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In this paper, we derive the exact formula of the risk function of a
pre-test estimator for normal variance with the Stein-variance (PTSV)
estimator when the asymmetric LINEX loss function is used. Fixing
the critical value of the pre-test to unity which is a suggested critical
value in some sense, we examine numerically the risk performance of
the PTSV estimator based on the risk function derived. Our numeri-
cal results show that although the PTSV estimator does not dominate
the usual variance estimator when under-estimation is more severe than
over-estimation, the PTSV estimator dominates the usual variance es-
timator when over-estimation is more severe. It is also shown that the
dominance of the PTSV estimator over the original Stein-variance esti-
mator is robust to the extension from the quadratic loss function to the
LINEX loss function.

1 Introduction

Let z1, z3, ..., T, be a random sample of size n from a normal popu-
lation with mean p and variance 02. When our concern is to estimate
the population variance, the unbiased estimator is dominated by the

* The author is grateful to the referee for useful comments.
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following estimator in terms of mean squared error (MSE):
n
=) (z:i - 5)?*/(n+1), (1)
i=0

where Z is the sample mean. Further, as is shown in Stein (1964), 52
(say, the usual estimator) is dominated by the so-called Stein-variance
(SV) estimator defined as

6% = mins?, s, (2)
where
3= (@ - 1)/ +2), 3
i=0

and yg is any fixed number.

When we have prior information in the form of 02 > o2, where o3
is some known value, it may be utilized effectively in estimation of o2.
For example, Pandey and Mishra (1991) considered a weighted average
estimator of 02 and the unbiased estimator of 02, and examined the
sampling properties of the weighted average estimator. Also, Ohtani
(1994) considered a pre-test for the null hypothesis Hy : 02 = 03 against
the alternative H; : 02 > 03, and examined the MSE performance of
the following pre-test Stein-variance (PTSV) estimator:

52 = I(J < c)a2 + I(J > ¢)5%, (4)

where I(A) is an indicator function such that I(A) = 1 if an event A
occurs and I(A) = 0 otherwise, J = (n + 1)s?/0} is the test statistic
for Hy, and c is a critical value of the pre-test. He showed exactly that
the PTSV estimator with ¢ = 1 dominates the PTSV estimator with
0 < ¢ < 1 in terms of MSE. Since the PTSV estimator reduces to the
original SV estimator when ¢ = 0, this result shows that the PTSV
estimator with ¢ == 1 dominates the SV estimator.

Although the MSE has been used as a criterion in many studies on
the sampling properties of shrinkage estimators, over-estimation (under-
estimation) may be more serious than under-estimation (over-estimation).
From this viewpoint, Varian (1975) proposed the asymmetric LINEX
loss function, and Zellner (1986) discussed and analyzed intensively the
statistical consequences when the LINEX loss function is used as a cri-
terion.

The LINEX loss function for 5*2 is defined as

L(3*%) = ezp(al) — aA — 1, (5)



77

where
A= (" - oY)/, (6)

and a is a parameter which determines the asymmetry of L(0*2) about
the origin. If the value of a is positive, then positive estimation error is
regarded as more serious than negative estimation error, and vice versa.
Also, when a is close to zero, the LINEX loss function is approximately
the quadratic loss function. In the context of linear regression, using
the LINEX loss function, Srivastava and Rao (1992) examined the risk
performance of estimators for the error variance, and Giles and Giles
(1993) examined the risk performance of a pre-test estimator for the
error variance after a pre-test for a linear hypothesis on regression coef-
ficients. Some other examples of the studies which use the LINEX loss
function are Sadooghi-Alvandi (1990), Ohtani (1995) and Rai (1996).

In this paper, we derive the exact formula of the risk function of
the PTSV estimator when the LINEX loss function is used, and we
examine the risk performance of the PTSV estimator numerically based
on the risk function derived. Our numerical results show that although
the PTSV estimator with ¢ = 1 does not dominate the usual variance
estimator when a is negative, the PTSV estimator with ¢ = 1 dominates
the usual variance estimator when a is positive. Also, whether a is
negative or positive, the PTSV estimator with ¢ = 1 dominates the SV
estimator. This indicates that the dominance of the PTSV estimator
with ¢ = 1 over the original SV estimator is robust to the extension
from the quadratic loss function to the LINEX loss function.

2 Risk function

Denoting
u = n(Z - po)?/o?, ()
v = Z(mi—a‘:)2/o2, (8)

i=1

v is distributed as x2_,, and u as x2()\), where x2_, denotes the chi-
square distribution with n—1 degrees of freedom, and xZ()) the noncen-
tral chi-square distribution with 1 degree of freedom and noncentrality
parameter A = n(p — ug)?/02. Noting that S, (z; — po)? = 0%(v + u)
and J = 0%v/02 = v/6, where 8 = 0 /0% < 1, 5*?/0? is written as

5*%j02 = I(v/@<c)8+I(v/8>c v/(v+u)<ai/az) v/a
+ I(v/0 > ¢, v/(v+u) > ar/ag) (v+u)/ag, (9)
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where ay =n+1land ag =n+ 2.

Substituting
exp(ad) = Z(aA)k/k!, (10)
k=0

in (5), the risk function of 5*2 under LINEX loss is written as

R = E[L@E™)]
= E[)_(a*/K)(@"*/0® - 1)"). (11)
k=2

Using the binomial expansion, R(*2) reduces to

RGE?) = Z(ak/k' 3> O Bl

m=0
e (D™ ) am
k=2 m=0 """ :

As is shown in Appendix, the general formula for the moments of the
PTSV estimator (i.e., E[(6*2/02)™]) is given by

E[(a*2/a2)'"] =0™P(v/2, 0c/2)

2" (v/2+m) , m
1; ) T T — P2+, 6/2)

(=1)72™
Zo;) BT R R R
M(v+1)/24+m+i+j)
T(v/2)T(1/2 +9)
x[1-P((v+1)/2+m+i+j 0c/2)]

1 & om
t ;wi(/\)F(u/2)P(1/2 +1) ; mCr

« S CDT((v+1)/2+m+i+ )
J= 0]'(1/2+z+m_,r+]) 1/2+i+m—r+j
X [1=P((v+1)/24+m+i+j, 0c/2)], 13)

where

wi() = exp(=2/2)(M/2)'/2!, (14)
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and P(e,y) is the incomplete gamma function ratio defined as

1

P(a,y) = T(a) /Oy 1 exp(—t) dt. (15)

Substituting (13) in (12), we obtain the formula for the risk function.

3 Numerical results

Since the formula of E[(5*2/0%)™] is very complicated, theoretical anal-
ysis of the risk function is very difficult. Thus, we examine the risk
performance of the PTSV estimator numerically based on the formula
of the risk function derived in the previous section. The parameter val-
ues used in numerical evaluations were: n = 4, 6, 8, 10, 12, 14; a =
-2, -1, -0.5, 0.001, 0.5, 1.0, 2.0; A = 0.0, 0.1, 0.5, 1.0, 5.0, 10, 20, 50;
f = various values. Since it is shown in Ohtani (1994) that the PTSV
estimator with ¢ = 1 dominates the PTSV estimator with ¢ < 1 under
quadratic loss, the critical value of ¢ = 1 may be of special interest. [The
quadratic loss function corresponds intrinsically to the first term in the
LINEX loss function.] Thus, we fix the value of ¢ to unity (i.e., ¢ = 1)
in our numerical evaluations.

The numerical evaluations were executed on an NEC personal com-
puter, using FORTRAN code. Since the formula of E[(5*2)/0?)™] in-
cludes the infinite series, we judged that the infinite series converged
when the increment got less than 107!2. Also, the incomplete gamma
function ratio was evaluated by the subroutine program from Press et al.
(1986). Typical results are shown in Tables 1, 2 and 3. Since the entries
in the tables are the values of the relative risk of the PTSV estimator to
the usual estimator (i.e., R(0*2)/R(s%)), the PTSV estimator has the
smaller risk than the usual estimator when the value of the relative risk
is smaller than unity. Also, when ¢ = 0, the PTSV estimator reduces to
the original SV estimator. Since the incomplete gamma function ratios
in (13) depend on # and c only through 6c/2, and since P(a, 0) = 0,
the value of the risk function for # = 0 is the same as that for ¢ = 0.
Thus, the values of the relative risk for # = 0 in the tables are the same
as those of the original SV estimator.

From Table 1, we see that when n — 4, a < 0 and A < 1, the relative
risk is larger than unity around # = 0. This indicates that the PTSV
estimator does not dominates the usual estimator when a < 0. However,
comparing the maximum relative risk at # = 0 and the minimum relative
risk at # = 1, the gain in risk of using the PTSV estimator instead of
the usual estimator is larger than the loss. When a > 0, the values
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of the relative risk are uniformly smaller than unity. This indicates
that the PTSV estimator dominates the usual estimator when a > 0.
Also, whether a is positive or negative, the relative risk of the PTSV
estimator decreases as 6 increases from zero. Since the relative risk of
the PTSV estimator at § = 0 is that of the original SV estimator, the
PTSV estimator dominates the SV estimator. This indicates that the
risk dominance of the PTSV estimator over the SV estimator is robust
to the extension from quadratic loss to LINEX loss.

From Table 2, we see that when n = 6, the risk performance of the
PTSV estimator is similar to the case of n = 4. However, the risk gain
much reduces as n increases from 4 to 6. In particular, the risk gain is
very small when \ = 10.

From Table 3, we see that when n = 10, @ < 0 and A < 1, the
relative risk is larger than unity in the wide region of §. Thus, the PTSV
estimator does not dominates the usual estimator when a < 0. However,
when a > 0, the PTSV estimator dominates the usual estimator. Also,
in the same reason as the case of n = 4, the PTSV estimator dominates
the original SV estimator under LINEX loss whether a is negative or
positive. Comparing Tables 1, 2 and 3, we see that as n increases, the
value of the relative risk increases, except for few cases (e.g., a = —2,
A<1landé§<0.2).

When a is positive, the relative risk of the SV estimator (i.e., the
values for # = 0 in the tables) is smaller than unity. Thus, the SV
estimator dominates the usual estimator when over-estimation is more
serious than under-estimation. Since the SV estimator shrinks the usual
estimator toward the origin, the estimate yielded by the SV estimator is
smaller than the estimate yielded by the usual estimator. This indicates
that even if severe over-estimation occurs when the usual estimator is
used, it may be mitigated when the SV estimator is used. Further,
the PTSV estimator shrinks the SV estimator. Thus, it seems to be
reasonable that when a is positive, the SV estimator dominates the usual
estimator, and the PTSV estimator further dominates the SV estimator.
However, our numerical results show that even if a is negative, the PTSV
estimator dominates the SV estimator. Although this phenomenon may
be caused by the first term in the LINEX loss function (i.e., the effect
of MSE), there is no unambiguous interpretation of this phenomenon at
present.

Although we do not show the results for n > 12, our numerical results
show that the value of the relative risk does not change, at least, down
to third decimal places even if the value of § moves from zero to unity.
Since we fix the value of ¢ to unity and the value of @ is not larger



Relative risks of the PTSV estimator with

Table 1

¢ = 1 to the usual estimator for n = 4.
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A 0 -2.000 -1.000 -500 .001 .500 1.000 2.000
0.0 .0000 1.0328 1.0153 1.0015 .9817 .9518 .9026 .5946
1000 1.0264 1.0106 .9975 .9783 .9490 .9003 .5937

2000 1.0017 9918 .9811 .9641 .9369 .8905 .5896

3000 9595 9578 9509 .9376 9140 .8714 .5816

4000 9039 9110 9084 .8994 8805 .8432 .5694

.5000 .8398  .8548  .8564 .8519 .8381 .8069 .5532

6000 .7718 .7930 .7982 .7979 .7891 .7643 .5339

7000 .7039  .7294 7374 .7406 .7364 .7180 .5123

.8000 .6394 .6676 .6777 .6838 .6835 .6710 .4899

9000 .5807 6109 .6226 .6311 .6342 .6268 .4685
1.0000 .5299  .5623  .5757 .5863 .5925 .5897 .4508

1.0 .0000 1.0193 1.0070 .9972 .9829 .9610 .9239 .6636
1000 1.0129 1.0023 .9931 .9795 .9581 9216 .6627

.2000 .9882 9834 9767 .9653 9461 9117 .6586

3000 .9460 9495 .9466 .9388 9231 .8927 .6506

4000 .8905  .9028  .9042 .9007 .8897 .8645 .6384

.5000  .8266  .8467  .8523 .8533 .8474 .8283 .6223

6000 .7588  .7851  .7942 .7994 .7984 .7858 .6030

7000 6912 7217 7336 .7423 .7459 .7396 .5814

8000 .6270 .6602 .6741 .6856 .6932 .6927 .5590

9000 .5688  .6038 .6193 .6332 .6441 .6487 .5378
1.0000 .5184  .5556  .5727 .5887 .6027 .6118 .5201

10.0 .0000 1.0000 .9995 .9991 9984 .9972 .9948 .9500
1000 9936 9948 9951 9950 .9944 9925 .9490

2000 9690 .9760 9787 9809 .9824 .9826 .9450

3000 9269  .9422 9486 .9544 .9595 9636 .9369

4000 .8716  .8956  .9063 .9164 .9261 .9355 .9248

5000 .8079  .8397  .8545 .8692 .8839 .8994 .9087

.6000 .7405  .7783  .7967 .8154 .8351 .8570 .8894

7000  .6733 7152 .7364 .7586 .7828 .8110 .8679

8000 .6096  .6541  .6773 .7022 .7304 .7643 .8457

9000 .5520 .5983  .6230 .6502 .6816 .7206 .8245
1.0000 .5023  .5506 .5768 .6061 .6406 .6840 .8070
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Relative risks of the PTSV estimator with

Table 2

¢ = 1 to the usual estimator for n = 6.

A 0 -2000 -1.000 -500 .001 .500 1.000 2.000
0.0 .0000 1.0359 1.0161 1:.0019 .9833 .9582 9231 .7876
1000 1.0357 1.0159 1.0018 9832 .9582 .9230 .7876

.2000 1.0339 1.0147 1.0007 .9823 .9574 9224 .7873

.3000 1.0290 1.0110 .9975 .9795 .9551 .9205 .7862

4000 1.0199 1.0038 9912 9741 9504 .9165 .7838

.5000 1.0062 .9927 9813 .9652 .9427 9100 .7799

.6000 9879 9774 9674 9528 9317 9005 .7741

7000 9656 9583 .9499 9369 9175 .8881 .7664

.8000 .9403 9362 .9294 9181 .9005 .8733 .7569

9000 9129 9121 9070 .8974 .8818 .8567 .7463

1.0000 .8846  .8873  .8839 .8762 .8626 .8398 .7355

1.0 .0000 1.0211 1.0074 .9975 9844 .9665 .9409 .8376
1000 1.0209 1.0073 9974 9843 .9664 .9409 .8375

.2000 1.0192 1.0060 .9963 .9834 9657 .9402 .8372

3000 1.0143 1.0023 9932 9806 .9633 .9383 .8361

4000 1.0052 9952 9869 9752 .9586 .9344 .8338

5000 9914 9841 9769 9664 9510 .9278 .8299

.6000 .9732 9688  .9631 .9539 .9400 9184 .8241

7000 9510 9498 9456 9380 .9258 9060 .8164

.8000 .9257 9277 9252 9193 .9088 .8912 .8069

9000 .8984  .9037 9028 .8987 .8901 .8746 .7963

1.0000 8702 8789  .8798 .8775 .8710 .8578 .7855

10.0 .0000 1.0000 .9995 .9992 .9986 .9979 .9966 .9891
1000 9998 9994 9991 9986 .9978 9965 .9890

.2000 .9981 9981  .9980 .9977 .9970 .9959 .9887

3000 9932 9945 9948 .9949 .9947 .9940 .9876

4000 9841 9874 9886 .9895 .9900 .9901 .9853

.5000 9704 9762 9786 9807 .9824 .9835 .9814

.6000 .9522 9610 9648 .9683 9714 .9741 .9756

7000  .9301 9420 9474 9524 9572 .9618 .9679

8000 9049 .9200 .9270 9337 .9403 .9469 .9584

9000 8777  .8961  .9047 9131 .9217 9305 .9478
1.0000 8497 8715  .8818 .8921 .9026 .9137 .9371
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Table 3

¢ = 1 to the usual estimator for n = 10.
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A 0 -2.000 -1.000 -500 .001 .500 1.000 2.000
0.0 .0000 1.0337 1.0143 1.0019 .9869 .9689 .9466 .8825
J000 1.0337 1.0143 1.0019 .9869 .9689 .9466 .8825

22000 1.0337 1.0143 1.0019 .9869 .9689 .9466 .8825

3000 1.0337 1.0143 1.0019 .9869 .9689 .9466 .8825

4000 1.0337 1.0143 1.0018 .9869 .9688 .9465 .8825

5000 1.0335 1.0142 1.0018 .9868 .9688 .9465 .8825

6000 1.0332 1.0140 1.0016 .9867 .9686 .9464 .8824

.7000 1.0328 1.0136 1.0012 .9864 .9684 .9461 .8823

.8000 1.0320 1.0130 1.0007 .9859 .9680 .9458 .8820

9000 1.0309 1.0121 .9999 .9852 .9673 .9452 .8816

1.0000 1.0295 1.0110 .9989 .9843 .9665 .9445 .8811

1.0 .0000 1.0199 1.0067 .9982 9878 .9752 .9595 .9136
2000 1.0199 1.0067 .9982 9878 .9752 .9595 .9136

2000 1.0199 1.0067 .9982 .9878 .9752 .9595 .9136

3000 1.0199 1.0067 9981 .9878 .9752 9595 .9136

4000 1.0198 1.0067 .9981 .9878 .9752 .9595 .9136

5000 1.0197 1.0065  .9980 .9877 .9751 .9595 .9135

.6000 1.0194 1.0063 9978 .9875 .9750 .9593 .9134

.7000 1.0189 1.0060 9975 .9873 .9747 9591 .9133

8000 1.0182 1.0054 .9970 .9868 9743 .9588 .9130

9000 1.0171 1.0046  .9962 9861 .9737 .9582 .9127

1.0000 1.0156 1.0033  .9952 .9852 .9729 .9575 9122

10.0 .0000 1.0000 .9996 .9994 .9990 .9986 .9980 .9959
1000 1.0000 9996 .9994 .9990 .9986 .9980 .9959

.2000 1.0000 9996 .9994 .9990 .9986 .9980 .9959

3000 1.0000 .9996 9993 .9990 .9986 .9980 .9959

4000 1.0000 .9996  .9993 .9990 .9985 .9979 .9959

5000 9998 9995  .9992 .9989 .9985 .9979 .9959

.6000 9995 9993  .9990 .9987 .9983 .9978 .9958

.7000 9991 9989  .9987 .9984 .9981 .9975 .9956

.8000 .9983 9983  .9982 .9980 .9977 .9972 .9954

9000 9972 9974 9974 9973 .9970 9967 .9950
1.0000 9958 9963 .9964 .9964 .9962 .9959 .9945
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than unity, the second parameter of the incomplete gamma function
ratios in (13) (i.e., 8c/2) is smaller than 1/2. When the first parameter
in the incomplete gamma function ratio is not small and the second
parameter is small, the value of the incomplete gamma function ratio
is very close to zero. For example, when n = 14, the values of the
incomplete gamma function ratio for § = 1 and § = 0.1 are as follows:
P(6.5, 0.5) ~ 0.38 x 1075; P(6.5, 0.1) ~ 0.15 x 10~9. This is the reason
that when n = 14, the value of the relative risk does not change down
to third decimal places even if the value of # moves from zero to unity.
When n > 15, the same result appears. This indicates that when n is
not small, conducting the pre-test does not improve significantly the SV
estimator. In other words, conducting the pre-test is effective when the
sample size is small (e.g., n < 10). If we use the larger critical value
than unity, the different risk performance may appear. However, when
¢ > 1, there is no theoretical study on whether the PTSV estimator
dominates the SV and/or usual estimators or not, even under quadratic
loss. Thus, it is a remaining problem to examine the risk performance
of the PTSV estimator with ¢ > 1 under quadratic loss and/or LINEX
loss.

Appendix
From (9), we have
E[(3*%/0*)™] = 6™E[I(v < 8c)]

+ aimE[[(v > fc, v/(v+u) < ar/az) v™)
1

+ é E[I(v> 6, v/(v+u) > a1/a) (v +u)™]

1 1
= 0’"E1 + a—mEz + @Eh (16)
1

First, we evaluate E; in (16). Since v is distributed as x2, where
v =n — 1, we have

B =Bl <09]= [ i) do a7
where

fi(v) .

= TG 3) /21 exp(—v/2). (18)
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Making use of the change of variable, z = v/2, it is easy to see that
E; = P(v/2, 6¢/2), (19)

where P(a, y) is the incomplete gamma function ratio defined in (15)
in the text.

Second, we evaluate Ey in (16). Since v is distributed as x2, u as
xZ()\), and v and u are mutually independent, we have

Ey = E[I(v>0c v/(v+u)<ap/ag) v™|
[ | ™ hw)fatu) dudv, (20)

where R is the region of v and u such that {(v,u)|v > bc, v/(v+u) <
ai/as},

fi@)fa(w) = 3 K o271 w21 eapl— (v + ) /2], (21)
=0
w,-(/\)
20+ D/2HT (v/2)T(1/2 + 1)

and w;()) is given in (14) in the text. Since R) is equivalent to {(u,v)|v >
fc, u > v/ay)}, Ey is rewritten as

w .
ZK/ / QP2 1Am 1241
v

i=0 fax
x ezp[—(v + u)/2] dudv. (23)

Making use of the change of variable, ¢t = u/2, E reduces to

K= (22)

ZK 21/2“1‘(1/2-1-2)/ /™1 erp(—v/2) dv
1=0

- Yo K2 [Ta(1/244 v/a)

i=0 bc
x v/7™ 1 exp(—v/2) dv, (24)

where v(a, y) is the incomplete gamma function defined as
y
/ 121 ezp(—t) dt. (25)
0

The series development of y(a, y) is given by

Ya, v) = 2:(

a+J

(a+JJ“
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[See, for example, Abramowitz and Stegun (1972, p.262).] Using (26)
in the second term in (24), and making use of the change of variable,
z =wv/2, E; reduces to

f: Ki 2Y240(1/2 4 )220 (v/2 + m)
1=0
x [1 - P(u/2+m, 6c/2)]
_ [2+4 (—l)j
22‘;)1( Q1/2+4 21'(1/2+z + 7)(2a1)/2¥443
x 2N/ ZEmIIT() 4 1) /24 m 4 i + j)
x[l — P((v+1)/24+m+i+37 0¢/2)]. (27)

Finally, we evaluate Fj:
Es = E[I(v>6c v/(v+u)>ai/az) (v+u)"]
_ / /R Z nCr 0" 4™ f1(v) fo(u) dudv, (28)
2 r=0

where Rj is the region of v and u such that {(v,u)|v > 8¢, v/(v+u) >
ai/az}. Since R; is equivalent to {(v,u)lv > ¢, u < v/a1}, E3 is
rewritten as

o0 m o prv/a; )
ZKiZ mCr/ / vu/2+r—1 ul/2+t+m—r—1
1i=0 r=0 6c Jo
x exp[—(v + u)/2]. (29)
Making use of the change of variable, t = u/2, E3 reduces to

00 m foe)
SKY mCr 22 [T a(1/2 i b m—r, v/(2a))
= r=0 C

X vi'/ 21 orp(—v/2) dv. (30)

Again, using the series development of y(a, y), and making use of the
change of variable, z = v/2, Ej3 reduces to

(=1y
Ki) mCr
Z rz: 2;)213 1/2+z+m—r+])al/2+'+m r+i
x 2WAD/TEMIHID () 4 1)/2 4+ m 4 i 4 §)
x[1 - P((v+1)/24+m+i+3 6c/2)]. (31)

Substituting K; in (27) and (31), and further substituting (19), (27)
and (31) in (16), we obtain the formula for E[(*2/0%)™] in the text.
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