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Abstract. For a p-variate normal mean with known variances, the 
model proposed by Zellner (1986, J. Amer. Statist. Assoc., 81, 446-451) 
is discussed in a slightly different framework. A generalized Bayes 
estimate is derived from a three-stage Bayes point of view under the 
asymmetric loss function, and the admissibility of such estimators is 
proved. 
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1. Introduction 

In some estimation problems it is appropriate to use asymmetric loss 
functions. Several authors have considered asymmetric linear loss functions 
(e.g., Ferguson (1967), Aitchison and Dunsmore (1975), Berger (1985)). 
Varian (1975) introduced a very useful asymmetric LINEX loss function, 
which is not  linear and is defined as L(O, 0 ) =  v ( 0 -  0) where v ( x ) =  
b{exp (ax) - ax - 1 } and a r 0, b > 0 are constants. A full discussion of the 
properties of the LINEX loss function may be found in Zellner (t986). 

For X~,..., X, as a random sample of size n from N(O, a2), when a 2 is 
known, Zellner (1986) showed that the sample mean, J(, fails to be 
admissible using the LINEX loss funct ion and it is dominated  by J( 
- a a 2 / 2 n .  Rojo (1987) showed that estimators of the form c J ( +  d are 
admissible for 0 using the LINEX loss whenever 0 < c < 1 or c = 1 and 
d = - aa2/2n. Parsian (1989) showed that X -  aa2/2n is the only minimax 
and admissible estimator of 0 in the class of all estimators of the form 
cJ~ + d. An important  consideration is when o .2 is unknown.  Zellner (1986) 
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suggested replacement of 0 .2 by S 2= ~ ( X i - ) ~ ) 2 / ( n -  1) in )(-a0.Z/2n 
i=1 

and Parsian (1989) obtained a unique Bayes, hence admissible, estimate of 
0 using the LINEX loss function. 

Zellner (1986) extended the LINEX loss for multiparameter estimation 
P 

problems as L(O, O) = Z=i vi(O - O) where v,(x) = b,{exp (aix,) - aixi - 1} and 

a, r O, b, > 0, i =  1,...,p are constants, and considered the model, which 
was introduced by Lindley (1962), to discuss the multiparameter estimation 
problem for the normal case and provided some estimators of the param- 
eters of interest (see Zellner (1986), (4.6), p. 450). However, he did not 
mention any optimal property of the estimator. The model proposed by 
Zellner can be discussed in a slightly different framework: namely, a three- 
stage Bayes point of view (or hierarchical Bayes analysis) under the LINEX 
loss function, in the terminology of Lindley and Smith (1972) (see also 
Lindley (1971a, 1971b). In the simplest situation of p-independent normal 
variables with unit variances, the Lindley and Smith approach can be 
described as follows. 

Let X~,..., Xp be independent, X, ~ N(O,, 1), i = 1,...,p. Suppose that 
conditional on/z, 0,'s are i.i.d. N(/z, 1), while marginally p has an improper 
distribution uniform over the entire real line, i.e., dG(lz) = d/z. It is often 
the case to choose the second stage prior as a suitable noninformative prior 
(see Berger (1985), p. 180). Then the improper prior distribution of 
0 = (0~,..., Op)' is given by (see Berger (1985), p. 108) 

(l . l)  zc(0)~f-oo exp - 1 = ~  I (0 , - ,u )  2 d~ = exp - -2-,~1 (0 , -  0) 2 

P 
where 0=  ( I / p ) i ~  0, and lp is a p-component column vector with all 

elements equal to 1, and the posterior distribution of 0 given X =  x is 
Np(Dx,  D)  where D = (Ip + lpl;,/p)/2. Hence, using these results and the 
extended LINEX loss function, the generalized Bayes estimate of 0,, 
i = l,.. . ,p, is 

(1.2) JG,(X)i = -2-1 xi + "~1 ~ _  "21 air2 i=  l , . . . , p .  

i Note that the arguments leading to JcB(x) are essentially the same as those 
given in Zetlner (1986). 

In Section 2, under the same assumptions as above, which are the 
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same as those given in Zellner (1986), we will derive the estimate ($GB(X) 
f rom a three-stage Bayes point  of view under  the extended LINEX toss and 
give an empirical  Bayes interpretat ion of it. In Section 3, we will use 
Blyth's (1951) method  (limiting Bayes argument)  to prove admissibility of 
the obtained estimator under  the extended LINEX loss function. 

2. Three stage Bayes estimator 

Suppose X ~ Np(0,2~) where 0 is unknown,  but  $ is known positive 
definite. For  the sake of simplicity, we consider the case ,~= Ip. Suppose 
that  condi t ional  on ~, 0 has the prior Np(/.tlp,Ip) whereas /2 has the 
improper  un i form distribution over the real line, i.e., dG(lO = dll. It is 
assumed that  the loss function is the extended LINEX loss introduced in 
Section 1. 

To derive the generalized Bayes estimate of 0, first we need to derive 
the posterior distribution of 0 using the following lemma, which is the key 
lemma in the article of Lindley and Smith  (1972) and will be used in 
deriving the posterior distribution and marginal distribution of X frequently 
in this note. 

LEMMA 2.1. Suppose that, given 0~, Y--Np(AI01,  CI), given 02,01 
Np(A:02, C:). Then (i) the marginal distribution of  Y is Np(A IA:02, CI 

+ A ~C2A'~), and (ii) the distribution of  0~, given Y is Np(Db, D) with D-1 
= A'IC?IAI + C2 l and b = A~C~IY + C:IAzOz. 

Now, using Lemma 2.1 with prior as in (1.1), the posterior distribution 
of 0 given X = x is Np(Dx, D), where 

( ' ) ' ' (  , ) 
(2.1) D = 2Ip - P lplp = -~- /p + P lpl~ = (dr,..., dE)' 

is positive definite. 
The identity used in deriving (2.1) (and which will be used repeatedly 

later) is given by 

(2.2) (A + uo') -1 = A -1 
(a-lu)(o'A-1) 

1 + o'A-lu 
, (see Rao (1973), p. 33) 

where A is a p x p  invertible matrix and u, o are p - componen t  co lumn 
vectors. Thus  the generalized Bayes estimate of 0, say (~c~(x), under  LINEX 
loss is 

(2.3) ~GB(X) = __ __I log Mo, l~( -- a,), i = 1, . . . ,p 
az 
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where O , [ x - - N ( d ' x , 1 .  2) with Z .2= 1/2 + 1/2p  and Mo, rx(')  denotes the mo- 
ment  generating function of 0,Ix. Therefore 

l 2 21 
(2.4) Mo, tx( - ai) = exp - a,d[x + - ~  a, 1. ], i = 1 , . . . , p .  

Hence, combining (2.3) and (2.4) we get 

(2.5)  /GB (X) ' 1 = ai x - T a'1"2 

1 1 _ 1 2 
= --f X, + --~ X - - - ~  ai1., i =  1 , . . . , p ,  

p 
where Y = (1/p) Z x,. 

i=1 
In the terminology of Lindley and Smith  (1972), 6GB(X) is a three-stage 

Bayes estimate. The estimate can also be given by an interesting empirical 
Bayes interpretation.  If, for example,  /1 were known,  then the Bayes 
estimate of 0 under  LINEX loss is 

1 1 1 
(2.6) 0,(p) = -~" Xi + -~  fl -- "-~ ai1. 2, i = l , . . . , p  . 

If, however , / t  is an unknown parameter,  it can be estimated f rom the 
marginal  dis tr ibut ion of X, which in this case is Np(Izlp, 2Ip), using L e m m a  
2.1. Thus  p is est imated by fi = E, and the empirical Bayes estimate of 0 
under  the L INEX loss is 

1 1 1 
(2.7) 0,(fi) = T Xi + T E -  T a'1.2' i = 1 , . . . ,p  , 

which is the same as (2.5). The estimate O,(fi) is an example of a class of 
general empirical Bayes estimates proposed in Efron and Morris (1973). 

3. Admissibility of &GB 

In this section we will prove that  ~Ga is an admissible est imator of 0 
w.r.t, the extended LINEX loss. The technique we are going to use is one 
due to Blyth (1951), who views the given estimator as the limit of a 
sequence of Bayes estimators with the difference of the Bayes risks converg- 
ing to zero at an appropriate rate. 

To do this, consider the sequence of priors {(m: m > 1} for 0, where 
~m ~ Np(O, ~,m) with 
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(3.1) ( 1 ) i  1 , 

The implicit idea is to approximate the improper prior (1.1) by the proper 
prior ~m with ~m converging (as m -- ~)  to the improper prior (1.1) at an 
appropriate rate (see also Stein (1965)). 

Now, using Lemma 2.1, it is easy to verify that the posterior distribu- 
tion of 0 given X = x is Np(Dmx, Dm) where 

1 
(3.2) D m  1 = Ip + 2~m I = D-  1 -t- - -  I p .  

m 

Therefore, using (2.2) 

2 
m m 

(3.3) D m -  - -  Ip + lpl~ 
2m + 1 p ( 2 m  + 1)(m + 1) 

d r  p p = ( 1 , m , . . . , d , ~ , m )  

and the marginal distribution of X is Np(O, Ip + ~m). Hence, the Bayes 
estimate of 0, say 6~', under LINEX loss is 

(3.4) 1 2 
I~1 m(x) : dt~mX - T atom 

m m 2 1 2 

- 2 m  + 1 x,  + (2m + 1)(m + I) ~ -  T a,r,,,, i = 1 , . . . , p  

p 

2 m / ( 2 m  + 1) + m2/p(2m + 1)(m + 1). where ~ = ( I /p)  ,~1 xi and r,~ = 

Let rL(~, ,~) denote the Bayes risks of ,~ w.r.t, the prior ~ under LINEX 
loss. Then the corresponding Bayes risks of ,~  and '~GB, respectively, are: 

(3.5) rL(r 

= ( - 2zO-PlD,,,I-l/Zllp + ~,,,I -l/z 

1 1 ) ' D m I ( A + I  2 

x e x p  - - ' ~  X'(Ip + l~,m)- d A r ' . d A p d x l " ' d x p ,  

(details are given in the Appendix) and 
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rL(~m, ~GB) ----- ( - -  2~z)-PlDml-ll2llp + ~m1-112 

I ( k + l  )'Dm' • ""fL(a) exp[-T T r2a+D*mx 

( 1 x a +T~,,+Om*X 

[ i  ] 
• exp - 7 x'(Ip + g,,,)-lx dzll...dzlpdxl...dxp. 

Subtraction of (3.5) from (3.6) gives 

(3.7) rL (~=, & . )  - rL (~r., ' ~ )  

= ( - 2 z ) - P l D , , , I - I l Z l I  p + ~m1-1/2 

xf "fL(A) + ~m )-Ix] 

/ 
x dA l'"dApdxr"dxp. 

Finally, to prove admissibility of ~GB in estimating 0 under the LINEX 
loss function, suppose ~GB is dominated by some estimate ~(x) of O. Using 
the continuity of the risk function in 0 for an estimator ~(X), it follows 
that there exists some 0o, e > 0 and ( > 0 such that 

(3.8) rL(~m. & , )  -- r~(~=, a)  _> e[~=(Oo + 0 , )  -- ~=(0o -- 0 . )1  

= e(2~)-p/2 ] ~,,l- */2 

1 fo.+~,....fexp[---~O'2~iO]dOl...dOp X Ito-Op 

> ~1~-,I- 112(2~) -pi~ 

1 f'+<l" ... f exp [ - - - f  O,~llO ] dO1...dOp 
X ,-' {~- ~lt, 

= K]~m1-1/2 " 
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Since for m > 1, 0',$m~0 < 0'~J~-~0 = OtD-lO and K is a positive cons tant  not  
depending  on m. Hence f rom (3.7) and (3.8), 

(3.9) In = rL(~.;, aGB) -- rL(~.., ar 
rL(~m, (~GB) - -  rL(~m, O~ 

_< K - ' (  - 2zc)-Pl~ml VZlDml-l/2lI  p + ~;~1 -~/= 

• f ... f ... d A v " d A p d x r " d x p  . 

Now,  

m 1/2 
I'$m 1 1/2 _ and 

( 1 )lv-,,/21+__m 

Also, using (2.2), 

2 
m m 

1s - - -  I p  + lp 1~ and 
m + I p ( m  + 1) 

m + l  )(p-x)/2 
lip + ~,,,1-1/2 = (m + 1) -1/2 2m + 1 

Hence,  (3.9) becomes 

(3.10) l , , , < _ K ~ f . . . f L ( a ) e x p [ -  I , _ 1 "~X(Ip+~,m)-'x]exp[  T a'o;,'a ] 

1 2 ' 

[ , ,4,o_,]1 - exp - -~- z, ,a ,/~m 17/ - -  y rm/ / / - )m a 

• dA l " " d A p d x v " d x p .  

Note  that  as m --  oo, {... } --. 0 and 



664 A H M A D  P A R S I A N  

(3.11) 1{'"}1<2+- r~ ( 2r-l + l ) 1 2rr ! 

+~2rl ( ~ /  
,=l " 7 .  A + T a DmlD*mx 

(details are given in the Appendix). 
Using the notation A ___ B if and only i fB - A is non-negative definite, 

and in consideration of (2.1) and (3.2), we conclude that, 

D m l D * = I D '  m D<Ip,  Dml < (2 + l ) I p .  

Hence, 

(3.12) 

and 

(3.13) 

Also, 

(3.14) 

�9 ! L(~+~~ o~o,~xl 2 
1 Z "2 

~.2 272 

~m--- T a -~- 

ill 2 112 <_~ a + T a  Ilxlt 2 

1 I r 2 2 
< m--~o A + T a Ilxll 2 

(Cauchy-Shwarz inequality) 

V m ~ m o  

I A'hT~al 2 < I A'h-~lAI21a,h-~lal z 

___ (2 + 1 ) 4  ,lAll21lal[ 2 

< ( 2 +  mol) 4 I lal l2l lal l2  V m ~ m o .  

exp[ ~O~l~] exp( 
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and 

(3.15) exp[ e p(ax,x) 
Therefore, by consideration of (3.11)-(3.15) and using the dominated 
convergence theorem we conclude that 

I ,~ - -0  as m--* ~ .  

Hence, there exists an m0 such that Ira0 < 1, i.e., 

r(~mo, (~) < r(~mo, ~~ 

which contradicts the Bayesness of ~o  w.r.t. ~,~0. This proves the admissi- 
bility of tSaB w.r.t, the extended LINEX loss function. 

Remark 1. If instead, we start with X ~ Np(O, a2Ip) and conditional 
on/.t, 0 ~ Np(Izlp, r21p) and/z had the uniform (improper) prior distribution 
where 0 -2, r 2 > 0 are both known, then the (improper) Bayes estimate (three- 
stage Bayes estimate) of 0,, 1 < i < p, is given by 

Xi "~- I~Y a, 0.22.2 i = 1 , . . . , p  
1 + 2  1 + 2  

with 2 = a2/r  2, and the admissibility of such an estimator can be proved in 
the same way as in the special case cr 2 = r 2 = 1. 

Remark  2. One can generalize the model  in Remark  1 to X 
Np(O, 1~1) where conditional on p, 0 ~ Np(plp, $2) and r has the improper 
uniform prior distribution over the entire real line, and find the three-stage 
(or empirical Bayes) estimate of 0 as described in Section 2 when Eh and r 
are known. 

Remark 3. Instead of considering the model in Remark 2, one can 
consider the model given O, X ~ Np( O, J~l), given p, 0 ~ Np(p, $2) and given 
)/, p ~ Np()/,/t;3), where the variance-convariance matrices ~1, 2[;2 and ~;3 are 
known and are positive definite. Then using Lemma 2.1 and the extended 
LINEX loss function, one can obtain the unique proper Bayes estimates of 
0 and such estimates are, therefore, admissible. 
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Appendix 

To see (3.5) and (3.6), note that  

= f ... f L(O, 6~)(2rc)-P/2lDm1-1/2 exp [ -  1 ( 0 -  D,,,x)'Dm'(O- Drnx) ] 

x (2n)-P/21Ip +  :ml -'/2 

• exp [ - l x ' ( I p  + ,~,m)-'x ] dO,'"dOpdx,'"dxp 

= (2rc)-PlDml-V2[Ip + ,~,m[ -v2 

1 
•  

x exp - --~ x'(Ip + ~m)-lX dOl...dOpdx,...dxp. 

Let A = ~ '  - 0 = (Al,...,Ap)' where A, = &~m(x) - 0,. Then 

1 2 
Ai + -~ a, zm = d[,mx- O,, i =  1, . . . ,p 

or 

a + 1 r~a = D,,x - 0 

with a = (al,. . . ,  ap)'. Hence, (3.5). 
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~f-)) / 1 D,~x)'Dm~(O -- D m x )  ] L(O, 6~.)(2n)-P/ZlDml -t/z e xp  l. - ~ ( 0 -  

• (2~)-P/21I ,, + ~;ml - '~  

[' 1 x exp  - ~ -  x'(Ip + Em)-lx dOv"dGdxl""dxp 

= (2n)-PlD~l-t/ztle + ~,,,,I -t/2 

• ...ft,(o, ao,  
1 

• exp [ - -~ (O-  Dmx)'Dml(O- Drnx) ] 

exp  [ - x " ~ X ( I p + ~ ) - l x ] d O v . . d O ,  
I 

i Le t  A = 5cB - 0 = (A ~,..., Ap)' wi th  A, = 3as(x)  - Oi. T h e n  

1 
Z~t : dt~mX - O, --[- dz'x - dt~mX - T a'7~2 

o r  

1 2 * t  d,~mx - O, = A i + -"~ a,'r + d,,,,,x, i= 1,...,p 

wi th  d , *  = dl.,, - d,. T a k i n g  D *  = D , ,  - D ,  we c o n c l u d e  (3.6). 

T o  see (3.1 1), no te  t ha t  

[1 
I{" '} t  -< e xp  - --~ r2A'D-~la - A'D-~ID*x 

Z "2 I ~.4 ] 
- - ~  a ' o - d O * x  - T x'O*~o-dO*~x - - ~  a'O-da 

[ 1 4 , t '-21 .c~A,D-mX a -~ v,,a Dm a ] + exp  t - 
i 

_< exp  - ~ -  A'D-~a - A 'D~D*x  - -~ a'D-~D*x 

72m 
+ exp  - - ~  A'D~la 
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,~.2 ,.(2 

Tm 
+ e x p  - -~-  A'D-~a 

�9 1 = r = 0  2 2 a)DmD*x]  r 

2 )r/ 
~=o - - ~  A'D;,la r! 

r= l  2"2r ~2 r 1 ]/r, 
+ fc ~:r 

r= l  Y IA'Dmlal~/r! 

r=l ~r .W+2r!  IA'Dmlalr 

1 2 r- "t'2 �9 I 

-~+ ~:~ ( ~-1 + ~ ) ~, ~ ' ~  - -~r ,  

+r~,--~., a+7. D =  D*~x . 

p * -1 * Using the fact that  r2m < r 2, x'OraOm Dmx >- 0 and a'D-~l a > 0 V m  > 1. 
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