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In this paper, using the asymmetric LINEX loss function we derive the risk 
function of the  generalized Liu estimator and almost unbiased generalized Liu 
estimator. We also examine the risk performance of the feasible generalized 
Liu estimator and feasible almost unbiased generalized Liu estimator when the 
L1NEX loss function is used. 

1. I N T R O D U C T I O N  

In comparing risk functions of some estimators, the (symmetric) quadratic 
loss functions have widely been used. It is interesting to note that  all studies 
on biased estimators use the mean square error (MSE) or equivalently, the 
(symmetric) quadratic loss as the basis of measuring estimators, performance. 
It is well known that  the use of symmetric los8 functions may be inappropriate 
in many circumstances, particularly when positive and negative errors have 
different consequences. Varian (1975) introduced very useful asymmetric LINEX 
(Linear-exponential) loss function. Since, Zellner (1986) extensively discussed 
the properties of the LINEX loss function, several studies on the use of the 
L1NEX loss function have been done. 

When estimating the parameter 8 by 0 the 10ss function is given by: 

L(0) = b [exp(aA) - a A - -  1] (I.i) 

where a ~ 0, b > 0 and A _ ~-~ is the relative estimation error in using 0 to 
estimate 0. Since the relative estimation error does not depend on a unit, it 
is often used. In our investigation we assume (without loss of generality) that 
b ---- 1. The sign of shape parameter a reflects the direction of asymmetry- we set 
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a > 0 (a < 0) if over-estimation is more (less) serious than under-estimation. 
The magnitude of a reflects the degree of asymmetry. For small values of I a I, 

2 which is proportional to a mot (see, Z nner 
(1986)). So, the LINEX loss function can be regarded as a generalization of 
the squared error loss function allowing for asymmetry. NumeTous authors have 
considered the LINEX loss function in various problems of intexest. Exam- 
ples are Chain and Janssen (1995), Ohtani (1995), Giles and Giles (1996), Zou 
(1997), Parsian and Sanjari Farsipour (1999), Ohtani (1999), Wan and Krumai 
(1999), Tak-da (2000). In particular, Ohtani (1995) considered the  risk of the 
feasible generalized ridge regression (FGRR) estimator under the  LINEX loss 
function. 0htani  showed that  FGRR estimator can strictly dominate the  ordi- 
nary least squares (0LS) estimator when a is positive and large. Wan (1999) 
examine the properties of the feasible almost unbiased generalized ridge regres- 
sion (FAUGRR) estimator under the asymmetric LINEX loss function. If the 
value a is positive, then positive estimation error is regarded as more serious 
than negative estimation error, and vice versa. When there is the problem of 
multicollinearity, one of the solutions is to use the Liu estimators proposed by 
Liu (1993), (see also Akdeniz and K a ~ a n l a r  (1995)). The best choice of binsing 
parameters include unknown parameters, they may be replaced by their sample 
estimates. In this case, the Liu estimators are called the feasible Liu estimators. 
The exact MSE of the feasible generalized Liu estimator was derived by Akdeniz 
and Ka~.'anlar (1995). 

In the spirit of results obtained by Ohtani (1986, 1995) and Wan (1999), this 
article examines the properties of generalized Liu (GL) and almost unbiased 
generalized Liu (AUGL) estimators under the asymmetric LINEX loss function, 
of which quadratic loss is a special case. 

In Section 2, the model and estimators are presented, and a sufficient con- 
dition for the GL estimator to dominate the OLS estimator is given. In Section 
3, the risk functions of the feasible GL estimators has been derived. In Section 
4, the risk function of the feasible AUGL estimator is given. The relative effi- 
ciencies of the estimators are numerically compared. 

2. MODEL A N D  RISK F U N C T I O N  

Consider the multiple linear regression model 

(2.1) 

where y is an n x 1 vector of observations on the dependent variable, ~ is a 
s x 1 vector of regression coefficients, Z is an n x l matrix of full column rank 
of observations on nonstochnstic independent variables and ~ is an n x 1 vector 
of normal error terms with E(e) : 0, E(e~') = ~2I~, where a is constant but  
unknown. For purpose of analysis, we rsparametrize (2.1) as 
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y -- X f l  + 6 (2.2) 

whereX Z T ,  ~6 = ' " = T % T ~s an orthogonal matrm such that  X ' X  = T ' Z '  Z T  = 
A, and A is a diagonal matrix with the eigenvalues of Z ' Z  as its diagonal ele- 
ments. Hereafter, we work with the reparametrized model given in (2.2). Then 
the OLS and the GL estimators of ]~ are 

= ( X ' X ) - ' X ' y  - A - 1 X ' y ,  (2.3) 

and 

"- ( X ' X  + I ) - l ( X ' y  § DE)  

= (h  + I ) - I ( A  + D ) A - 1 X ' y  (2.4) 

where D is an g • s diagonal matrix with positive elements 0 < d~ < 1, i = 
1, 2, ..., L The i-th element of ~ and fl is 

A = (2.5) 
A~ 

and 

f~ -- A~ +d~])i, i =  1,2, . . . , l  
1 +A~ 

(2.6) 

respectively, xi is the i-th column vector of X, Ai is the ioth diagonal element 
of A. If d~ is fixed the f~i has bias given by 

bias (A)  = E(f)~) - fli = 1 ~ fi~' (2.7) 

and its mean squared error 

mse(~)  : a2(A~ +di)2 + A~(1 - d i )2~  
~(1 + ~)2 (2.s)  

(see, Akdeniz and Ka~ranlar (1995)). In this case m s e ( ~ )  is minimized at 

d~(ol~)-- )h,6~'~-~" ' - ' l , 2 , . . . , L  (2.9) 
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The estimator ~ is non-operational. Thus, substituting f~i and a 2 by their 
unbiased estimators f}~ and d 2 we obtain the estimate of d~ : 

a~(~'~-e~) i =  1,2,...,e d'= ~,~, 7 ~  , (2.10) 

where 

o,  = ( u -  x M ( u -  xt~) 
n - ~  

The asymmetric LINEX loss function of/3~ is defined as 

L(r ---- exp(aA~) -- a ~  -- 1 (2.11) 

where A, = ~ - ~  . Since ~ N(1, @. ), where O~ = A~flJa,  the risk function 

of $~ is 

[ f~, 1)j -- +~176 1 

a2 
= - 1  + exp(~/2) , (2.12) 

_ t  1 where u, = ~ and f(u~) = (21r) 20~ exp [ -~(u ,  - 1)20~]. In a similar way, the 
risk function of/~ is 

R(~i)=E[L(~)] = E {exp [ a ( ~ . -  1 ) ] -a (~-~  - 1 ) -  1 } ~  

= E{exp[a(5*ui- 1)]}-aE(6*ui- 1 ) -  1. 

Since 

E {exp [a(6~u, - 1)]} - i+oo ~176 exp [a(/f~u{ - 1)] f(u,)du, 



179 

we obtain 

where 

_ [a2s:2 1 
- [ ~  + a(~: - 1), 

J 

R(A) = ~ , p  [ - - ~ -  + , ~ ( ~ ; -  i) - ,~(~; - 1 ) -  1, 

6~ = 1 + & 

The partial derivative of R(/~i) with respect to di is 

(2.13) 

Od, = l + l ,  +.~;)exp[-~--i2 +a(~$-1 ) - 1  . (2.14) 

Unfortunately, the closed form of di which minimizes the risk can not be ob- 
tained. However, we see that  when d~ = 1, R(~i) = R(~i), and if a > 0, then 

OR(n,), a -I + (I + 

Thus, if a > 0,there exist 0 < d; < 1 such that  for all di e (d;, 1), R(~i) < R(~i) 
holds. Since the LINF~ loss function of ~i can be written as 

~-i)-i 

- 1 ) J  a ( ~ -  1 ) -  1 

j----o 

- 1)J 

j---2 

(2.15) 

the first term (i.e,,j = 2) is a quadratic function. Thus, if we use the optimal 
wlue  of di the  first term of the risk function is minimized since this value of dl 
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minimizes the rose. Although this value of d~ does not give minimum value of 
~(~[-a2) 

the risk function with LINEX loss, we may use d~(o~) = ~ + a ~  because the 

closed form of the optimal value of d~ cannot be obtained. When 

d,<,,,,,,) = h ; ~  + ~,2 ,'~; = 

~,(~,_~2) 
hl + d~(~pt) hi + ~ , + ~ 2  0 2 

l + h ~  l + h i  I + 0 ~  z 

then the difference between R(~) and P~A) is 

R(~,)- R(~,)- exp [-~--i2 --t--a(e*- 1) -a (6~ ' -  1)-exp(--~i2) . (2.16) 

Using methods similar to those in Ohtani (1995) we can derive R(A)  < R(A),  
A~O#-~, 2) 0 2 

when d, = ~,~+,2 and a > 2. Also, note that  ~ = ~ --* 1- ,  R($i) - 

R(A)  ~ o-, as ~ - - , . .  

3 .RISK P E R F O R M A N C E  OF T H E  F E A S I B L E  GL E S T I M A T O R  

In the previous section we have given a su i~ ien t  condition for the  GL es- 
,x~?-,,'~') 

t imator with d~ = ~ + ~  to  dominate the OLS estimator when the LINEX 

loss function is used.  But, this biasing parameter includes the  unknown param- 
eters, ]~i and a 2,which may be replaced by their sample estimates in a practical 

�9 x , O ~ ' - ~ ' 2 )  02 (v-x~)'(y-x~) is situation. The GL estimator with ~. = ~ + o 2  and = n- t  

called feasible GL estimator. In this section, we examine the risk performance 
of the feasible GL estin~tor when the LINEX loss function is used. 

Let us denote zl = h~,Si/o" and V = (n-l)~-~-. Then z~ and V are distr ibuted 
as N(O~ , 1) and chi-square distribution with u = n - s degrees of freedom , 
respectively. Making use of zi and V , the feasible GL estimator of ]~ can be 
written as 

hi +~. ~;' = T $-%, A (3.1) 

or 

~,~.~2) 

1 +hi 

z.2 ^ 

z~+-~  
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Since, z, = A ~ , / ~  and 0, = A~/~J~, then we may write A = ~ .  Thus, we 
have 

o, (3.2) 

o r  

z s 

~ (3.3) 

The risk function of ~ is 

R(/3~) = E {e~p [ a ( - ~ -  1 ) ] -  (~(~- -- I) -- 1} (3.4) 

=E v__oO~("~! ); - E  (~-i)+i 

= E  1 + a('8*- 1 ) i  -I--E aJ (~ j! - E  

= E  
, ~ ~. I 

=2 r=O 

" ~-4aJr~_~ r[(J : r )  !j!(-1)j-t'E I_U'J( )'" 
. / - - 2  - 

Accordingly, the risk function of ~ is 

oo j 
1 (_l)j_rE 

j r 2  ~'------0 

�9 ~ ] (3.5) ~ , (~  + ?)~ - 

Therefore, it is seen that the risk function of the feasible GL estimator ~ /3~, 
equals to the risk function of the feasible GRIt estimator which is given by 
Ohtani (1995). On the other hand, substituting ~ and ~2 by their unbiased 
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~2 
estimates ~i 2 - ~T and  0 z, we obtain the  estimates of di : di = 1 - Oz x--+-~- - 

1, 2, ..., s (see, for example Liu (1993)). In this case, the  feasible GL estimator 
of f~i can be wri t ten as 

or 

Thus, we have 

The  risk function of bi is 

v )~ 
k = ( 1 - ~  4 0," (3.e) 

b ~ = ( 1 -  V . z ~  ~-~:~)~. (3.z) 

or 

j~2 r----0 

oo j 1 [ V = z~., .1 

As is shown in Appendix, the  r- th moment  of ~ is given by: 
(1) r = 2p, 

2 oo 2 2 

--  , ' ~ ,  ~ . . o ' ~ ,  ~ ' v x  2 ' q !r (q  + $)r(~)1 v 
q=0 

/1 [ 
X fq_p_�89 f ( v + l ) -  1 (l_f)w 

(2) r = 2p + l ,  

(3.s) 

(3.9) 

(3.10) 

e .  , o_. o _ .  r__~+q_+ +_ , -  , ,  , (p 2 ) E(~ i  )2p+ 1 2 oo 2 2 v--+-! 1 
~, =(2 ) ~ ( 2 )  exp(2) q!r(q+-~)r(~) 

q---0 
(3.11) 
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1 [ ]~,,+1 
x ~ ~ fq_p_�89 f ( v + _ l ) - I  (l_ f)~_xdf. 

The risk function can be obtained by substituting (3.10) and (3.11) in (3.8). 

4. R I S K  P E R F O R M A N C E  OF T H E  F E A S I B L E  A U G L  E S T I M A -  
T O R  

In this section, we examine the risk performance of the feasible AUGL esti- 
mator. The AUGL estimator of J3 is given by Akdeniz and Ka~Iranlar (1995). 
The generalized Liu estimator in (2.4) can be written as 

/~ = (A + I)-v (A + D)~. (4.1) 

It is easy to see that 

/3= [I- (A + I)-I(I- D)] # 

and 

~ ( ~ )  = -CA + O-l(x - D)~. (4.2) 

Thus, following Kadiyala (1984) the bias corrected generalized Liu estimator of 
/~ is given by 

f~sc = # + CA + I ) - ' (x -  o): .  (4.3) 

If we replace/ff by the biased estimator f~ ~see, Ohtani (198S)), we have the 
almost unbiased generalized Liu estimator, f~o, is given by 

,~~ = [.z + CA + 0 - 1 ( I  - o ) ]  ,~ 

o r  

~o = [i - (^ + 0 - 2 ( ~ -  D) ~] #. 

Denoting the i-th element of ]~o as ~ ,  we have 

(4.4) 
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+ l - d i  2 1 

It is seen that rose(~) is minimized at 

/0.2(1 + ~,)2 

(see, Akdeniz and Ka~Iranlar (1995)). Since 

1-d~(~ 0=/_ 0.2 

and 

1-d+(~ ,~[ d~-~...l - i +  "~ 1 + ~  = a2 - +4"  

then the feasible AUGL estimator is 

(4.5) 

(4.6) 

&o: [1_ (1: a,(+))2] 
I+A,  j f~i = (1 z2+_ ~ f~i~ (4.7) - - ) A  = 0,(+ + 4) 

Since 

it is seen that, the risk function of ~o  equals to the risk function of ~ .  On 
^ ~i +. - 8 " 2  �9 

the other ha.d, , . i -g  the d~ = ~ ,- (4.5) and de-otmg ~, = ~ / 0 .  

and V = / / 0 2 / 0  "2, it i8 readily shown that the feasible AUGL estimator can be 
written as 

.~+02_~2 ) 21 

(4.9) 
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In this case/3i has the same risk function with the FAUGRR estimator, 7*, 
which is given by Wan (1999). Therefore, we omitted the derivation of the  r-th 

moment of ~ .  
In comparing the risks, we consider relative etiiciencies defined as 

R( i) R( i) R( i) (4.10) 

It is seen that,  wl = w3. /~ is OLS estimator, bi and ~ ,  are feasible GL 

estimators, ~ o  and ~i are feasible AUGL estimators. If the relative risk, wi, 
i : 1,2, 3, 4 is larger than unity, the feasible GL estimator and AUGL estimator 
have smaller risks than the OLS estimator. If w4 > wt (or w3),  then the feasible 
GLE is relatively less efficient than the AUGL estimator, and ~/ce vers~ From 
(3.8) we can see that  the risk of bi depends on the values of a, v and 82. We 
evaluated the relative risk, w2, for a = -1.0,  -0.5,  0.01, 0.5, 2.0, 3.0, v = 20, 
0i 2 = various values. For purposes of comparison, the relative efliciencies wl 

= and given in T bles l (a)  and l (b) .  We think = 2O 
is good since Ohtani (1995) and Wan (1999) used this value. So similar to 
Ohtani (1995) and Wan (1999) we evaluated numerically the relative efficiency 

--- ~ . We can see from Tables l(a) and l(b) tha t  b~ is dominated IB2 by 
the OLS estimator over a wide region of the parameter space. In other words, 
bi is inadmissible under the LINEX loss function. At least for the cases that,  
we have considered, ~* has smaller risk than bi over a wide range of parameter 
space. The feasible almost unbiased generalized Liu estimator ,/~i does not 
strictly dominate the OLS estimator. On the other hand, for large values of 0i 2 
, /~  (or/~~ is dominated by the OLS est ima~r.  For relatively large values 
of a (say a > 2) ~,  (or ~ o )  and ~i uniformly dominate the OLS estimator. 
As 8~ increases, the relative risks wt ---- w3 and w4 for ~ <~ 2 decreases, attain 
a minimum which is less than unity, and approaches from below. The results 
show that  as 82 increases, the  relative risks wl -- w3 and w4 for a = 3 decreases 
, but approaches unity from above. 
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TABLE l (a)  Relative efIiciencies of the  feasible LG LE and the  feasible 

AUGLE to the  OLSE for u = 20. 

a = - i . o  -1.o -1.o -o.~ -o.~ -0,s O.Ol 
0~ ?171 ~O 2 tO 4 IO I W2 lt//4 W l  

0.2 2.3749 0.0003 1.2889 1.9704 0.0000 1.3077 1,8103 
0.4 1.9443 0.0300 1.2964 1.6866 0.0007 12399 1.6134 
0.6 1.6552 0.0003 1.2373 1.4969 0.0026 I.i753 1.4676 
0.8 1.4563 0.0000 1.1747 1.3590 0.0058 L1214 1.3556 
1.0 1.3i25 0.0001 'i.1195 1.2543 0.0098 1.0768 i.2674 
2.0 o.9560 0.0017 0:~07 0.9718 0.0372 0.9447 1.0156 
3.0 0.8218 0.0082 0.8814 0.8551 0.0743 0.8904 0.9036 
4.0 0.76o6 0.0227 0.8,~t9 0,7993 0.122i o.87Ol 0.8479 
5.0 0.7320 0.0489 0.8492 0.7722 01806 0.8665 0.8195 
10.0 0.7371 0.3710 0.9021 0.7722 0.5617 0.9146 0.8095 
20.0 0.8260 0.6313 0.9719 0~8483 0.6717 0.9751 0.8713 
30.0 0.8763 0.6345 0.9965 0.8919 0.6667 0.9927 0.9079 

0.01 

W2 
0.0816 
0.0876 
0.0939 
o'.loo5 
o.1975 
0.1481 
0.1982 
O.2567 
0.3206 
O.5928 
0.7157 
0.7020 

TABLE l (b)  Relative efliciencies of the  feasible GLE and the  feasible 

AUGLE to  the  OLSE for v = 20 

0.01 

W4 

1.2529 
1.1879 
1.0926 
1.05~ 
6~9503 
0.9051 
0.8880 
0.8851 
0.9263 
0:886 

0.9781 
0.9918 

O, : 0.5 0,5 

0.2 1.8792 0.0001 
0.4 1.6749 0.0021 
0.6 1.5309 0.0286 
0.8 1.4208 0.0191 
1.0 1.3335 0.0326 
2.0 1.0702 0.1180 

0.5 2.0 2.0 2.0 3.0 3.0 3.0 

't04 ~/J1 ~ 2  ~ 4  'Wl tO2 ~04 

1.1988 2.3422 0.0000 1.0481 3.2s~ 0.0303 1.0217 
1.167r 2.1511 0.0030 1.0768 2.2~3 0.0030 1.0283 
1.1180 1.9926 0~0030 1.0851 2.1829 0.0030 1.0550 
1.0838 1.S~6 0.O030 1.0813 2.O845 0.0303 1~0~71 
1.0547 1.7457 0.03O0 1.0719 1.9946 0.0303 1.0595 
0.9632 1.3913 0.0000 1.0169 1.6422 0.0003 1.6397 

3.0 0.9631 0.2106 0.9226 1.2173 0.0009 0.9816 1.4276 0.0200 1.0126 
4.0 0.9031 0.3018 0.9066 1.1203 0.0382 0.9632 1.2970 0.0001 0.9941 
5.0 0.8707 0.38?6 0.9031 1.0621 0.0395 0.9550 1.2139 0.0308 0.9833 
10.0 0.8468 0.6667 0.9367 0.9696 0.8236 0.9635 1.0587 O.r~'8 0.9778 
20.0 0.8935 0.7615 0.9807 0.9634 0.9303 0.9877 1.0115 1.9753 0.9916 
30.0 0.9233 0.7386 0.9921 0.9713 0.8703 0.9948 1.0039 0.9794 0.9969 



In this appendix,  we derive E for r = 2p. Since E can be 

derived in a similar way, the  derivation for r = 2p + 1 is omitted.  

Let us consider E [(1 - v x~r~,~] L 

1 8 7  

E ~ =E[(I- V . , . z , . , 3  

(zi-0Q 2 where fl(z~) = (21r)- �89 e x p ( -  2 ) and  fa(V) = [2~i r(~)]-I v~_l ~xpC_V). 
Since z, ,.-, N(O,, 1) and  V ~ X2~, we have from (3.7) 

z , ,  ( Z i  . 2 ,, 

oo ~ V ~ V 2 Z~)dzidV = K fo fooz~27'(4-  -g)2pV~-1exp(O~zOexP( 

where 

2~�89 
z .  m O. m 

Substi tut ing exp(zi0i) = ) - ] ~ 0  ~ in (A-l) ,  (A-l)  reduces to  

oo.~ 0o K v 
m=o m! Jo 2 

(A-~) 

(A-2) 

When  m = 2q + 1, the  value of the  integral with respect to  zi is zero because 
the  integrand is an odd function of z~. Thus, (A-2) reduces to 

o~ r ~ foo v ) ~ v ~ _  , ~p( v + 4-  
q = 0  / "  - 

Making use of t he  change of variable, w = zi 2, (A-3) reduces to  

(A-3) 
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~, ~ =(~,_ )~-pv~-l~p(. v+W)~waV, 
q=O 2 

(A-4) 

~ and where Cq = K. Again making use of change of variables, t l  = v w  
t2 : V, we obtain the following expression, 

co ~oo O~ Vtl V~l V , 2 . . ~ - 1 t 2  , V +-Y~)dtldt2 ~c~ -- ,-~-~ - ( u ) ( u u ]'~2 --~exp~- 2 
q--O 

= ~ c ,  tV,,_�89 i t ,+~+~ ~,+tlt~_,.,..,, ", yq+p+�89 2 exp(. ~ )=~,1~2. 
q---O 

(A-5) 
u,-t-t Furthermore, if we make change of variables x = ~2--~t t2 and y = p + q + 2 

we obtain the following expression, 

q+~'? )dr2 ~0 t2 exp( ut2 + tit2 
2 

f ~o 2v ---1 2u 

Jo t ~ ) "  ,)+tl exp(-x)dx 

-" 2v(2v):~-1 o f  xY-1 exp(-x)dx -- (tl + v)Y (tl + u)(tl + 1/) y-I  " -(2V)y" .r(y). 

Then, we have 

- s y~CqU~2,r(y) t lq-P'- �89 ( t l -  1 )2P( t l  -[" v ) - Y ( ~ I .  ( A - 6 )  
q--0 v 

Further, applying the transformation f -- h 0 < t l  < co, (A-6) reduces to t l  +u 

q=o J o - j 1 - - ' - ~  - ( 1 - f ) ' 2  

fo V~d/ co l fq-P- �89 f)-q§247189 112P(I f ) ~ - 2 P u - ~ ( l _ f ) 2  - -  D q  - -  - - 
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-" ~_~ Dqu-~ ~o "f'-P-�89 f(z~ ~ 1 ) -  1 ( 1 -  f)~-Zdf. (i-7) 
q=0  

1 ! where nq : Cqu~ 2~r(y). Noting that (2q)!Ir�89 = 22qr(q + ~)q., Dqu- ~ reduces 
to 

, (A-S) r(y) 
- - ) -  e x p , - - - )  ! - - T  v 2 2 q.r(q + 

Substituting (A-S) in (A-7), we obtain the required expression of E [(1 - ~--~z~ ) v  ~ ~e, Jt~r]J 
with r = 2p in the text. 
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