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Abstract. Following Parsian and Farsipour (1999), we consider the problem of
estimating the mean of the selected normal population, from two normal
populations with unknown means and common known variance, under the
LINEX loss function. Some admissibility results for a subclass of equivariant
estimators are derived and a su‰cient condition for the inadmissibility of
an arbitrary equivariant estimator is provided. As a consequence, several of
the estimators proposed by Parsian and Farsipour (1999) are shown to be
inadmissible and better estimators are obtained.
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1 Introduction

The problems of estimation after selection have been studied by Sarkadi
(1967), Putter and Rubinstein (1968), Dahiya (1974), Hseih (1981), Cohen and
Sackrowitz (1982), Sackrowitz and Samuel-Cahn (1984), Venter (1988), Vel-
laisamy (1992), Misra (1994) and Parsian and Farsipour (1999). Some work
has also been done for optimizing both, selection and estimation, in the deci-
sion-theoretic setup, for which the reader may refer to Gupta and Miescke
(1990, 1993), Cohen and Sackrowitz (1988) and other references cited therein.

Dahiya (1974) considered estimation after selection from two normal pop-
ulations, having a common known variance, and proposed six di¤erent esti-
mators for the mean of the selected population (one associated with the larger
sample mean) and studied the performances of these estimators, numerically,
under the squared loss function.

Note that any symmetric loss function, such as squared error loss function,
assigns the same penalties to overestimation and underestimation. In some sit-



uations, overestimation may be considered more serious than the underestima-
tion or vice versa. To deal with such situations, Varian (1975) proposed the
following alternative loss function

Lðy; dÞ ¼ eaðd�yÞ � aðd� yÞ � 1; a0 0:

When a > 0, the loss function increases almost exponentially for positive
ðd� yÞ and almost linearly otherwise, so overestimation is more heavily
penalized than underestimation. When a < 0, the linear-exponential rises
are interchanged and underestimation is considered more costly than over-
estimation. In the literature, such loss functions are called LINEX (linear-
exponential) loss functions. Some of the researchers who have considered
LINEX loss function for estimation are: Zellner (1986), Kuo and Dey (1990),
Sadooghi-Alvandi (1990), Basu and Ebrahimi (1991), Sadooghi-Alvandi and
Parsian (1992) and Madi (1997).

Following Dahiya (1974), Parsian and Farsipour (1999) studied estimation
after selection from two normal populations, having a common known vari-
ance, under the criterions of bias and LINEX loss function. They proposed
seven di¤erent estimators for the mean of the selected population and obtained
expressions for the biases and risk functions of these estimators. Using these
expressions, they studied performances of various estimators, numerically,
under the criterions of bias and LINEX loss function.

In this paper, we continue the study of Parsian and Farsipour (1999) by
deriving some decision-theoretic results for the problem under the LINEX loss
function. In particular, we show that several of the estimators proposed by
Parsian and Farsipour (1999) are inadmissible under the LINEX loss function
and we obtain better estimators. Here we note that Parsian and Farsipour
(1999) considered not only the criterion of expected LINEX loss but also the
criterion of bias.

Let X1 and X2 be two independent random variables representing the
populations P1 and P2, respectively, which are normally distributed with
respective unknown means y1 and y2 and have a common known variance
s2. Throughout, the following notations will be adopted: X ¼ ðX1;X2Þ,
y ¼ ðy1; y2Þ, Y1 ¼ minðX1;X2Þ, Y2 ¼ maxðX1;X2Þ, m1 ¼ minðy1; y2Þ, m2 ¼
maxðy1; y2Þ, Y ¼ ðY1;Y2Þ, Y ¼ Y1 � Y2, m ¼ m2 � m1, so that Y a 0, w.p. 1
and mb 0. Also, throughout, Fð:Þ and fð:Þ will denote, respectively, the
cumulative distribution function (cdf ) and the probability density function
(pdf ) of the Nð0; 1Þ distribution, < will denote the real line, <þ will denote
the non-negative part of the real line, <2 will denote the two dimensional
Euclidean space, for a fixed y A <2, Pyð:Þ will denote the probability measure
induced by X and Eyð:Þ will denote the expectation under Py.

For the goal of selecting the unknown population associated with the larger
mean m2, consider the natural selection rule dN , according to which the pop-
ulation corresponding to the larger observation Y2 is selected. Optimum prop-
erties of the natural selection rule dN have been established by Eaton (1967).
Let M denote the index of the selected population. We desire to estimate

yM ¼ y1; if X1 > X2

y2; if X1 < X2;

�
ð1:1Þ

under the LINEX loss function
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Lðy; dÞ ¼ eaðd�yM Þ � aðd� yMÞ � 1; ð1:2Þ

where a0 0 is a given constant. Note that yM , given by (1.1), is a random
parameter. The given estimation problem is invariant under the location
group of transformations and under the group of permutations. Therefore,
it is natural to consider only those estimators d which are permutation
and location invariant, i.e. estimators satisfying dðX1;X2Þ ¼ dðX2;X1Þ and
dðX1 þ c;X2 þ cÞ ¼ dðX1;X2Þ þ c, Ec A <. Any such estimator will be of the
form

dcðY Þ ¼ Y2 þ cðY Þ; ð1:3Þ

for some real valued function cð:Þ, defined on the non-positive part of the
real line. An estimator of the form (1.3) is called an equivariant estimator. Let
D1 denote the class of all equivariant estimators. For an equivariant estimator
d A D1, the risk function Rðy; dÞ ¼ Ey½Lðy; dðY ÞÞ� depends on y only through
m ¼ m2 � m1 (cf. Ferguson (1967), pp. 149). Therefore, for notational conve-
nience, we denote Rðy; dÞ by RmðdÞ.

In Section 2 of this paper, we derive admissible (or inadmissible) estima-
tors within a subclass of D1, under the LINEX loss function, given by (1.1).
In Section 3, we provide a su‰cient condition for the inadmissibility of
equivariant estimators under the LINEX loss function. Section 4 deals with
some applications of results obtained in Section 3.

2 Some admissibility results

Consider the following subclass of equivariant estimators

D2 ¼ fdcð:Þ : dcðY Þ ¼ Y2 þ c; c A <g: ð2:1Þ

Among the various estimators proposed by Parsian and Farsipour (1999),
two estimators, d0ðY Þ ¼ Y2 and dc0

ðY Þ ¼ Y2 � as2=2 belong to the class D2.
The estimator d0 (dc0

) is the unique generalized Bayes estimator of yM under
the squared error (LINEX) loss function for the non-informative prior, i.e. the
Lebesgue measure on <2, (cf. Dahiya (1974) and Parsian and Farsipour
(1999)). We will compare the performances of various estimators in the class
D2, under the LINEX loss function, by deriving all admissible (or inadmis-
sible) estimators within the class D2. The following lemma will be useful in
doing so.

Lemma 2.1: Let S ¼ Y2 � yM and, for a given real constant d, define the func-
tions hdðmÞ ¼ Fðd þ mÞ þFðd � mÞ, mb 0 and sðxÞ ¼ x2 þ ln 2 þ lnðFðxÞÞ,
x A <. Also, let x0 ð¼�1:2395 . . .Þ < 0 be the root of the equation sðxÞ ¼ 0.
Then,

(i) the pdf of S is given by

fSðsjmÞ ¼ F
s þ m

s

� �
þF

s � m

s

� �� �
1

s
f

s

s

� �
; s A <;
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(ii) for d < 0 ð>0Þ, the function hdðmÞ is an increasing (a decreasing) func-
tion of m A <þ,

(iii) sðxÞ < 0, Ex 2 ðx0; 0Þ and sðxÞ > 0, Ex A ð�y; x0ÞW<þ.

Proof. (i) The cdf of S is given by

FSðsjmÞ ¼ PyðX1 < X2;X2 � y2 a sÞ þ PyðX1 > X2;X1 � y1 a sÞ

¼
ð s=s

�y
F z þ m

s

� �
fðzÞ dz þ

ð s=s

�y
F z � m

s

� �
fðzÞ dz:

Now the assertion follows on di¤erentiating both sides with respect to s.
(ii) Follows through di¤erentiation.
(iii) For x A <, we have s 0ðxÞ ¼ tðxÞ=FðxÞ, where tðxÞ ¼ 2xFðxÞ þ fðxÞ.

Now, for x A <, t 0ðxÞ ¼ 2FðxÞ þ xfðxÞ and t 00ðxÞ ¼ ð3 � x2ÞfðxÞ. Since,
limx#�y t 0ðxÞ ¼ 0, t 0ð0Þ ¼ 1 and limx"y t 0ðxÞ ¼ 2, it follows that t 0ðxÞ < 0
for x < y0 and t 0ðxÞ > 0 for x > y0, where y0 A ð�

ffiffiffi
3

p
; 0Þ is the solution of

t 0ðyÞ ¼ 0. Also, since, limx#�y tðxÞ ¼ 0, tð0Þ ¼ 1ffiffiffiffi
2p

p and limx"y tðxÞ ¼ y, it
follows that tðxÞ < 0 for x < z0 and tðxÞ > 0 for x > z0, where z0 A ðy0; 0Þ is
the solution of the equation tðzÞ ¼ 0. Thus, it follows that sðxÞ is a decreasing
function of x if x < z0 and it is an increasing function of x if x > z0. Now the
result follows on noting that limx#�y sðxÞ ¼ y and sð0Þ ¼ 0.

Theorem 2.1: (i) Let b0 ¼ � 1
a

a2s2

2 þ ln 2 þ ln F asffiffi
2

p
� �n oh i

and c0 ¼ � as2

2 . Then,

under the LINEX loss function (1.2), the estimators dcð:Þ, for b0 a ca c0, are
admissible within the class D2.

(ii) For each m A <þ, the risk function RmðdcÞ is a decreasing function of c if
c < b0 and it is an increasing function of c if c > c0. In particular, under the
LINEX loss function (1.2), the estimators dcð:Þ, for c A ð�y; b0ÞW ðc0;yÞ, are
inadmissible even within the class D2.

Proof. Define, KðmÞ ¼ �ln½EyðeaSÞ�=a, m A <þ, where S ¼ Y2 � M. Then, for
fixed m A <þ, the risk function

RmðdcÞ ¼ eacEyðeaSÞ � ac � aEyðSÞ � 1 ð2:2Þ

is minimized at c ¼ KðmÞ. On using Lemma 2.1 (i), we have

KðmÞ ¼ � as2

2
� 1

a
ln F

1ffiffiffi
2

p asþ m

s

� �� 	
þF

1ffiffiffi
2

p as� m

s

� �� 	� �
:

Now, on using Lemma 2.1 (ii), it follows that

inf
m A<þ

KðmÞ ¼ Kð0Þ ¼ b0; and sup
m A<þ

KðmÞ ¼ lim
m"y

KðmÞ ¼ c0: ð2:3Þ

(i) Since KðmÞ is a continuous function of m, from (2.3), it follows that
KðmÞ assumes all values in the interval ½b0; c0Þ. Thus, we conclude that each
c A ½b0; c0Þ minimizes the risk function RmðdcÞ, given by (2.2), at some m A <þ.
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This establishes that the estimators dc, for c A ½b0; c0Þ, are admissible within the
class D2. The admissibility of the estimator dc0

, within the class D2, follows
from the continuity of the risk function.

(ii) For each fixed m A <þ, RmðdcÞ is an increasing function of c, if
c > KðmÞ, and it is a decreasing function of c, if c < KðmÞ. Since, b0 aKðmÞa
c0, Em A <þ, the result follows.

For a ¼ s ¼ 1 and c ¼ �0:9190 ð¼ b0Þ, �0.7095, �0:5 ð¼ c0Þ, plots of
functions RmðdcÞ, as functions of m, are displayed in Figure 1. Similarly, for
a ¼ �1, s ¼ 1 and c ¼ �0:2350 ð¼ b0Þ, 0.1325, 0:5 ð¼ c0Þ, plots of functions
RmðdcÞ, as functions of m, are displayed in Figure 2.

Remark: (i) It follows from Theorem 2.1 (i) that the generalized Bayes esti-
mator dc0

ðY Þ is admissible within the class D2. For a ¼ s ¼ 1, it is evident from
Figure 1 that the estimator dc, with c ¼ �0:7095, is significantly better than the
generalized estimator dc0

for small values of m and, for large values of m, there is
not much di¤erence in their performances. This suggests that, for a ¼ s ¼ 1, the
estimator dc, with c ¼ �0:7095, should be preferred over the generalized Bayes
estimator dc0

. Similarly, for a ¼ �1 and s ¼ 1, Figure 2 suggests that the esti-
mator dc, with c ¼ 0:1325, should be preferred over the generalized Bayes esti-
mator dc0

.

Fig. 1. Plots of RmðdcÞ, for a ¼ s ¼ 1 (c ¼ �0:9190 ð¼ b0Þ, �0.7095, �0:5 ð¼ c0Þ)

Fig. 2. Plots of RmðdcÞ, for a ¼ �1 and s ¼ 1 (c ¼ �0:2350 ð¼ b0Þ, 0.1325, 0:5 ð¼ c0ÞÞ
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(iv) On using Theorem 2.1 (ii) along with Lemma 2.1 (iii), it follows
that the estimator d0 is inadmissible even within the class D2, provided a A
ð�y;

ffiffiffi
2

p
x0=sÞW ð0;yÞ.

3 A su‰cient condition for inadmissibility

Now consider the class D1 of all equivariant estimators. In this section, we will
exploit the orbit by orbit improvement technique of Brewster and Zidek
(1974) to derive a su‰cient condition for the inadmissibility of equivariant
estimators. The following lemma will be useful in deriving the su‰cient
condition.

Lemma 3.1: (i) For ya 0, the conditional pdf of S ¼ Y2 � yM given that
Y ¼ y ðY ¼ Y1 � Y2Þ is given by

fS jY¼yðxjmÞ

¼
ffiffiffi
2

p

s

2
64 f

yþmffiffi
2

p
s

� �
f

ffiffi
2

p

s
x þ yþm

2

� �n o
þ f

y�mffiffi
2

p
s

� �
f

ffiffi
2

p

s
x þ y�m

2

� �n o
f

yþmffiffi
2

p
s

� �
þ f

y�mffiffi
2

p
s

� �
3
75; x A <:

(ii) For ya 0,

EyðeaS jY ¼ yÞ ¼ e�ay=2ea2s2=4 e�am=2 þ emðy=s2þa=2Þ

1 þ emy=s2 :

(iii) For a > 0 and b A <, define

xa;bðmÞ ¼
e�bm þ e�ð2a�bÞm

1 þ e�2am
; m A <þ: ð3:1Þ

Then, for b A ð�y; 0ÞW ð2a;yÞ, xa;bðmÞ is an increasing function of m A <þ,
and, for b A ð0; 2aÞ, xa;bðmÞ is a decreasing function of m A <þ.

(iv) For fixed ya 0, define cyðmÞ ¼ �ln½EyðeaS jY ¼ yÞ�=a, m A <þ. Then,
for a < 0,

inf
m A<þ

cyðmÞ ¼
y

2
� as2

4
¼ c�ðyÞ; say and sup

m A<þ

cyðmÞ ¼ y; ð3:2Þ

and for a > 0

inf
m A<þ

cyðmÞ ¼
y
2 � as2

4 ; if y < � as2

2

�y; if y > � as2

2

(
¼ cP; I ðyÞ; say; ð3:3Þ

sup
m A<þ

cyðmÞ ¼
y; if y < � as2

2
y
2 � as2

4 ; if y > � as2

2

(
¼ cP;SðyÞ; say: ð3:4Þ
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Proof. (i) Let fY ðyjmÞ denote the pdf of Y. Then, the conditional cdf of S
given that Y ¼ y ðya 0Þ is given by

FS jY¼yðxjmÞ ¼ PyðS a x jY ¼ yÞ ¼ 1

fY ðyjmÞ lim
h#0

NðhÞ
h

;

where

NðhÞ ¼ PyðS a x; y � h < Y a yÞ

¼
ðx=s

�y
F

y þ m

s
þ z

� �
�F

y � h þ m

s
þ z

� �� �
fðzÞ dz

þ
ð x=s

�y
F

y � m

s
þ z

� �
�F

y � h � m

s
þ z

� �� �
fðzÞ dz

) lim
h#0

NðhÞ
h

¼ 1

s

ð x=s

�y
f

y þ m

s
þ z

� �
fðzÞ dz þ

ðx=s

�y
f

y � m

s
þ z

� �
fðzÞ dz

" #
:

Now the result follows on di¤erentiation and using the fact that the pdf of Y is
given by

fY ðyjmÞ ¼ 1

s
ffiffiffi
2

p f
y þ m

s
ffiffiffi
2

p
� �

þ f
y � m

s
ffiffiffi
2

p
� �� �

; ya 0:

(ii) The assertion follows from (i), on using the fact that the moment
generating function of a V @NðQ; r2Þ random variable is given by MV ðtÞ ¼
expðQt þ r2t2=2Þ.

(iii) Follows through di¤erentiation.
(iv) On using (ii), for ya 0, we get cyðmÞ ¼

y

2 � as2

4 � ln½xa;bðmÞ�=a, where
a ¼ � y

2s2 , b ¼ a=2 and xa;bðmÞ is given by (3.1). Now, on using (iii), it follows
that, for a A ð�y; 0ÞW ð0;�2y=s2Þ, cyðmÞ is an increasing function of m A <þ.
Therefore, for a < 0 or y < �as2=2 < 0,

inf
m A<þ

cyðmÞ ¼ cyð0Þ ¼
y

2
� as2

4
and sup

m A<þ

cyðmÞ ¼ lim
m"y

cyðmÞ ¼ y:

On using (iii), we also conclude that, for a A ð�2y=s2;yÞ, cyðmÞ is a decreas-
ing function of m A <þ. Therefore, for �as2=2 < y < 0 and a > 0

inf
m A<þ

cyðmÞ ¼ lim
m"y

cyðmÞ ¼ �y and sup
m A<þ

cyðmÞ ¼ cyð0Þ ¼
y

2
� as2

4
:

Hence the assertion follows.
Let c�ð:Þ, cP; I ð:Þ and cP;Sð:Þ be as defined by (3.2), (3.3) and (3.4), respec-

tively. For a real valued function cð:Þ, defined on the non-positive part of the
real line, let
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c1ðyÞ ¼ max½cðyÞ;c�ðyÞ�; ya 0; ð3:5Þ

and

c2ðyÞ ¼
cP; I ðyÞ; if cðyÞ < cP; I ðyÞ
cðyÞ; if cP; I ðyÞacðyÞ < cP;SðyÞ
cP;SðyÞ; if cðyÞbcP;SðyÞ

8<
: ; ya 0; ð3:6Þ

denote the curtailed (truncated) versions of cð:Þ.

Theorem 3.1: For the problem of estimating yM under the LINEX loss function
(1.2), consider an equivariant estimator dcðY Þ ¼ Y2 þ cðY Þ, where cð:Þ is a
real valued function defined on the non-positive part of the real line.

(i) Suppose that a < 0 and Py½cðY Þ < c�ðY Þ� > 0, Ey A <2. Then, the esti-
mator dcðY Þ is inadmissible and is dominated by dc1

ðY Þ ¼ Y2 þ c1ðY Þ, where
c1ð:Þ is given by (3.5).

(ii) Suppose that a > 0 and Py½fcðY Þ < cP; I ðY ÞgW fcðY Þ > cP;SðY Þg� >
0, Ey A <2. Then, the estimator dcðY Þ is inadmissible and is dominated by
dc2

ðY Þ ¼ Y2 þ c2ðY Þ, where c2ð:Þ is given by (3.6).

Proof. (i) Suppose that a < 0. For y A <2, consider the risk di¤erence

D1ðmÞ ¼ RmðdcÞ � Rmðdc1
Þ

¼ Ey½DyðY Þ�;

where, for ya 0,

DyðyÞ ¼ ½eacðyÞ � eac1ðyÞ�EyðeaS jY ¼ yÞ � a½cðyÞ � c1ðyÞ�:

Fix ya 0. Clearly, if cðyÞbc�ðyÞ, then DyðyÞ ¼ 0, Ey A <2. Now suppose
that cðyÞ < c�ðyÞ. Then, on using Lemma 3.1 (iv) along with the fact that
ex > 1 þ x, Ex0 0, it follows that

DyðyÞb ea½cðyÞ�c�ðyÞ� � 1 � a½cðyÞ � c�ðyÞ�; Ey A <2

> 0; Ey A <2;

Now, since Py½cðY Þ< c�ðY Þ�> 0, Ey A <2, it follows that D1ðmÞ> 0,
Ey A <2.

(ii) Similar to the proof of (i) and therefore omitted.

4 Applications

Parsian and Farsipour (1999) proposed, among others, the following estima-
tors

dtðY Þ ¼ Y2; ð4:1Þ
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dxðY Þ ¼ Y2 þ
1

a
ln 1 þ ðeaY � 1ÞF Y

s
ffiffiffi
2

p
� �� �

; ð4:2Þ

d3; cðY Þ ¼
Y1þY2

2 ; if Y > �
ffiffiffi
2

p
cs

Y2; if Y a �
ffiffiffi
2

p
cs

�
; c > 0: ð4:3Þ

and

dhðY Þ ¼ Y2 �
as2

2
: ð4:4Þ

Note that dtð:Þ and dhð:Þ coincide with d0ð:Þ and dc0
ð:Þ, respectively. Under the

LINEX loss function, given by (1.2), simple applications of Theorem 3.1 yield
the inadmissibility of estimators given by (4.1)–(4.3). Below, we provide domi-
nating estimators for each of the estimators given by (4.1)–(4.3).

Estimator Dominating Estimator

dtðY Þ d�0 ðY Þ ¼ Y2; if Y a � jaj
2 s2

Y1þY2

2 � as2

4 ; if Y > � jaj
2 s2

(

dxðY Þ d�x;aðY Þ ¼
max½dxðY Þ;Y2 þ c�ðY Þ�; if a < 0

min½dxðY Þ;Y2 þ cP;SðY Þ�; if a > 0

�

d3; cðY Þ, d�3; c;aðY Þ,

where, c�ð:Þ and cP;Sð:Þ are given by (3.2) and (3.4), respectively, and, for
a < 0,

d�3; c;aðY Þ ¼
Y1þY2

2 � as2

4 ; if Y bmin �
ffiffiffi
2

p
cs; as2

2

� �
Y2; if Y < min �

ffiffiffi
2

p
cs; as2

2

� �
;

8<
:

for 0 < a < 2
ffiffiffi
2

p
c
s

,

d�3; c;aðY Þ ¼

Y1þY2

2 � as2

4 ; if Y b� as2

2
Y1þY2

2 ; if �
ffiffiffi
2

p
csaY < � as2

2

Y2; if Y < �
ffiffiffi
2

p
cs;

8><
>:

for ab 2
ffiffiffi
2

p
c
s

,

d�3; c;aðY Þ ¼
Y1þY2

2 � as2

4 ; if Y b� as2

2

Y2; if Y < � as2

2 :

(
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Remark: (i) It can be seen that the results of Theorem 3.1 fail to find an esti-
mator dominating the generalized Bayes estimator dhðY Þ, given by (4.4). The
question of admissibility or inadmissibility of the generalized Bayes estimator is
unresolved.

(ii) On using Theorem 3.1, it can be shown that for a < 0, estimators dcð:Þ,
for c < � as2

4 , are inadmissible. Also, for a > 0, estimators dcð:Þ, for c0 c0, are
inadmissible.
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