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Abstract- Bayesian estimation for the mean failure rate under Poisson type I testing is 
considered. The less function that is considered in this study is the LINEX Ices. The 
admissibility of the linear function of the sample mean (failure rate) for the Poisson 
testing is also discussed. 

I N T R O D U C T I O N  

Consider n items which are placed on test that is truncated after a specified time T. Suppose 

the failure time T i for item i is exponential with parameter X, where X is the failure rate and 

n 

T = Y. T i. Then the total number of  failures r for the total cummulative time T has a Poisson 
i=l  

distribution with parameter XT [ 1 ]. The parameter of  interest in the Poisson testing is X where 

X is assumed to have a gamma probability density function with parameters 8 and p. The loss 

function that will be considered is that proposed by Varian [ 2 ] called the LINEX loss function. 

Varian used the LINEX loss to assess real estate, where litigation costs due to overestimation 

is much larger than the revenue loss due to underestimation. Zellner [ 3 ] gave an example 

relating to the construction of dams in which case underestimation of  flood water level is 

usually much more serious than overestimation. The functional form of the LINEX loss 

function is of the form: 

L(A) = b exp(aA) - cA - b for a, c ~ 0, b > 0 and A = X - ~ is the error in estimating 

X. L(0) = 0 so the minimum is attained at A = 0 and hence ab = c. Thus L(A) can be written 

as 

L(A) = b[ exp(aA) - aA -1 I, a ~ 0 and b > 0 (1) 

Following are some properties of the LINEX loss as given in equation (1): 

(1) L(A) is an asymmetric or convex loss function 

(2) b serves to scale the loss function 
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Fig. 1. LINEX loss function. 

(3) a determines the shape of the loss function 

(4) for a > 0, the loss function increases almost linearly for A < 0 

(5) for a > 0, the loss function increases almost exponentially for A > 0 

(6) properties (4) and (5) imply that for a > 0 ,  under-estimation is a more serious 

mistake than over-estimation 

(7) for a < 0, the loss function increases almost exponentially for A < 0 

(8) for a < 0, the loss function increases almost linearly for A > 0 

(9) properties (7) and (8) imply that for a < 0, over-estimation is a more serious 

mistake than under-estimation 

2 
(10) for small values of a, the loss is approximately the squared error loss + (  ~. - ~)2 

Figure 1 illustrates these properties. 

ASSUMPTIONS 

1. The failure rate k has a gamma distribution with shape parameter 8 and scale parameter p. 

That is, the prior distribution for ~. is of the form 

p~ ~.6-1 exp[- p~. ] 5_>0 and p>0 h(~.) = 
F(6 ) 

(2) 

2. The prior distribution for the number of failures r, given the failure rate ~., is Poisson with 

parameter ~.T. That is, 

(~.T)rexp[-ZT I 
f(r I ~.) = , r = 0 ,  1,2 . . . . .  

r! 
(3) 

3. The posterior distribution for ~. given r is gamma with scale parameter p + T and shape 

parameter 8 + r. 
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BAYES ESTIMATE OF L UNDER THE LINEX LOSS 

The risk is the posterior expected loss given by 

R(~.,~) = E~'lrI L(A) ] 

of~, ~'BL' that minimizes (4) is the Bayes estimate of ~, relative to the LINEX loss The value 

function. Now, 

implies 

from which, 

~ R(~.,~) : 0 

E~'lr[exp[a(~. - ~BL)]] = 1 

(p + T - a) 8+r 
~BL='a-IIn[ (p+T) ] 

BAYES ESTIMATE OF k UNDER SQUARE ERROR LOSS 

The squared error loss is given by 

L(A) = A 2 

from which the Bayes estimate, ~BS' relative to the squared error loss is the solution of 

From which 

~BS : E)dr(~') 

"'~BS - (r + 8) 
( p + T )  

(4) 

(5) 

(6) 

RISKS OF ~BS AND ~BL RELATIVE TO THE LINEX LOSS FUNCTION 

Now, the risks relative to the LINEX loss function are 

RLf~BS) = E~'lr[ exp[ aft.- ~BS)} - a (k- ~,BS ) - l ] 

( r+8)  _ (O+T) _ 11 = exp[- a ~ p - ~ l [  (p + T-a-----~ 

and RL(~BL) = a 
(r + 8) (p + T - a) ~ ' r  

- I n  [ .] 
( p + T )  ( p + T )  

Now, the risk difference scaled by b = 1 is 

(r + 8) 
RL( ~BL )-  RL( ~BS ) = - a (p +T) 

(p + T - a) ~'r  
-In [ ] 

(p +T)  

(7) 

(8) 
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(r + 8) (p + T) 
- exp[ - a (P + T)I [ a)5+ r I + 1 

( p + T -  

< 0 f o r a > 0 a n d p + T > a + l  

is, RL(~,BL) is uniformly smaller than RL(~13S). Thus, ~BL uniformly That dominates 

~'BS a > and thus ~BS is inadmissible relative to the LINEX loss a > for 0 function when O. 

The difference in the risk can be substantial. Thus employing the appropriate loss function 

is important. Figure 2 gives a graphical representation of equation (9) for specific parameters. 

(9) 

R I S K S  O F  ~ B S  A N D  ~ B L  R E L A T I V E  T O  T H E  S Q U A R E  E R R O R  L O S S  F U N C T I O N  

The risks relative to the squared error loss are 

RS(Z ' ~BS)  = (8 +r) 

and 

RS(k,~BL)= ( 8 + r + 1 ) ( 8 + 0  + 2a  " l l n [  (P+T-a )8+r ]  ----:_8+r 
(p +T) 2 (p +T) ( p + T  

) 

+ a. 2 In 2 [ (p + T - a) 8+r 
p + T  

Now, the risk difference scaled by b = 1 is 

(8 + r) 2 -1 (8 + r) 
(p+--'~T) + 2 a  (p+T)  

(p + T - a) 8+r 
In[ ] 

(p + T) 

+ a_ 2In 2[  ( p + T - a )  5+r 
(p+T)  

(lO) 

(11) 

> 0 fora>Oand p+T> l+a (12) 

5 

0 

- 5  

_.~ - i 0  
11: 

- 1 5  

I Ri lk with Boy~  mt.imotor (S) 
2 Risk with Boyu  u t i rnotor  (L) 

p - I  T - I O  
DeLto - I R - I0 

- I I I I I I I I I I 
0 I 2 :5 4 5 6 7 8 9 I0 

A 

Fig.  2. Risks relative to the LINEX loss.  
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Fig. 3. Risks relative to the squared error loss. 

Thus aS(%, ~BS ) is uniformly smaller than RS(L ~.BL ) for a > 0 and p + T -> 1 + a. Therefore 

~BS uniformly dominates ~BL when a >0  and p + T >1 +Rand thus ~BLiS inadmissible 

relative to the squared error loss. Figure 3 gives a graphical representation of equation (12) for 

specific parameters. 

A D M I S S I B I L I T Y  O F  T H E  A V E R A G E  F A I L U R E S  

The likelihood function 

L(LIk)  a (g)nF (13) 

where f is the average failure during time T. Equation (13) is obtained from the joint marginals. 

Since ~ has a gamma distribution with shape parameter 8 and scale parameter p, then the 

posterior distribution for % given r (the vector of failures) is 

ff~, I L) ¢x (~,)nf%8-1 exp [-p% l 

pnF+8 xnf+& 1 exp [-p~, ] 
or f(~, I L) = F(nf+8) (14) 

That is, the posterior distribution of % given r is gamma with shape parameter n7+8 and scale 

parameter p. 

Now 

~BL = a-I In [ E ~ I r [exp(aZ)] ] 

= ¢ 1  [ n ln [ + aln [ 1 ! ± ]  1 
P P 

(15) 

Let ~ ffi off+ 13 and consider R(~, off+ 13) = E[L(A)] with respect to the Poisson distribution 

with mean ~T. Rojo [ 4 ] and Alvandi [ 5 ] considered the sample of failures ( r i, i =1 ..... n) to 
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be coming from a normal population. Now, 

Let t = aa ,  then 

Thus 

R(k, ct F+I3) = expIa(13 - 2L)] E{exp( act F ) ] -  a([~- ~.)- act E( f ) -  1 

E[exp( act F)] = E[exp (t r ) l  

n 
t 

= E[exp( ~ iZ=lri )] 

n 

= FI E[exp( t ri)] 
i=l  

n 

= H  Mr ( t )  
i=1 i n 

Now since the posterior distribution of r i given ). is Poisson with parameter kT, then 

Mr.(t) = exp[ ~.T(exp(t) - 1)] 
1 

n 

E[exp(actF)l -- I1 exp[ ~.T(exp( t )- 1)1 
i--1 

= e×p[ n~.T(exp(--~ - 1)) 1 

Also, E (F )  = 2LT, therefore 

R(~,, off + 9) = exp[ a(l~ -k)] exp[ nkT(exp( -~  - 1))] 

- a(~ - 2L) - aotgT - 1 

Now--~a [ R(k, off + 13)1 = aXT[ exp[[a(~ - ~.) l + aCtn + n~.T[exp( - ~ -  1)11- 1 1. 

Let g(~.) = a(13 - k) + act + n~,T[exp(-~ - 1)]- 1 , for ~. > 0, then 
n 

- - ~  g(2~) l = -a + nT[ e x p ( - ~ - )  - 1 ] = 0 ,  

which implies that ct = a- 1 n In [ '~T + 11. 

Thus g(~.) is an increasing function whenever ct > a -1 n In [am + 1]. This implies that 
nT 

R(k, off+ 13) is an increasing function of ct whenever ot > a" 1 n In [...a_a + 11. Moreover, 
nT 

R(~, off + 13) is a continuous function. 

From the preceeding discussion we propose the following theorem: 

Them-em: Let T < ~ and let X be distributed as a gamma distribution with shape 

parameter 8 and scale parameter p, then off + [~ is admissible whenever 

0 < c t < a  -1 n in  [ - ~ +  1]. 

(16) 

(17) 

(18) 
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Proof: R e c a l l ~ B L = a - l [ n F l n [  1_-~1 ] + 8 I n [  1_-~1 l ]  

P P 

=[a-lnln[ 1_-~1 IIF+ [a-151n[ 1_1-~11. 
P P 

p - a  
The coefficient o f f  is equal to a -1 n In [ ]. However, whenever T < -----~-, the 

P 

a 
coefficient o f t  is strictly between 0 and a -1 n In [ - -~ + 1 ]. The constant term is 

nonnegative. Thus the linear combination of t~F + ~ is admissible as an estimator for 

~. under the LINEX loss function since R(g, ctf + 1~) is continuous. 
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