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In this paper, we derive the exact formula of the risk function of a 
pre-test estimator for normal variance with the  Stein-variance (PTSV) 
estimator when the asymmetric LINEX loss function is used. Fixing 
the  critical value of the  pre-test to unity which is a suggested critical 
value in some sense, we examine numerically the  risk performance of 
the PTSV estimator based on the risk function derived. Our numeri- 
cal results show tha t  although the PTSV estimator does not dominate 
the usual variance estimator when under-estimation is more severe than  
over-estimation, the  PTSV estimator dominates the usual variance es- 
t imator  when over-estimation is more severe. It  is also shown that  the 
dominance of the PTSV estimator over the original Stein-variance esti- 
mator  is robust to  the  extension from the quadratic loss function to the 
LINEX loss function. 

1 Introduction 

Let xl ,  x2, ..., x,~ be a random sample of size n from a normal popu- 
lation with mean/z  and variance a 2. When our conc~rn is to estimate 
the population variance, the unbiased estimator is dominated by the 

* The author is grateful to the referee for useful comments. 
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following estimator in terms of mean squared error (MSE): 

i t  

s 2 = -  )21(n + 1),  (1) 
i=0  

where ~ is the sample mean. Further, as is shown in Stein (1964), s 2 
(say, the usual estimator) is dominated by the so-called Stein-variance 
(SV) estimator defined as 

^2 = mi b2,  021, (2) Cr S 

where 
t l  

= , 0 ) 2 / ( n  + 2),  (3) 
/=0  

and go is any fixed number. 
When we have prior information in the form of a 2 > a~, where a~ 

is some known value, it may be utilized effectively in estimation of a 2. 
For example, Pandey and Mishra (1991) considered a weighted average 
estimator of ao 2 and the unbiased estimator of a 2, and examined the 
sampling properties of the weighted average estimator. Also, Ohtani 
(1994) considered a pre~test for the null hypothesis H0 : a 2 = a02 against 
the alternative H1 : a 2 > a~, and examined the MSE performance of 
the following pre tes t  Stein-variance (PTSV) estimator: 

~ . 2 =  I ( J  < c)a2o + I ( J  > c)~ 2, (4) 

where I(A) is an indicator function such that  I(A) = 1 if an event A 
occurs and I(A) = 0 otherwise, J = i n + 1)s2/a 2 is the test statistic 
for H0, and c is a critical value of the pre-test. He showed exactly that 
the PTSV estimator with c = 1 dominates the PTSV estimator with 
0 _ c < 1 in terms of MSE. Since the PTSV estimator reduces to the 
original SV estimator when c = 0, this result shows that  the PTSV 
estimator with c = 1 dominates the SV estimator. 

Although the MSE has been used as a criterion in many studies on 
the sampling properties of shrinkage estimators, over-estimation (under- 
estimation) may be more serious than under-estimation Cover-estimation). 
From this viewpoint, Varian (1975) proposed the asymmetric LINEX 
loss function, and Zellner (1986) discussed and analyzed intensively the 
statistical consequences when the LINEX loss function is used as a cri- 
terion. 

The LINEX loss function for ~.2 is defined as 

L(~ .2) = exp(aA) - aA -- 1, (5) 
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where 

z~ = (~*~ - ~2)/o2, (6) 

and a is a parameter which determines the asymmetry of L(a .2) about 
the origin. If the value of a is positive, then positive estimation error is 
regarded as more serious than negative estimation error, and vice versa. 
Also, when a is close to zero, the LINEX loss function is approximately 
the quadratic loss function. In the context of linear regression, using 
the LINEX loss function, Srivastava and Rao (1992) examined the risk 
performance of estimators for the error variance, and Giles and Giles 
(1993) examined the risk performance of a pre~test estimator for the 
error variance after a pre-test for a linear hypothesis on regression coef- 
ficients. Some other examples of the studies which use the LINEX loss 
function are Sadooghi-Alvandi (1990), Ohtani (1995) and Rai (1996). 

In this paper, we derive the exemt formula of the risk function of 
the PTSV estimator when the LINEX loss function is used, and we 
examine the risk performance of the PTSV estimator numerically based 
on the risk function derived. Our numerical results show that although 
the PTSV estimator with c = 1 does not dominate the usual variance 
estimator when a is negative, the PTSV estimator with c -- 1 dominates 
the usual variance estimator when a is positive. Also, whether a is 
negative or positive, the PTSV estimator with c --- 1 dominates the SV 
estimator. This indicates that  the dominance of the PTSV estimator 
with c - 1 over the original SV estimator is robust to the extension 
from the quadratic loss function to the LINEX loss function. 

2 R i s k  f u n c t i o n  

Denoting 

U : .( .~- #o)~Io ~, (7) 
,p... 

v = ~ ( x ~ -  :~)2/o2, (s) 
i - -1 

2 r2 2 v is distributed as Xn-1, and u as X1 (~), where Xn-1 denotes the chi- 
square distribution with n -  1 degrees of freedom, and X~()~) the noncen- 
tral chi-square distribution with 1 degree of freedom and noncentrality 

n X parameter & -- n(# - /~o)2/a  2. Noting that ~i=1( i -/~0) 2 : a2(v 4- u) 
and J : a2v/a 2 = v/O, where 0 ~- a2/a 2 < 1, ~'2/a2 is written as 

~.21o2 : 1(rio < c) o + I(vlO > ~, ~/(~ + u) < al/a~) v/a~ 
-t- I(v/O > c, v / (v  + u) > al/a2) (v + u)/a2, (9) 
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where al = n + 1 and a2 = n + 2. 
Substituting 

CO 

k=0  

in (5), the risk function of ~,2 under LINEX loss is writ ten as 

R(~ .2) = E[L(~*2)] 
CO 

= E[~-~(ak/k!)(~*2/a 2 -  1)k]. 

(10) 

(11) 
k=2 

Using the binomial expansion, R(~ .2) reduces to 

co k 

R(~ .2) = ~-~(ak/k!) ~ k e n  E[(5*2/a2)m](-1) k-m 
k=2 m = 0  

co ~ ( -1 )k-~  E[(~'2/o2)~]. (12) 
= E ak E m!(k- m)! 

k=2 m = 0  

As is shown in Appendix, the general formula for the moments of the 
PTSV estimator (i.e., E[(~*2/a2)m]) is given by 

E[(3*2/a2) TM] = Omp(v/2, 0c/2) 

1 co 2 m p ( u / 2 + m )  r 1 P ( u / 2 + m ,  0c/2)] 
+ a - ~ E ~ ' ( ~ )  r---(~) L - 

i=0  

1 co co (-1)J2 TM 

aT ~ ~ wi(A) "V'l '2 ., 1/2+i+j i--oj=0 34 / + i + 3 ) a l  
r ( (~  + 1)/2 + m + i + j )  

X 
r(~/2)r(1/2 + i) 

x [1 - P((v  + 1)/2 + m + i + j, Oc/2)l 
1 co 2 m m 

- -  ~'(~)r(~/2)  ~ ~c~ + a2n i=0E F ( ! / 2  + i )r=0 
OO 

x ~ (-1)~r((v + 1)/2 + m + i  + j)  
• ~ , l / 2 + i T m - - r T j  

5=0 j !(1/2 + i + m - r .  JJ~l 

x [1 - P ( (v  + 1)/2 + m + i + j, 0c/2)], (13) 

where 

wi(A) = exp(-A/2)(A/2)i / i! ,  (14) 
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and P ( a ,  y) is the incomplete gamma function ratio defined as 

1 fo y ta_ 1 exp(-t) dr. (15) P(c',Y) - r(c  ) 

Substi tuting (13) in (12), we obtain the formula for the  risk function. 

3 N u m e r i c a l  r e s u l t s  

Since the formula of E[(~*2/a2) "~] is very complicated, theoretical anal- 
ysis of the risk function is very difficult. Thus, we examine the risk 
performance of the PTSV estimator numerically based on the formula 
of the risk function derived in the previous section. The parameter val- 
ues used in numerical evaluations were: n -- 4, 6, 8, 10, 12, 14; a -: 
-2,-1,  -0.5, 0.001, 0.5, 1.0, 2.0; )~ = 0.0, 0.1, 0.5, 1.0, 5.0, 10, 20, 50; 

= various values. Since it is shown in Ohtani (1994) that  the PTSV 
estimator with c = 1 dominates the PTSV estimator with c < 1 under 
quadratic loss, the critical value of c -- 1 may be of special interest. [The 
quadratic loss function corresponds intrinsically to the first term in the 
LINEX loss function.] Thus, we fix the value of c to unity (i.e., c -- 1) 
in our numerical evaluations. 

The numerical evaluations were executed on an NEC personal com- 
puter, using FORTRAN code. Since the  formula of E[(~*2)/a2) TM] in- 
cludes the  infinite series, we judged that  the infinite series converged 
when the  increment got less than  10 -12 . Also, the incomplete gamma 
function ratio was evaluated by the subroutine program from Press et al. 
(1986). Typical results are shown in Tables 1, 2 and 3. Since the entries 
in the  tables are the  values of the  relative risk of the PTSV estimator to 
the usual estimator (i.e., R(a*2)/R(s2)), the PTSV estimator has the  
smaller risk than the usual estimator when the value of the relative risk 
is smaller than unity. Also, when c -- 0, the PTSV estimator reduces to 
the original SV estimator. Since the incomplete gamma function ratios 
in (13) depend on ~ and c only through 0c/2, and since P(a, O) = 0, 
the value of the risk function for 0 -- 0 is the same as that  for c = 0. 
Thus, the  values of the relative risk for 0 = 0 in the tables are the same 
as those of the original SV estimator. 

From Table 1, we see that  when n = 4, a < 0 and A ___ 1, the relative 
risk is larger than unity around ~ = 0. This indicates that  the PTSV 
estimator does not dominates the usual estimator when a < 0. However, 
comparing the maximum relative risk at 0 -- 0 and the minimum relative 
risk at 0 = 1, the gain in risk of using the PTSV estimator instead of 
the usual estimator is larger than the loss. When a > 0, the values 
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of the relative risk are uniformly smaller than  unity. This indicates 
that  the PTSV estimator dominates the usual estimator when a > 0. 
Also, whether a is positive or negative, the relative risk of the PTSV 
estimator decreases as ~ increases from zero. Since the relative risk of 
the PTSV estimator at 8 = 0 is that  of the original SV estimator, the 
PTSV estimator dominates the SV estimator. This indicates that  the 
risk dominance of the PTSV estimator over the SV estimator is robust 
to the extension from quadratic loss to LINEX loss. 

From Table 2, we see that  when n -- 6, the risk performance of the 
PTSV estimator is similar to the case of n -- 4. However, the risk gain 
much reduces as n increases from 4 to 6. In particular, the risk gain is 
very small when ~/= 10. 

From Table 3, we see that  when n = 10, a < 0 and ~/ < 1, the 
relative risk is larger than unity in the wide region of ~?. Thus, the PTSV 
estimator does not dominates the usual estimator when a < 0. However, 
when a > 0, the PTSV estimator dominates the usual estimator. Also, 
in the same reason as the case of n = 4, the PTSV estimator dominates 
the original SV estimator under LINEX loss whether a is negative or 
positive. Comparing Tables 1, 2 and 3, we see that  as n increases, the 
value of the  relative risk increases, except for few cases (e.g., a = - 2 ,  

< 1 and ~ < 0.2). 
When  a is positive, the  relative risk of the SV estimator (i .e. ,  the 

values for ~ -- 0 in the tables) is smaller than unity. Thus, the SV 
estimator dominates the usual estimator when over-estimation is more 
serious than  under-estimation. Since the SV estimator shrinks the  usual 
estimator toward the origin, the estimate yielded by the SV estimator is 
smaller than the estimate yielded by the usual estimator. This indicates 
that  even if severe over-estimation occurs when the usual estimator is 
used, it may be mitigated when the SV estimator is used. Further, 
the PTSV estimator shrinks the SV estimator. Thus, it seems to be 
reasonable that  when a is positive, the SV estimator dominates the usual 
estimator, and the PTSV estimator further dominates the SV estimator. 
However, our numerical results show that  even if a is negative, the PTSV 
estimator dominates the SV estimator. Although this phenomenon may 
be caused by the first term in the LINEX loss function (i .e. ,  the effect 
of MSE), there is no unambiguous interpretation of this phenomenon at 
present. 

Although we do not show the results for n > 12, our numerical results 
show that  the value of the relative risk does not change, at least, down 
to third decimal places even if the value of # moves from zero to unity. 
Since we fix the value of c to unity and the value of # is not larger 



Table 1 

Relative risks of the PTSV estimator with 
c = 1 to the usual estimator for n = 4. 

81 

a 

~, 0 -2.000 -1.000 -.500 .001 .500 1.000 2.000 

0.0 

1.0 

10.0 

�9 0000 1.0328 1.0153 1.0015 .9817 .9518 .9026 .5946 
�9 1000 1.0264 1.0106 .9975 .9783 .9490 .9003 .5937 
�9 2000 1.0017 .9918 .9811 .9641 .9369 .8905 .5896 
�9 3000 .9595 .9578 .9509 .9375 .9140 .8714 .5816 
�9 4000 .9039 .9110 .9084 .8994 .8805 .8432 .5694 
�9 5000 .8398 .8548 .8564 .8519 .8381 .8069 .5532 
�9 6000 . 7 7 1 8  .7930 .7982 .7979 .7891 .7643 .5339 
�9 7000 .7039 .7294 .7374 .7406 .7364 .7180 .5123 
�9 8000 .6394 .6676 .6777 .6838 .6835 .6710 .4899 
�9 9000 .5807 .6109 .6226 .6311 .6342 .6268 .4685 

1.0000 .5299 .5623 .5757 .5863 .5925 .5897 .4508 

�9 0000 1.0193 1.0070 .9972 .9829 .9610 .9239 .6636 
�9 1000 1.0129 1.0023 .9931 .9795 .9581 .9216 .6627 
�9 2000 .9882 .9834 .9767 .9653 .9461 .9117 .6586 
�9 3000 .9460 .9495 .9466 .9388 .9231 .8927 .6506 
�9 4000 .8905 .9028 .9042 .9007 .8897 .8645 .6384 
�9 5000 .8266 .8467 .8523 .8533 .8474 .8283 .6223 
�9 6000 .7588 .7851 .7942 .7994 .7984 .7858 .6030 
�9 7000 .6912 . 7 2 1 7  .7336 .7423 .7459 .7396 .5814 
�9 8000 .6270 .6602 .6741 .6856 .6932 .6927 .5590 
�9 9000 .5688 .6038 .6193 .6332 .6441 .6487 .5378 

1.0000 .5184 .5556 .5727 .5887 .6027 .6118 .5201 

�9 0000 1.0000 .9995 .9991 .9984 .9972 .9948 .9500 
�9 1000 .9936 .9948 .9951 .9950 .9944 .9925 .9490 
�9 2000 .9690 .9760 .9787 .9809 .9824 .9826 .9450 
�9 3000 .9269 .9422 .9486 .9544 .9595 .9636 .9369 
�9 4000 .8716 .8956 .9063 .9164 .9261 .9355 .9248 
�9 5000 .8079 .8397 .8545 .8692 .8839 .8994 .9087 
�9 6000 .7405 .7783 .7967 .8154 .8351 .8570 .8894 
�9 7000 .6733 .7152 .7364 .7586 .7828 .8110 .8679 
�9 8000 .6096 .6541 .6773 .7022 .7304 .7643 .8457 
�9 9000 .5520 .5983 .6230 .6502 .6816 .7206 .8245 

1.0000 .5023 .5506 .5768 .6061 .6406 .6840 .8070 
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Table 2 
Relative risks of the PTSV estimator with 

c = 1 to the usual estimator for n = 6. 

a 

)~ 0 -2.000 -1.000 -.500 .001 .500 1.000 2.000 

0.0 

1.0 

10.0 

�9 0000 1.0359 1.0161 1.0019 .9833 .9582 .9231 .7876 
�9 1000 1.0357 1.0159 1.0018 .9832 .9582 .9230 .7876 
�9 2000 1.0339 1.0147 1.0007 .9823 .9574 .9224 .7873 
�9 3000 1.0290 1.0110 .9975 .9795 .9551 .9205 .7862 
�9 4000 1.0199 1.0038 .9912 .9741 .9504 .9165 .7838 
�9 5000 1.0062 .9927 .9813 .9652 .9427 .9100 .7799 
�9 6000 .9879 .9774 .9674 .9528 .9317 .9005 .7741 
�9 7000 .9656 .9583 .9499 .9369 .9175 .8881 .7664 
�9 8000 .9403 .9362 .9294 .9181 .9005 .8733 .7569 
�9 9000 .9129 .9121 .9070 .8974 .8818 .8567 .7463 

1.0000 .8846 .8873 .8839 .8762 .8626 .8398 .7355 

�9 0000 1.0211 1.0074 .9975 .9844 .9665 .9409 .8376 
�9 1000 1.0209 1.0073 .9974 .9843 .9664 .9409 .8375 
�9 2000 1.0192 1.0060 .9963 .9834 .9657 .9402 .8372 
.3000 1.0143 1.0023 .9932 .9806 .9633 .9383 .8361 
�9 4000 1.0052 .9952 .9869 .9752 .9586 .9344 .8338 
�9 5000 .9914 .9841 .9769 .9664 .9510 .9278 .8299 
�9 6000 .9732 .9688 .9631 .9539 .9400 .9184 .8241 
�9 7000 .9510 .9498 .9456 .9380 .9258 .9060 .8164 
�9 8000 .9257 .9277 .9252 .9193 .9088 .8912 .8069 
�9 9000 .8984 .9037 .9028 .8987 .8901 .8746 .7963 

1.0000 .8702 .8789 .8798 .8775 .8710 .8578 .7855 

�9 0000 1.0000 .9995 .9992 .9986 .9979 .9966 .9891 
�9 I000 .9998 .9994 .9991 .9986 .9978 .9965 .9890 
�9 2000 .9981 .9981 .9980 .9977 .9970 .9959 .9887 
�9 3000 .9932 .9945 .9948 .9949 .9947 .9940 .9876 
�9 4000 .9841 .9874 .9886 .9895 .9900 .9901 .9853 
�9 5000 .9704 .9762 .9786 .9807 .9824 .9835 .9814 
�9 6000 .9522 .9610 .9648 .9683 .9714 .9741 .9756 
�9 7000 .9301 .9420 .9474 .9524 .9572 .9618 .9679 
�9 8000 .9049 .9200 .9270 .9337 .9403 .9469 .9584 
�9 9000 .8777 .8961 .9047 .9131 .9217 .9305 .9478 

1.0000 .8497 .8715 .8818 .8921 .9026 .9137 .9371 



Table 3 

Relative risks of the PTSV estimator with 

c = 1 to the usual estimator for n = 10. 

83 

a 

~, /~ -2.000 -1.000 -.500 .001 .500 1.000 2.000 

0.0 

1.0 

10.0 

�9 0000 1.0337 1.0143 1.0019 .9869 .9689 .9466 .8825 
.1000 1.0337 1.0143 1.0019 .9869 .9689 .9466 .8825 
�9 2000 1.0337 1.0143 1.0019 .9869 .9689 .9466 .8825 

�9 3000 1.0337 1.0143 1.0019 .9869 .9689 .9466 .8825 
.4000 1.0337 1.0143 1.0018 .9869 .9688 .9465 .8825 

�9 5000 1.0335 1.0142 1.0018 .9868 .9688 .9465 .8825 
�9 6000 1.0332 1.0140 1.0016 .9867 .9686 .9464 .8824 
�9 7000 1.0328 1.0136 1.0012 .9864 .9684 .9461 .8823 
�9 8000 1.0320 1.0130 1.0007 .9859 .9680 .9458 .8820 
�9 9000 1.0309 1.0121 .9999 .9852 .9673 .9452 .8816 

1.0000 1.0295 1.0110 .9989 .9843 .9665 .9445 .8811 

�9 0000 1.0199 1.0067 .9982 .9878 .9752 .9595 .9136 
�9 1000 1.0199 1.0067 .9982 .9878 .9752 .9595 .9136 
�9 2000 1.0199 1.0067 .9982 .9878 .9752 .9595 .9136 

�9 3000 1.0199 1.0067 .9981 .9878 .9752 .9595 .9136 
�9 4000 1.0198 1.0067 .9981 .9878 .9752 .9595 .9136 
�9 5000 1.0197 1.0065 .9980 .9877 .9751 .9595 .9135 
�9 6000 1.0194 1.0063 .9978 .9875 .9750 .9593 .9134 
�9 7000 1.0189 1.0060 .9975 .9873 .9747 .9591 .9133 
�9 8000 1.0182 1.0054 .9970 .9868 .9743 .9588 .9130 
�9 9000 1.0171 1.0045 .9962 .9861 .9737 .9582 .9127 

1.0000 1.0156 1.0033 .9952 .9852 .9729 .9575 .9122 

�9 0000 1.0000 .9996 .9994 .9990 .9986 .9980 .9959 
�9 1000 1.0000 .9996 .9994 .9990 .9986 .9980 .9959 
�9 2000 1.0000 .9996 .9994 .9990 .9986 .9980 .9959 
�9 3000 1.0000 .9996 .9993 .9990 .9986 .9980 .9959 
�9 4000 1.0000 .9996 .9993 .9990 .9985 .9979 .9959 
�9 5000 .9998 .9995 .9992 .9989 .9985 .9979 .9959 
�9 6000 .9995 .9993 .9990 .9987 .9983 .9978 .9958 
�9 7000 .9991 .9989 .9987 .9984 .9981 .9975 .9956 
�9 8000 .9983 .9983 .9982 .9980 .9977 .9972 .9954 
�9 9000 .9972 .9974 .9974 .9973 .9970 .9967 .9950 

1.0000 .9958 .9963 .9964 .9964 .9962 .9959 .9945 
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than unity, the second parameter of the incomplete gamma function 
ratios in (13) (i.e., 0c/2) is smaller than 1/2. When the first parameter 
in the incomplete gamma function ratio is not small and the second 
parameter is small, the value of the incomplete gamma function ratio 
is very close to zero. For example, when n = 14, the values of the 
incomplete gamma function ratio for 0 - 1 and O -- 0.1 are as follows: 
P(6.5, 0.5) ~ 0.38 x 10-5; P(6.5, 0.1) ~ 0.15 x 10 -9. This is the reason 
that  when n = 14, the value of the relative risk does not change down 
to third decimal places even if the value of 0 moves from zero to unity. 
When n _> 15, the same result appears. This indicates that  when n is 
not small, conducting the pre-test does not improve significantly the SV 
estimator. In other words, conducting the pre-test is effective when the 
sample size is small (e.g., n < 10). If we use the larger critical value 
than unity, the different risk performance may appear. However, when 
c > 1, there is no theoretical study on whether the PTSV estimator 
dominates the SV and/or  usual estimators or not, even under quadratic 
loss. Thus, it is a remaining problem to examine the risk performance 
of the PTSV estimator with c > 1 under quadratic loss and/or  LINEX 
loss. 

Appendix 
From (9), we have 

E[(~*2/a2) m] = OmE[I(v < Oc)] 
1 

+ -~mE[I(v > Oc, v/(v  § u) < alia2) v m] 
. l l .  

1 
4- ~'a--~ E[S(v > Oc, vl(v  + > a, la2) (v + u) 

1 E 1 
= 2+a--rE3. (16) 

First, we evaluate E1 in (16). 
v -- n - 1, we have 

E1 -- E[I(v < 0c)] = f0 ~ 

where 

1 
f l ( v ) -  2~,/2F(u/2 ) 

Since v is distributed as X 2, where 

v v/2-1 exp(-v/2) .  (18) 

fl(v) dv, (17) 
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Making use of the change of variable, z = v/2, it is easy to see that  

E1 = P(v/2,  0c/2), (19) 

where P(a, y) is the incomplete gamma fimction ratio defined in (15) 
in the text. 

Second, we evaluate E2 in (16). Since v is distributed as X 2, u as 
X~(A), and v and u are mutually independent, we have 

E2 = E[I(v >_ Oc, v / (v  + u) < el~a2) v m] 

= / f R l v m f l ( v ) f 2 ( u ) d u d v ,  (20) 

where R1 is the region of v and u such that  {(v,u)[v > Oc, v / (v  + u) < 

O0 

f l (V) f2(u)  = ~ K~ v ''/2-1 '0,1/2+/-1 e x P t - ( v  + u) /2] ,  (21) 
i : o  

w~(~,) (22) 
K~ : 2(~+l) /2+~r( . /2)r(1/2 + i),  

and wi(~) is given in (14) in the text. Since R1 is equivalent to {(u, v)lv > 
Oc, u > v/al)},  E2 is rewritten as 

E2 = Z g i  v v/2-1+m u 1/2+i-1 

i=0 c /ax 

• ezp[-(v + u)/2l duav. (23) 

Making use of the change of variable, t -- u/2, E2 reduces to 

Ki 21/2+iF(1/2 + i) v v/2+m-1 exp(-v /2)  dv 
i=O c 

o o  

- ~ K ~  2 ~/~§ ~(1/2 + i, v/(2a~)) 
i=0 c 

x v "/2+m-1 exp(-v /2)  dv, (24) 

where 7(a, y) is the incomplete gamma function defined as 

Oy t a-1 exp(- t )  dt. (25) 

The series development of 7(a, y) is given by 

oo ( _ l ) J y . + j  (26) 
7(a, Y) - ~ (a + j)j!  " 

j=0 
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[See, for example, Abramowitz and Stegun (1972, p.262).] Using (26) 
in the second term in (24), and making use of the change of variable, 
z = v/2, E2 reduces to 

oo 

gd 21/2+T(1/2 § i)2~'/2+mF(u/2 § m) 
/ = 0  

x [1 - P(v/2 + m, 0c/2)] 

- V" (-1p 
4w(1/2 + i + j)(2al)U2+i+J 

i=O j = 0  J ' ~  / 

• + 1)/2 + m + i + j )  

x [1 - P((v + 1)/2 + m + i + j, 0c/2)]. (27) 

Finally, we evaluate E3: 

E3 = E[I(v > Oc, v/(v + u) > ai/a2) (v + u) TM] 

-- /.~2 f" E mCr v r u m-r fl(v)f2(u)dudv, (28) 
rzo 

where R2 is the region of v and u such that  {(v, u)lv >>_ Oc, v/(v + u) >_ 
ai/a2}. Since R2 is equivalent to ((v,u)lv >_ Oc, u < v/al}, E3 is 
rewritten as 

E3 = ~ Ki ~ inC, v v/2+r-1 u 1/2Ti+m-r-1 
i---0 r : 0  c 

x exPl-(v § u)/2]. (29) 

Making use of the change of variable, t = u/2, E3 reduces to 

m f o o  
E Ki E mCr 21/2+i+m-r ~/(1/2 4- i T m -  r, v/(2al)) 
i=O r=O J Oc 

• Vl/2+'-1 exp(-v/2) dv. (30) 

Again, using the series development of 7(a,  Y), and making use of the 
change of variable, z = v/2, E3 reduces to 

oo m co 

E K, E mCr E (-1)J _ : ~ ~ l / 2 + i + m - r + j  
i=o r=o j=o 2 / j ! (1 /2  + i + m 7- r t Jml  

x 2(v+l)/2+m+~+JF((v + 1)/2 4- m 4- i 4- j )  

x [1 - P((v + 1)/2 + m + i + j, 0c/2)]. (31) 

Substituting Ki in (27) and (31), and further substituting (19), (27) 
and (31) in (16), we obtain the formula for E[(a*2/a2) rn] in the text. 
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