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A b s t r a c t - - I n  this paper, the empirical Bayes estimate is derived for the parameter of the expo- 
nential model based on record statistics. The estimate is obtained using the squared error loss and 
Varian's linear-exponential (LINEX) loss functions, and is compared with the corresponding max- 
imum likelihood and Bayes estimates. Empirical Bayes prediction bounds for future record values 
are also obtained. A numerical example is given to illustrate the results of prediction and a Monte 
Carlo simulation is used to investigate the accuracy of estimation. @ 2004 Elsevier Ltd. All rights 
reserved. 
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1. I N T R O D U C T I O N  

The one-parameter exponential distribution (denoted by Exp(0)) has a probability density func- 
tion (pdf) 

f ( x ; O ) = O e  -ex, x > O ,  0 > 0 ,  (1) 

and a cumulative distribution function (cdf) 

F(x;O)  = 1 - e -sx .  (2) 

The exponential distribution is applied in a very wide variety of statistical procedures, espe- 
cially in life testing problems. Many authors have developed inference procedures for the model. 
For example, among others, Kulldorff [1] devoted a large part of his book to the estimation of the 
parameters of the exponential distribution based on completely or partially grouped data. Cohen 
and Helm [2] discuss modified moment estimators for the parameter of the model. Based on 
Type I censoring, Bayesian estimation for the parameter and reliability function of the exponen- 
tial model has been studied by Sinha and Gutman [3]. Ranking and subset selection procedures 
for an exponential population with Type I and Type II censored data are discussed in [4]. Bal- 
asubramanian and Balakrishnan [5] considered estimation of the parameter of the model using 
multiple Type II censored samples. Viveros and Balakrishllan [6] obtained interval estimation of 
the parameter based on progressively censored samples. 
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Many authors consider prediction bounds for future observations from the exponential distribu- 
tion. Lawless [7] developed the prediction of future observations in terms of some order statistics 
and the total time in a sample from an exponential population. Dunsmore [8] obtained Bayesian 
prediction bounds for order statistics of the future sample from the exponential life time model. 
Evans and Nigm [9] obtained a Bayesian prediction interval for future observations based on 
Type I censored data. Dunsmore [10] considered Bayesian prediction bounds for a future record 
from the exponential distribution. Lingappaiah [11] obtained Bayesian prediction bounds for the 
range of a future sample based on ranges in the earlier samples of random sizes. Colangelo and 
Patel [12] constructed prediction intervals for a future sample from the exponential distribution 
based on ranges and waiting times. AL-Hussaini and Jaheen [13] considered Bayesian prediction 
bounds for the median of a future sample of even size. Jaheen [14] obtained empirical Bayes 
prediction for the total test time, median, and range of a future sample of arbitrary size from the 
exponential distribution based on Type II censored samples. 

One disadvantage when using squared error loss is that  it penalizes overestimation or underes- 
timation [15]. Overestimation of a parameter can lead to more severe or less severe consequences 
than underestimation, or vice versa. Subsequently, the use of an asymmetrical loss function, 
which associates greater importance to overestimation or underestimation, can be considered for 
the estimation of the parameter. The LINEX loss function is defined as 

L(A) = e aA - aA - 1, a • O, (3) 

where A = ¢(0) - ¢(0), the scalar estimation error, if ¢(0) is estimated by ¢(0) [16]. The sign of a 
represents the direction and its magnitude represents the degree of symmetry. First, for a = 1 the 
LINEX loss function is quite asymmetric about zero with overestimation being more costly than 
underestimation. Second, if a < 0, L(A) rises exponentially when A < 0 (underestimation) and 
almost linearly when A > 0 (overestimation). For a close to zero, the LINEX is approximately 
squared error loss, and therefore, almost symmetric. 

The posterior expectation of the LINEX loss function in (3) is 

(4) 

where E¢(.) denotes posterior expectation with respect to the posterior density of ¢. The Bayes 
estimator of ¢(0) denoted by ~BL of the function ¢(0) under the LINEX loss function is the 
value ¢(0) which minimizes (4). It is 

CBL = - - l  ln (E¢ (e-a¢(O)) ) , (5) 

provided that  E¢(e -~¢(°)) exists and is finite, see [17]. 
Chandler [18] introduced the study of record values and documented many of the basic prop- 

erties of records. Record values can be viewed as order statistics from a sample whose size is 
determined by the values and the order of occurrence of observations. In a little over thirty years, 
a large number of publications devoted to records have appeared. This is possibly due to the 
fact that we encounter this notion frequently in daily life, especially in singling out record values 
from a set of others and in registering and recalling record values. 

Let X1, X2, . . .  be a sequence of independent and identically distributed random variables with 
cdf F(x)  and pdf f (x) .  Set Y,~ = max(rain)X1, X2 . . . .  , X~, n >_ 1. We say Xj is an upper (lower) 
record of this sequence if Yj > (<)Yj-1, J > 1. By definition, X1 is an upper as well as a lower 
record value. One can transform from upper record values to lower records by replacing the 
original sequence of random variables by - X j ,  j > 1 or (if P (X~) > 0 = 1, for all i) by 1/X~, 
i >_ 1; the lower record values of this sequence will correspond to the upper record values of the 
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original sequence. The notations Xu(n) and XL(n) are used for the n th upper and lower records, 
respectively. For more details on record values, see [19-22]. 

In this paper, the empirical Bayes estimate is derived for the parameter of the exponential 
model based on record statistics. The estimate is obtained using the squared error and Varian's 
linear-exponential (LINEX) loss functions, and is compared with the corresponding maximum 
likelihood and Bayes estimates. Empirical Bayes prediction bounds for future record values are 
also obtained. A numerical example is given to illustrate the results of prediction, and a Monte 
Carlo simulation is used to investigate the accuracy of estimation. 

2. E S T I M A T I O N  O F  T H E  P A R A M E T E R  

Suppose we observe n upper record values Xu(1), Xu(2), • . . ,  Xu(~) from the Exp(0) distribution 
with pdf given by (1). The likelihood function (LF) is (see [21]) given by 

r~--I 

g(O I -x) = I I  H(xi)f(x~), (6) 
i=1  

where x = (xl, x z , . . . ,  x~) and H(.) is the hazard function corresponding to the pdf f(.). 
It follows, from (1), (2), and (6), that 

e(o I _x) = o '~ -x~°. (7) 

The maximum likelihood estimate (MLE) of 0 can be shown to be of the form 

^ n 
0ML = - - .  (8)  

Xn 

2.1. Bayes  E s t i m a t i o n  

For Bayesian estimation, we assume a gamma (conjugate prior) density for 0 with parameters a, 
fl, and pdf 

g(0) = 9~ 0 ~ - l e  -~° ,  0 > 0, ~ > 0, ~ > 0. (9) 
r (~)  

It follows, from (6) and (9), that the posterior density of 0, for a given x, is given by 

q(o I ~-) - (~ + x")n+~ r ( n  + c~) 0n+~-i e-(Z+x~)°' 0 > 0. (10) 

Under a squared error loss function, the Bayes estimator of 0, denoted by 0Bs, is the mean of the 
posterior distribution which can be shown to be 

n + a (11) t~BS = ~ + z ~ "  

Under the LINEX loss function (3), when A = 0 - 0, the Bayes estimate 0BL of 0 is obtained by 
using (5) and (10) as 

0BL n + a in (1 + f l @ z ~ )  = - -  , a 7~ 0. (12) a 

2.2. Empirical Bayes Estimation 

When the prior parameters c~ and/3 are unknown, we may use the empirical Bayes approach 
to get their estimates. Since the prior density (9) belongs to a parametric family with unknown 
parameters, such parameters are to be estimated using past samples. Applying these estimates 
in (11) and (12), we obtain the empirical Bayes estimates of the parameter 0 based on squared 
error and LINEX loss functions, respectively. For more details on the empirical Bayes approach, 
see [23]. 
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2.2.1. Es t ima t ion  of  the  prior pa ramete rs  

When the current (informative) sample is observed, suppose that there axe available m past 
similar samples Xj,u(1), Xj,u(2),.. . ,  Xj,u(~), j = 1, 2 , . . . ,  m with past realizations 8i, 82,. . . ,  8,~ 
of the random variable 8. Each sample is assumed to be an upper record sample of size n obtained 
from the Exp(0) distribution with pdf given by (1). The LF of the jth sample is given by (7) 
with x~ being replaced by x,,:j. For a sample j ,  j = 1 ,2 , . . . ,  m, the maximum likelihood estimate 
of the parameter 8j is obtained from (8) and written as 

03 -~Za'= n . (13) 
Xn:j 

The pdf of Xn:j, j = 1, 2 , . . . ,  m, is given, see [20], by 

[-  ln(1 - F(x))] '~-i 
fXn:j (x) = f ( x )  (n -- 1)! (14) 

~ xn--le--Oix 
- r ( n )  x > 0, 

which is gamma with parameters (n, 0j). 
Therefore, the conditional pdf of Zy for a given 01 is obtained from (14) and is given by 

f ( z j  I ej) = (nSJ)~ 1 -no. 'z .  zj > 0, (15) r(n) le , ,  , ,  

which is the inverted gamma with parameters (n, nOj). 
Following Schafer and Feduccia [24] and using (9) and (15), the marginal pdf of Zj, j = 

1, 2 , . . . ,  m, can be shown to be 

I (z j )  = / ( z j  l Oj)~(oj) dOj 

fl c'n'~ z]_  i (16) 
= B(n,  a) (n + flz;) n+~' zj > O. 

Therefore, the moments estimates of the parameters ~ and fl may be obtained by using (16), 
to be of the forms 

(n - 1)S12 nS 1 
& = (n - 2)$2 - (n - 1)Si 2 and /~ = (n - 2)$2 - (n - 1)$12' (17) 

where 
m m 2 

~-. (18) 
d=l d=i 

Therefore, the empirical Bayes estimates of the parameter 0 under the squared error and LINEX 
loss functions are given, respectively, by 

8EBS = ^ n + & (19) 
/~+x~' 

~EBL n + & In (1 + ~--~xnxn) - - , a # 0 ,  ( 2 0 )  
a 

where & and fl are the estimates of ~ and fl given by (17). 
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3. P R E D I C T I O N  O F  F U T U R E  R E C O R D  V A L U E S  

Based on an upper record sample of size n, Xu(1), Xu(2) , . . . ,  Xu(,,), prediction is needed for 
t h e  s th  upper record value, 1 < n < s. Let Y =. Xu(s) be the S th  upper record value, 1 < n < s. 
The conditional pdf of Y for given Xn is given (see [21]) by 

h(y I x~; 0) = Iv(y) - v(x~)?  -n -1  f(y;  0) 
F(s - n) 1 - F(xn; 0)' Y > x , ,  (21) 

where v(.) = - ln(1 - F(.)). 
For the Exp(0) distribution, with pdf given by (1), the function h(y I x~,; 0) is obtained by 

using (1), (2), and (21), and can be written as 
08--n 

h(y I xn; O) - r ( s  - n) (y - Xn)S--n-le--O(y-x~)' Y > X,~. (22) 

3.1. Bayes  P r e d i c t i o n  

When the prior parameters c~ and/3 are known, a Bayesian prediction interval for a future 
record value Y is obtained from the Bayes predictive density function 

h~.(y I x) = ./~ h r ( y  I O)q(O [ x) dO, (23) 

where hy(y  ] 0) is the conditional pdf of Y for the given parameter 0 and q(O ] x) is the posterior 
density function of 0 for the given informative data. 

The Bayes predictive density function of the future record is obtained by substituting (10) 
and (22) in (23), and written as 

(t3 -~- x n ) n + a  (y -- Xn) . . . .  1(t3 _~ y)--(s-}-a), y > Xn, (24) 
h~(vJ~_) = B ( n + ~ , s - n )  

where B(., .) represents the beta function. 
Bayesian prediction bounds for Y = Xu(,) ,  given the previous data, are obtained by evaluating 

Pr(Y ~ 11x) ,  for some positive 1. It follows, from (24), that 

L Pr(Y > l lx_ ) = h~(ylx_ )dy, 

m,(~)(  n + ~, ~ _ n) (25) 

B ( n + a , s - n )  ' 
where IBn(~)(. , .) is the incomplete beta function (see [25]) and 

n( t )  = ~ + z~  (26) Z + I  " 

It can be easily shown that h~ (y I _x) is a density function on the positive half of the real line 
by proving that Pr(Y >_ x~ Ix) = 1. 

Spec ia l  case  

For a special case, when s = n + 1, (25) takes the form 

Pr(Y > 11 Ix_) = \~---+-~I ] " (27) 

A 100T% Bayesian prediction interval for Y - Xu(n+l) is such that 

P[LL(_x) < Y < UL(x)] : ~-, (28) 

where LL(x) and UL(x) are the lower and upper limits satisfying 

LL(_x) = 03 + xn) - /3 ,  
- v ( ~ + ~ )  (29) 

UL(_~) : (~ + ~ )  ( ~ - J )  -~. 
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3.2. Empirical Bayes Prediction 

When the prior parameters a and/3 are unknown, we may use the empirical Bayes approach 
to estimate them. Applying these estimates in (24), we obtain the empirical Bayes predictive 
density function h~(y [ x) which can be used for obtaining empirical Bayes prediction bounds 
of Y. For more details about Bayes and empirical Bayes prediction, see [26]. Substitution of & 
and ~, given by (17), in (29) yields the empirical Bayes prediction bounds for the future record 

Y = Xu(n+l). 

4. N U M E R I C A L  C O M P U T A T I O N S  

To illustrate the previous results, a numerical example and a Monte Carlo simulation study 
are presented next. 

4.1. Nume r i ca l  E x a m p l e  

Bayes and empirical Bayes prediction bounds for future upper record values are computed 
according to the following steps 

(1) For given values of (a = 3.5, /3 = 1.1), we generate 0 = 1.136 from the gamma prior 
density (9). The IMSL [27] is used in the generation of the gamma random variates. 

(2) Based on the generated value 8, an upper record sample of size n = 10 is then generated 
from the density of the Exp(0 = 1.136) distribution defined by (1), which is considered to 
be the informative sample. This sample is 

0.073, 0.087, 3.139, 3.528, 4.671, 4.939, 8.597, 10.289, 10.718, 11.918. 

(3) Using these data, 95% Bayes prediction interval for the future upper record value XU(ll ) 
is computed using (29) and given by (11.9446, 16.3233). 

(4) For given values of a, /3, and n, we generate a random sample (past data) Zn:j, j = 
1 ,2 , . . . ,  m, of size m = 20 from the marginal density of Zn:j, given by (16), as 

22.243, 7.536, 6.765, 26.304, 8.276, 6.786, 10.224, 12.863, 4.515, 28.836, 

7.703, 2.687, 8.199, 4.957, 8.695, 8.013, 14.398, 11.283, 4.484, 14.582. 

The moments estimates & -- 3.7224 and/3 -- 0.33939 are then computed by using (17). 
(5) By using the estimates of the prior parameters & -- 3.7224, ~ = 0.33939 in (29), 95% em- 

pirical Bayes prediction interval for the future upper record value Xu031) is given by 
(11.9409, 15.6988). 

4.2. M o n t e  Car lo  S imula t ion  

The ML, Bayes, and empirical Bayes estimates of the parameter 0 are compared based on 
Monte Carlo simulation as follows. 

(1) For given values of the prior parameters a and/3, we generate 0 from (9) and then record 
samples of different sizes n are generated from the exponential distribution with pdf, given 
by (1). 

(2) The ME estimate of 0 is computed from (8). 
(3) For given values of a, the Bayes estimates of 0 are computed from (11) and (12), based 

on squared error and LINEX loss functions, respectively. 
(4) The empirical Bayes estimates of 0 based on squared error and LINEX loss functions are 

computed from (19) and (20), respectively. 
(5) The squared deviations (8* - 8) 2 are computed for different sizes n where (0*) stands for 

an estimate (ML, Bayes, or empirical Bayes) of the parameter 8. 
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Table 1. Estimated risk (ER) of the estimates of 0 for different values of n, m, a, 
and 1000 repetitions. (a = 3.5,/3 = 1.1.) 

953 

ER(0ML) 

8 0.1584 

12 0.1565 

15 0.1542 

ER(0Bs) 

0.1301 

0.1285 

m = 1 5  m = 2 0  

0.1263 

5 

0.1483 0.1452 10 

15 

5 

0.1433 0.1399 10 

15 

5 

0.1387 0.1321 10 

15 

ER(0BL) ER(0 BL) 
m----15 m = 2 0  

0.1310 0.1412 0.1405 

0.1279 0.1399 0.1396 

0.1254 0.1392 0.1387 

0.1284 0.1389 0.1376 

0.1251 0.1375 0.1335 

0.1232 0.1354 0.1302 

0.1214 0.1365 0.1333 

0.1185 0.1357 0.1303 

0.1163 0.1334 0.1293 

(6) The above steps are repeated 1000 times and the estimated risk (ER) is computed by 
averaging the squared deviations over the 1000 repetitions. The computational results are 
displayed in Table 1. 

5. C O N C L U D I N G  R E M A R K S  

REMARK 1. In this paper, parametric Bayes and empirical Bayes estimates for the parameter of 
the exponential distribution are derived based on record statistics. Tiwari and Zalkikar [28] 
considered Bayes and empirical Bayes estimation from record samples in the nonparametric 
setting. 

REMARK 2. It can be shown, from (11), (12), (19), and (20), that  the Bayes and empirical Bayes 
estimates of the parameter 0 that are obtained based on the LINEX loss function tend to the 
corresponding estimates which are based on squared error loss when a becomes zero. 

REMARK 3. It  may be observed, from Table 1, that the estimated risks of the three methods 
of estimation are decreasing when n and m are increasing. Generally, the estimated risk of the 
Bayes estimate of 0 is the smallest estimated risk. On the other hand, the estimated risk of the 
empirical Bayes estimate of 0 is less than the estimated risk of the maximum likelihood estimate. 

REMARK 4. Different values of the prior parameters a and/3 rather than those listed in Table 1 
have been considered but did not change the previous conclusion. 
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