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Abstract

An electromechanical model for a transducer based on a lateral resonating cantilever is described. The on-plane

vibrations of the cantilever are excited electrostatically by applying DC and AC voltages from a driver electrode placed

closely parallel to the cantilever. The model predicts the static deflection and the frequency response of the oscillation

amplitude for different voltage polarization conditions. For the electrostatic force calculation the model takes into

account the real deflection shape of the cantilever and the contribution to the cantilever-driver capacitance of the

fringing field. Both the static and dynamic predictions have been validated experimentally by measuring the deflection

of the cantilever by means of an optical microscope.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Cantilever based sensors have become an
standard on micro-electromechanical systems
(MEMS) for detection of a wide range of
magnitudes with resolution in the pico-scale [1].
It has been also demonstrated that an improve-
ment on sensitivity [2], power consumption and
spatial resolution can be achieved by reducing the
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cantilever dimensions to the nanometer range. In
this scale, electrostatic excitation and capacitive
detection arises as the most simple and easily
scalable combination, among all the possible
techniques used for excitation and detection on
nano-electromechanical systems (NEMS). This
combination is based on exciting electrostatically
the oscillation of the cantilever by means of a
closely placed driver electrode and detecting the
displacement resonant current induced through
the cantilever-driver capacitance by a DC voltage.
The main drawback of this technique comes from
the parasitic capacitances of the contact pads,
d.



ARTICLE IN PRESS

J. Teva et al. / Ultramicroscopy 100 (2004) 225–232226
which are needed if the detection circuitry is
designed to be out of the transducer chip. In this
case, the parasitic current level induced through
the stray capacitance will hide the current signal
which is several orders of magnitude smaller and
comes from the transducer. In order to minimize
the parasitic component of the current, a CMOS
detection circuitry has been integrated together
with the cantilever-driver structure (CDS) in the
same substrate [3], so that the stray capacitance is
reduced to that of connection metal lines. From
the CMOS circuit design point of view, electro-
mechanical variables of the cantilever-driver
transducer as resonant frequency, current signal
level and excitation voltages should be evaluated.
For this purpose, software packages based on
finite-element methods [4], which give a precise
description of the 3-D static behaviour of electro-
mechanical coupled transducers, does not analyse
specific dynamic variables of resonant CDS as
oscillation amplitude or capacitive current. On the
other hand, in standard software as ANSYS,
which incorporate dynamic analysis in the electro-
mechanical coupling domain, the definition of the
structure and of the analysis has the complexity
derived from the capability to simulate complex
structures coupled in several domains.
In this work the description of a simple

electromechanical model and the measurements
for its experimental validation are reported. The
model predicts both static and dynamic behaviour
of the specific electrostatically coupled CDS. This
model improves the performance and precision of
previously developed linear [5] and non-linear [6]
Fig. 1. Picture of the CDS showing the geometrical parameters: lengt
models, because it takes into account a more
realistic shape of the static bending deflection of
the cantilever. Moreover, it accounts for 3D effects
as the fringing field contribution to the electro-
static driving force, which can be specially relevant
in CDS with low width/gap ratios.
2. Electromechanical model description

2.1. Model introduction

A typical CDS is shown in Fig. 1. From the
model point of view, the resonator based on a
lateral CDS is totally characterized by geometrical,
material and configuration parameters. Geometri-
cal factors are cantilever length (l), width (w),
thickness (h) and gap distance between cantilever
and driver (s). Material properties are determined
by Young is modulus (E) and mass density (r).
Fringing field factor (a), that takes into account
the fringing field contribution, and quality factor
(Q), related with resonating cantilever damping in
a viscous medium, are considered to be configura-
tion parameters.
The model proposed is able to carry out static

simulation as well as dynamic simulations. An
static simulation will consists on applying a DC
voltage between the cantilever and the driver, and
to calculate the end cantilever deflection. On the
other hand, in a dynamic simulation the resonant
state of the cantilever is calculated when applying
DC and AC voltages to the structure. Previous
developed models, considered cantilever linear
h (l), width (w), thickness (h), cantilever-driver gap distance (s).
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shape deflection [2]. In order to improve the
precision of the previous model predictions, real
cantilever deflection and fringing field effect has
been considered when calculating the electrostatic
excitation force.

2.2. Model equations

In this model the lateral cantilever oscillation is
approximated by a spring–mass lumped model
system, but it takes into account the real beam
deflection in order to calculate the external force
applied to the cantilever along its length. Although
the beam deflection will be computed by slicing the
cantilever, its movement is described as a function
of the deflection of the free end ðzÞ: Thus, the time-
dependent set of equations related to the dynamics
of each cantilever slide is approximated to a one-
variable time-dependent problem.
The equation of movement is obtained from the

classical system Hamiltonian [2]:

H ¼
p2

2meff
þ

kz2

2
þ
Z

D

meff
pdz þ WC: ð1Þ

In Eq. (1)p is the linear momentum, WC is the
energy stored in the CDS due to the electrostatic force
applied and meff is the cantilever effective mass [7]:

meff ¼ m0
3

ðknlÞ4
; ð2Þ

where kn is a constant which depends on the
cantilever resonant mode that for the first resonant
mode is knl ¼ 1:875: The cantilever mass, m0; is
related to the mass density, r by:

m0 ¼ rlhw: ð3Þ

The equivalent stiffness constant for a beam
anchored at one end can be calculated by [7]

k ¼ 3
EI

l3
¼

Ehw3

4l3
; ð4Þ

where I is the cantilever momentum of inertia:

I ¼
hw3

12
: ð5Þ

The damping factor (D) in Eq. (1) is related to
the quality factor (Q) by [8]

D ¼
ðw1meff Þ

Q
; ð6Þ
where w1 is the cantilever first resonant
frequency. An expression for the first resonant
mode can be derived, combining Eqs. (2) and (4):

w1 ¼ ð1:875Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi

EI

rhwl4

s
: ð7Þ

Finally, the equation of movement can be
derived introducing Eq. (1) into the Newton
second law:

meff
dz2

dt2
¼ �r � H ) meff .z þ D � ’z þ k � z ¼ FE�ff ðz; tÞ:

ð8Þ

Non-linear terms due to non-linear stiffness of
the cantilever are not considered. As published
by Qing et al. [9] large deflections for cantilevers
(defined by one end fixed and the other free)
are considered when the free end cantilever reaches
deflections near 0.3�l. In the case of bridges
(beam anchored at both ends), these non-linear-
ities begin to appear when the deflection at the
middle of the bridge is 0.03�l. In the system
proposed, the gap is 2 mm, which limits the free end
cantilever deflection below the limit value estab-
lished (0.3�l=12 mm).
The electrostatic force applied, FE�ff ; takes into

account the fringing field contribution and the real
cantilever bending, and is related with the storage
energy (WC) between the cantilever and the driver
through the following equation:

FE�ff ðzðyÞÞ ¼ �
dWC

dz
¼

V2

2

dCFFðzðyÞÞ
dz

: ð9Þ

In the present model, the total capacitance is
calculated slicing the cantilever along its length,
and considering that each sliced beam creates a
plane parallel capacitance with the driver, calcu-
lated by

CnFFðzÞ ¼ ð
e0h
s

X
i

li

1� zi=s

� � !
; ð10Þ

where e0 is the dielectric constant of the medium
(air, vacuum), li is the element sliced length, and zi

is the lateral position of each slide with respect to
the driver.
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Then, the force without fringing field contribu-
tion is given by Eq. (11)
FE z; tð Þ ¼
V ðtÞ2

2
�
dCnFFðzÞ

dz
¼

V ðtÞ2

2
�

e0 � h

s2

X
i

li

1� ziðzðtÞÞ=s
� �2

 ! !
: ð11Þ
In order to calculate this force, the real
cantilever bending has to be determined by solving
the Euler–Bernoulli equation using numerical
methods:

EI
d4zðyÞ

d4y
¼

V2

2

e0h
s2

1

ððs � zðyÞÞ2

� �
: ð12Þ

Eq. (12) is solved by finite numerical methods
implemented in SUGAR software.
For this purpose, a finite element method

implemented solver called SUGAR [10] has been
used. The slide deflection distribution obtained
using SUGAR allows calculating easily the total
capacitance, and hence the total electrostatic force
by Eq. (11).
The fringing field contribution increases the

total capacitance between the cantilever and the
driver, as shown by

CFFðz ¼ 0Þ ¼ CnFFðz ¼ 0Þ þ a l
w

s

	 
0:222� �

¼
e0lh

s
þ a l

w

s

	 
0:222� �
: ð13Þ

CPP is the parallel plane capacitance. Fringing
field contribution to the total capacitance of the
CDS is obtained from the semi-empirical formula-
tion [11] developed to determine the fringing field
contribution to the capacitance of adjacent lines in
a CMOS circuitry. The fringing field component
takes into account the cantilever side walls term
along the cantilever thinnest dimension (w wide
side). In this formulation, a 3D numerical problem
is approximated to an analytical equation
which only depends on the cantilever-driver
geometry. The total force derived from Eqs. (9),
(10) and (13) is

FE�ff z; tð Þ ¼ FE z; tð Þ 1þ a
s

h

	 
 w

s

	 
0:222� �
: ð14Þ
The fringing field contribution is adjusted to the
CDS with the a parameter. Then, this contribution
is modeled by a factor that only depends on the
geometry.

2.2.1. Dynamic deflection

Dynamical simulation consists on solving pre-
vious Eq. (8), for different voltage polarization
conditions and varying the excitation frequency.
The external voltage has both DC and AC
components

V ðtÞ ¼ VDC þ
VAC�PP

2

� �
cosð2pftÞ: ð15Þ

Eq. (8) is solved by the well-known Runge–
Kutta numerical methods [12], starting from initial
conditions of z0 and z0

: : Each free end displace-
ment involves a total capacitance (and hence an
electrostatic force) between the two structures,
calculated from the slide displacements distribu-
tion given by SUGAR, Eqs. (10) and (11).
From the dynamic simulations, cantilever-driver

system characteristics as resonant frequency, free
end peak-to-peak deflection values, peak-to-peak
expected resonant current and free end medium
point displacement are obtained.

2.2.2. Static deflection

Static deflection is obtained by solving equation
(8), in the particular case defined by z ¼ 0 and

’z ¼ 0 :

kz ¼ FE�ff ðzÞ: ð16Þ

For a given DC voltage applied between the
electrodes, the equation is solved by a numerical
method starting from an initial point for the free
end displacement, z0: Each z0; implies a set of
nodes displacements calculated by the SUGAR
FEM method.
From the static simulations the snap-in voltage

of the CDS (Vsi) can also be calculated. This
collapse voltage will establish an upper limit for
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the DC driving voltage and, as a consequence it
will be related with the maximum current that can
be generated by the transducer.

2.2.3. Current calculation

The model also allows calculating the capacitive
current generated through the CDS:

IðtÞ ¼
dðCV Þ
dt

¼ CðtÞ
dV ðtÞ
dt

þ V ðtÞ
dCðtÞ
dzðtÞ

dzðtÞ
dt

: ð17Þ

As it is shown in Eq. (17), the total current has
two components: (a) a first one which is induced
by the AC excitation voltage through the static
capacitance, and (b) a second one which is
proportional to the capacitance variations pro-
duced by the oscillating cantilever.
3. Experimental

Polysilicon cantilever with double driver struc-
tures and contact pads for external connection
have been fabricated by laser lithography on SiO2/
p2+poly Si/SiO2/Si substrates [13] (Fig. 2). Due to
the strong dependence of the model on the
geometrical parameters, scanning electron micro-
scopy (SEM) has been used to determine the
cantilever-driver dimensions (Fig. 2(a)). The lat-
eral vibrating cantilevers are 40 mm in length (l),
1.8 mm in thickness (t) and 1 mm in width (w). The
gap distance between drivers and cantilever (s) is
around 2.5 mm and all the polysilicon structure are
4 mm apart (h) from the Si wafer substrate. In the
experiments, only one of the driver electrodes is
used to excite the cantilever. Measurements of the
static deflection and dynamic vibration of the
Fig. 2. (a) SEM image and (b) optical image of the static CDS used

cantilever-driver structure with the cantilever resonating at 664 k

dimensions of the structure are: l=40mm, w=1mm, h=1.8mm, s=2.
cantilever have been preformed in ambient air.
Electrical contact to the cantilever and driver
electrodes has been made by means of two
independent conventional probes with 3-axial
micro-positioning. The static deflection of the
cantilever as well as the vibration amplitude has
been measured by means of an optical microscope
integrated on a probe station. The use of a
microscope objective with an optimal combination
of working distance (WD=13mm), magnification
(100	 ) and numerical aperture (NA=0.55) allows
to get at the same time enough resolution (200nm)
and accessibility of the probes to get electrical
contact to the CDS. The resolution is given by the
pixel apparent size in the captured image. Both
single electrical probes and probe charts are
compatible with the optical microscope set-up.
4. Results and discussion

In this section, experimental measurements are
presented and compared with the predicted model
results, in order to validate the model described in
the previous section. For this purpose, two
different experiments have been developed. On
one hand, static measurements involving DC
applied voltages and static deflections and on the
other hand, dynamic measurements for a given set
of DC and AC voltages involving resonant
frequencies and peak-to-peak oscillation values.

4.1. Static measurements

These measurements consisted on applying a
DC voltage to the CDS and measuring the
to validate the electromechanical model. (c) Optical image of a

Hz. Voltages applied were: VDC=30V, VAC�PP=15V. The

5mm.
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cantilever end displacement. In that case, the DC
voltage applied varied from 50 up to 70V, which
was enough to determine the cantilever deflection
response versus the voltage applied. From these
measurements, a response curve representing the
free end displacement versus the voltage applied is
obtained (Fig. 3), showing the non-linear depen-
dence on the voltage. As it is shown in Fig. 3,
several possible sets of parameters (E, r and a) fit
the experimental points with an error below the
experimental uncertainty. In fact, polysilicon mass
density is fixed to be r=2.33	 103 kgm�3 as a
standard parameter found in the literature [14,15].
The values of Young modulus obtained from the
fit of the experimental points are inside the range
of possible values for polysilicon Young modulus
(90 and 160Gpa) which are obtained in previous
works [16]. Low values for Young modulus are
also consistent in this case with the reduction
produced by doping impurities [17,18]. The
correlation between E and a which is shown by
the model predicted curves in Fig. 3, indicates
that a Young modulus reduction can be compen-
sated by increasing the fringing field effect through
a: This means that more constraints from addi-
tional dynamic measurements are needed, in
order to determine an unique set of fitting
paramenters.
4.2. Dynamic measurements

Additional constraints to determine all the
fitting parameters have been found on dynamic
measurements, which have been carried out for a
set of DC and AC voltages. The DC voltage varied
on a range between 15 and 35V, and the ac voltage
varied from 10 to 20V peak-to-peak. From these
experiments two magnitudes related to the canti-
lever-driver transducer have been derived: (a) the
peak-to-peak end cantilever displacements and (b)
the resonance frequency. Fitting to experimental
peak-to-peak oscillation values will give us an
accurate prediction of the resonant current levels
generated in a cantilever-driver structure for
developing and designing the CMOS circuitry [3].
Predicting resonant frequencies is also important
from the circuitry point of view in order to design
a suitable bandwidth for the CMOS circuitry. In
addition, the model has to reproduce the reso-
nance frequency evolution versus the applied
voltage [13]. For each pair of DC and AC voltages,
a frequency sweep near the resonance has been
performed, and the end cantilever peak-to-peak
displacements have been measured for each
frequency. From the obtained frequency response
the resonant frequency is derived. Fig. 4 shows
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Table 1

Fitted parameters for both experimental and simulated data

Mass density, r (kgm�3) Young’s modulus, E (Pa) Fringing field factor, a Quality factor, Q

2.33	 103 110	 109 0.02 40

Table 2

Cantilever free end peak-to-peak oscillation at resonance ,

experimental (APP�EXP) and simulated (APP�SIM

VDC (V) VAC�PP (V) APP�EXP (mm) APP�SIM (mm)

15 20 1.870.2 1.7

20 15 1.770.2 1.7

25 10 1.770.2 1.5

25 12 1.670.2 1.8

25 15 2.270.2 2.3

30 7 1.370.2 1.2

30 10 1.870.2 1.8

30 12 2.070.2 2.2

35 7 1.670.2 1.6

35 10 2.870.2 2.9

Experimental data has an amplitude error of 200 nm.
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the measured and simulated frequency response of
the end cantilever displacement around the
resonance, for two different voltages set: VDC ¼
15 V;VAC-PP ¼ 20 V; and VDC ¼ 35 V;VAC-PP ¼
10 V: With these voltage polarizations, linear
resonance curves are experimentally observed.
Non-linear oscillations are due to quadratic and
cubic terms of Eq. (11). These terms begin to take
relevance when increasing the free end cantilever
deflection, i.e, applying voltages near snap-in.
Simulation parameters which fit experimental data
are shown in Table 1. A good agreement between
experimental and simulated data is also observed.
Experimental error on the oscillation amplitude is
related with the apparent size of a pixel in the
captured image using the maximum magnification,
which in our case is approximately 200 nm.Apart
from the curves shown in Fig. 4, other resonance
curves for different voltage polarizations were also
measured in order to test deeply the model
presented. From all the measurements the
Q-factor is derived; in that case, the value obtained
was 40, which is a typical value for highly doped
poly Si resonators [13]. From the fitting, the
fringing field parameter is also extracted yielding
a value of 0.02, which implies a contribution
around 2.5% on the overall electrostatic force.
The effect of fringing fields tends to increase
the electrostatic force between the cantilever and
the driver. Table 2 shows the experimental peak-
to-peak oscillation values in front of the simulated
ones. In all the cases the simulated data fits, within
the experimental error limits, the experimental
measurements. On the other hand, experimental
values of the resonance frequency for those voltage
polarization conditions have been extracted from
frequency responses as the ones of Fig. 4, and
plotted in Fig. 5 as a function of the averaged
voltage squared. As it is shown in Fig. 5, the
resonance frequency decrease linearly with the
averaged voltage squared applied. This linear
dependence is consistent with the theoretical
relationship derived from the frequency shift
dependence on the electrostatic force gradient in
the small deflections regime [19]. Experimental
points of Fig. 5 have been fitted by a model
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predicted curve obtained using Table 1 parameter
values.
5. Conclusions

A new electromechanical model which takes
into account the real bending of the cantilever and
the fringing field contribution in the calculation of
the electrostatic driving force, has been developed.
Measurements of (a) the cantilever free end

static deflection as a function of the driving DC
voltage, and (b) the free end vibration amplitude
as a function of DC and AC driving voltage and
frequency, have been performed in order to
validate the model. An optical microscope with
an objective having large working distance, high
magnification and high numerical aperture pro-
vides enough resolution and accessibility to the
electrical probes to make these measurements.
Assuming that the geometrical dimensions of the
CDS are well determined by scanning electron
microscopy measurements, a set of material-
configuration parameters (E, r, a) allows to fit
the model predicted curves to the experimental
points. The extracted values of Young modulus
(E) and density (r) are into the possible values for
polysilicon. The low value of the fringing field
factor indicates that fringing fields have a slight
but significant effect on the electromechanical
behaviour of the transducer for a cantilever with
these dimensions.
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