
block segmentation, the AMIRAL system only yields segments with length a
multiple of 0.3 s. This has to be compared to the precision of 1/100 s of the
speaker change detection system.
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FIG. 11. Speaker Tracking. Comparison of two systems for the Speaker Tracking task. The first
approach is based on the AMIRAL system and the second on a classical speaker change detection
technique.

Nevertheless, despite this precision difference, both systems appear to
perform roughly similarly (the AMIRAL system has a slightly higher EER,
but performs better according to the NIST detection cost function). Given
the simplicity of the implementation realized here, this has to be considered
encouraging for this method, as several improvements should come from both
the SWGM method and the AMIRAL recognizer architecture.

7. DISCUSSION AND PERSPECTIVES

Considering the complexity of the speech signal, multirecognizer architec-
tures tend to be a fairly attractive solution. By devoting each classifier to
a particular piece of information, this kind of approach is able to improve
speech/speaker recognition systems. Classically, handling multiple classifiers is
a complex task. It also addresses one of the most discussed issues in the liter-
ature: the fusion issue. This additional complexity makes the multirecognizer
system less flexible for adaptation to new recognition tasks (Speaker Tracking).

The AMIRAL system proposed in this paper is based on a block-segmental
multirecognizer architecture. In contrast with classical multirecognizer ap-
proaches, it remains quite simple. Indeed, thanks to the block-segmental ap-
proach, this system permits, the underlying complexity to be shifted toward the
block-normalization process. A block-normalization function is computed inde-
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pendently for each recognizer and takes its intrinsic performance into account.
This normalization scheme produces homogeneous Bayesian scores which make
the fusion of multiple recognizers simpler. This proposed solution has demon-
strated its potentiality. However, this technique is mainly constrained by the
availability of additional training data which have to be representative of both
the task and conditions under consideration. It can be noticed that a similar con-
straint (related to the conditions) applies to classical systems for the likelihood
domain normalization [22].

Finally, the flexibility induced by the block-segmental approach allows an easy
and fast adaptation of the AMIRAL system to the task of Speaker Tracking.
Results provided in Section 6 show that the AMIRAL system is able to perform
as well as a classical speaker change detection approach.

During the NIST/NSA 1999 campaign, several versions of the AMIRAL
system were evaluated. A basic monorecognizer block-segmental version based
on a cepstral parameterization without dynamic features (no delta or delta–
delta parameters), a state-of-the-art 16-Gaussian-based GMM summarized by
full matrices and no threshold normalization [22](HNorm, ZNorm,. . .) obtained
quite satisfactory performance. This observation shows the interest of the
proposed block-segmental approach and of the World+MAP normalization.
It also demonstrates how challenging it is to improve the performance of a
full band monorecognizer system. The complete AMIRAL system (DFB+DSB)
shows a slight increase of performance if compared to this basic version.
This small improvement of performance is rather disturbing regarding the
potentialities of the proposed approaches. These results bring into question the
choice of subbands in these particular evaluation conditions.

Consequently, studying new parameterizations to provide several full band
recognizer seems to be a more convenient approach.

Finally, threshold normalizations such as ZNorm and HNorm have proved
their efficiency for the ASV task [22]. It is therefore interesting to introduce a
similar principle within the block-normalization approach.

7.1. Frequency Bands
Results presented in Section 5.1 show that performance differs significantly

from one subband to another. The overall performance of the subbands is rather
weak if compared with the full band performance (averaged EER of ≈28% for
the subbands against ≈15% for the full band). It can be noticed that subband
SB2, which represents a frequency band from 1100 to 3100 Hz, performs
best. This result does not match the observations made in [8] regarding the
localization of the useful part of information for the task of ASI on TIMIT and
NTIMIT databases.

The difference between the tasks (ASV vs ASI) as well as the difference
between the databases (read speech vs real conversational speech) considered
in the two studies in question could explain this result.

7.2. Dynamic Information
The results obtained in Section 5.3 highlight an important aspect: using

the concatenation of successive feature vectors (illustrated by DFB) to handle
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dynamic information can lead to performance similar to delta and delta–delta
features.

In this experimental context, no selection process is coupled with the dynamic
approach proposed. Therefore, further investigations have to be conducted to
estimate the potential gain in performance induced by a selection of the useful
part of information.

On the other hand, concatening several feature vectors leads to having both
the static and the dynamic information present in the temporal window. It
should be interesting to split these two classes of information to decrease the
redundancy in the case of a multirecognizer architecture. It could be assumed
that the selection procedure discussed previously will perform this separation
intrinsically. However, an explicit means of splitting these two classes should
reinforce the robustness of the system.

7.3. Static and Dynamic Architectures
The results obtained in Section 5.2 emphasize the well-known potentialities

of dynamic information:

– Complementarity of static and dynamic information. The hybrid archi-
tecture obtains better performance than the static architecture. Dynamic recog-
nizers supply additional speaker-specific information since performance is im-
proved. This particularity has been demonstrated in [38] with delta and delta–
delta coefficients but negated in [6].

– Robustness of dynamic information. The dynamic architecture presents
better performance than the hybrid architecture. This result is very close to
[21, 38] which demonstrate that time-derived coefficients are more resistant
to linear channel mismatch between training and testing than instantaneous
features.
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