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Abstract 

This paper deals with the empirical Bayes testing problem in some nonexponential families 
using asymmetric Linex error loss. The asymptotic optimality of the proposed empirical 
Bayes testing procedures is studied. For a certain class of discrete priors, the convergence 
rate is of order O(n-~(log n) ~+') for arbitrarily small e > 0. For a certain class of continuous 
priors such that f~ is decreasing, the convergence rate is of order O(n-2/3 + ~*) for arbitrarily 
small 6" > 0. 
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1. Introduction 

Empirical Bayes methods have received considerable attention since Robbins 
(1956). There is vast literature on empirical Bayes methods dealing with exponential 
families. In recent years, there have been a growing interest in nonexponential families 
as well. (See Van Houwelingen, 1987; Nogami, 1988; Liang, 1990 for a uniform 
distribution U(0, 0), and Datta, 1991 for a more general setup. See Singh and Prasad, 
1989 and Prasad and Singh, 1990 for a truncated exponential distribution, and Tiwari 
and Zalkikar, 1990; Liang, 1993, for a Pareto distribution.) In the above references, the 
authors have considered only using either squared error loss for estimation problems, 
or symmetric linear error loss for testing problems. Under these symmetry consider- 
ations, equal seriousness for overestimation and underestimation is assumed. How- 
ever in some cases, symmetric loss function may be inappropriate and unrealistic. 
Varian (1975) gives such an example in a Bayesian approach to a real estate assess- 
ment. He has pointed out that an underestimation of a house's market value would 
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only result in the loss of tax revenues and an overestimation would lead both the 
house owner and the assessment office into lengthy and expensive court procedures. 
Varian has found the usual squared error loss inappropriate, and introduced an 
asymmetric loss function called Linex, which addresses different seriousness to overes- 
timation and underestimation respectively. Later, Zellner (1986) employs the Linex 
loss in the Bayesian analysis of several central statistical estimation and prediction 
problems. Also Kuo and Dey (1990) consider estimation of a Poisson mean using the 
Linex loss. The model is useful in the software reliability assessment. Basu and 
Ebrahimi (1991) have used the Linex loss in a life time testing and reliability 
estimation. There are also other typical empirical Bayes problems including estima- 
tion or testing on defectives proportion, mean worker accident rate, bone loss rate for 
an osteoporosis high risk group, etc. (Berger, 1985). The Linex loss can be useful for 
these problems. We all know that the loss function plays an important role in 
Bayesian analysis, consequently it also severely influences the empirical approach to 
approximating the Bayes rule. However, there is tack of such studies on asymmetric 
loss in the empirical Bayes analysis. The author feels that this area deserves more 
attention. 

In empirical Bayes analysis dealing with nonexponential families, there are two 
commonly seen models. One is, given 0, the random variables X has a p.d.f, of the 
form 

a(x) 
f(xlO) = ~ )  lto.o)(X) 

with a(x) a known function and A(O) so determined that f(xlO) is a density. 
Examples are uniform distribution and truncated exponential. The other model is 
a conditional p.d.f, of the form 

Examples are translated exponential and Pareto distribution. Note that the second 
model has a much thicker right tail than the first one. In this paper, we will be dealing 
with the second model. The second model has greater difficulty in obtaining asymp- 
totic optimality results and is more challenging than is the first model. 

Suppose that, given 0, the random variable X has a distribution with p.d.f, of the 
form: 

f(xlO) = ~ I~o,~o~(x), (1.1) 

where a(x) > 0 is a known function and A(O) = ~o a(x)dx < oo for all 0 > 0. Assume 
the parameter 0 is a realization of a random variable 6) having a prior distribution 
G on [0, oo). Let 0o be a known positive constant. We are interested in testing 
H 0 : 0  ~> 0o against Hi:  0 < 0o. The following asymmetric Linex loss function is 
employed. 
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Lo(O) = c(e b(°°-°) - b(Oo - 0 ) -  1)I(o<oo), b 50 ,  c >0 ,  

Ll(0)  = c(e b(°°-°)- b(Oo - O) - 1)1(o>~oo), 

where Li(O) indicates the loss when the decision is in favor of Hi, while 0 is the true 
state of the parameter. The constant c serves to scale the loss function. Since it does 
not affect the Bayes decision rule nor the empirical Bayes study, c is assumed to be 1. 
The constant b determines the shape of the loss function. Varian (1975) and Zellner 
(1986) have discussed the behavior of the loss function and their various applications. 
When b > 0, as 10o - 0l ~ ~ the loss increases almost exponentially for wrongly 
deciding in favor of Ho, and almost linearly for wrongly deciding in favor of H 1. That 
is, overestimation is more serious than underestimation. When b < 0, the linear- 
exponential increases are interchanged. For small value of Ib], the loss function is close 
to the squared error loss. 

In this paper, we propose certain empirical Bayes testing procedures and show their 
asymptotic optimality. We also study the convergence rates for certain classes of 
priors. 

2. Bayes rule and some properties 

Given 0, let X be a random variable having p.d.f, f ( x ]O)  of the form (1.1). 
Throughout  this paper, we assume that a(x) is positive, Lipschitz continuous and 
decreasing in x. A decision rule d is defined to be a mapping from the sample space of 
X into [0, 1] such that d(x) is the probability of accepting Ho given X = x. That is, 
d(x) = P { accept H o I X  = x }. Let L(0, d) denote the loss associated with the decision 
rule d. Then 

L(O, d(x)) = (1 - d(x))d(O)I(o ~ Oo)+ d(x)d(O)l(o<Oo), (2.1) 

where ~(0) = e b t ° ° - ° )  - b ( O o  - O )  - 1,  b > 0. Here we may assume x ~ 00, otherwise 
the action to take is obvious to be in favor of Hi  with zero loss. Therefore, x ~ 0o is 
assumed throughout this paper. The expected posterior loss of d(x) is given by 

f [  L(O,d(x))dG(Olx) = d(x)tp~(x) + c(x), (2.2) 

where 

(pa(x) = a(x) ( ~,0o d(0) x g(0) dG(0)~ (2.3) 
f . ( x ) \ ) o  A--~ dG(O) - ;ioA(O) / 

with Jb(x) = ~of(xlO)dG(O), the marginal p.d.f, of X, and where 

F c(x) = f(O)dG(O[x). 
0 
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Therefore the Bayes decision rule is 

{10 ifcp~(x)~<0, 
da(x)  = if ~o~(x) > 0, 

or equivalently 

1 if HG(x )<<. O, 
d ~ ( x ) =  0 i f H ~ ( x ) > 0 ,  

where H ~ ( x )  = q~o(x)f~(x).  

There are some interesting properties in this Bayesian study, which will be needed 
later. 

Lemma 1. Let  ¢1 (x )  = So(1/A(O))dG(O). Then 

f ~ ( x )  = a ( x ) ¢ l ( x ) .  

Proof. Lemma follows immediately from the definition of ¢1(x). [] 

Lemma 2. Let  ¢2(x) = So¢l( t )d t  and ¢3(x) = ~oe-b '¢l( t)dt .  Then 

q~(x) = - t'(x) + ~  { b ( ¢ 2 ( x ) -  202(00))-  beb°° (O3(x ) -  203(00))}. 

Proof. By integration by parts, 

JooA(O) 

I2 ° = g~(0o)01(0o) -- g"(0)¢,(0) d0 - -  e(X)¢I(X ) + ~(00)01(00) 

+ E'(O)¢,(O) dO 
0 

= -- g~(X)¢l(X) + b(¢z(X) - 202(00)) - beb°°(@3(x) -- 2¢3(0o)), 

since Y(0o) = 0. By (2.3), Lemma 1 and the above computation, Lemma 2 follows. [] 

The minimum Bayes risk is derived below. Let 

A~ = {x/> Oo: q,~(x) > o} = {x >/Oo: H~(x) > 0} 
and 

B~ = {x >~ 0o: (pG(X) < 0} = {x/> 0o: HG(x) < 0}. 

Define 

~ supA~ if A~#~b, 
ctG = (Oo if A~ = ~b 
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f lo=  { i~BG if B # ~b, 
if B=q~.  

From (2.3) it is obvious that go ~< rio, as 

fo  ° d G ( O ) -  dG(O) 
f (O) d(O) 

A(O) .JooA(O) 

is decreasing in x. The minimum Bayes risk is 

r(G, de) = L(O, de (x ) )  d G ( e l x ) f o ( x )  dx  
=0o = 0  

f/ = (do(x)q~o(x)  + c ( x ) ) f o ( x ) d x .  (2.4) 
=00 

Let Co be the class of all prior distributions on [0, ~ ) such that (2.4) is finite and let 
C[0,m] be the class of all prior distributions on [0,m]. (The number m can be an 
arbitrary upper bound of the prior support. It reflects the prior knowledge of the 
support and is not necessarily to be sharp.) We will consider two major subclasses of 
Co. Let C1 = { G E Co: G is a discrete distribution with finitely many discontinuity 
points } and let C 2 = { G 6 C[0,m ] : fo is decreasing and G satisfies condition (2.5) }: 

G(y)  - G(x )  >>. co(y -- x )  (2.5) 

for those x and y such that a o -  ho ~< x ~ y ~< go or re  4 x ~< y ~< fie + ho, where 
co > 0 is some constant. 

Lemma 3. Assume that G ~ CI. Then f o ( x )  is decreasing in x on any interval 

[mi, mi+ l), i = 1 . . . . .  N, where ml < ... < mN are support points o f  G and mu+ l = ~ .  

Proof. From definition of q/l(x) in Lemma 1, ~kl(x) is constant on [mi,mi+l).  Since 
fo (X)  = a(x)~hl (x)  from Lemma 1 and since a(x)  is decreasing, f o ( x )  is decreasing on 

[mi, mi+l).  [] 

Lemma 4. Assume that G ~ C2. For x >>. m, we have 

do(x)  = dG(m). 

Proof. For x / >  m, we have 

~ o f(O) ~ m 

Thus q~(x) does not change sign on Ira, ~ ). Therefore, do(x)  = do(m) for x/> m. [] 
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3. Empirical Bayes testing procedures with rate 

In the empirical Bayes framework, we consider i.i.d, copies (X1,01) . . . . .  (X., 0,) of 
(X, 0), where 0 has some unknown prior distribution G, and given 0, X has a distribu- 
tion with p.d.f, f(x[O). The Xs are observable but 0s are not. Let X1 . . . . .  X, be 
a previously seen sequence of i.i.d, random variables with p.d.f, fG(x). At the current 
stage, stage n + 1, let 0 be a realization of O and X be the associated current 
observation. An empirical Bayes procedure for hypothesis testing concerning the 
current status of the parameter, Ho: 0 >/0o against Hi:  0 < 0o, can be obtained by 
first estimating H~(x) by 

H,(x)  = H,(X1 . . . . .  X.; X = x), 

and then adopting the following empirical procedures. For G in Ca, we adopt 

01 if H.(x)  > 0  for 0o. 
d,(x) = if H,(x)  <<, 0 X >~ (3.1) 

For G in Cto.m t, we adopt 

d . ( x ) = ~ 0  if H . ( x ) > 0  forOo<~x<<m (3.2) 
( 1  if H.(x)  <~ 0 

o r  

d,(x) = d,(m) for x > m. (3.3) 

We shall obtain H,(x)  by estimating fo(x), ~,2(x) and ~bs(x ) in H~(x). Note that 

t ffe-b%(t)dt ~Pz(x)= ( f G ( t ) d t  and ~93(x)= 
Jo a ( t )  " 

There are unbiased estimators given by 

1 i 1 1 ~ . e  -bx' 
~2(x) = n i=, ~ l ' x ' < ~ '  and ~3 (x )=  n i=1 ~ I,x,<~x,. 

We use 

f . (x )  = 
F,,(x + h) - F,,(x) 

h 

to estimate fo(x), where F. is the empirical distribution function based on 
{X~ . . . . .  X.}. The estimator f,,(x) is a kernel estimator with a left-sided uniform 
kernel K (t) = I t_ 1,o1(0. The use of a left-sided kernel instead of a symmetric one is for 
the consistency reason to avoid dominant bias at left boundary. The expected Bayes 
risk of the empirical Bayes decision rule d. is 

Er(G,d,) = (d,(x)q~o(x) + c(x)) f~(x)dx ,  (3.4) 
=00 

where the expectation is taken with respect to the joint distribution of X1, ..., X . .  
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A sequence of empirical Bayes testing procedures {dn}n~°=l is said to be 
asymptotically optimal if E r ( G , d . ) - r ( G ,  d 6 ) ~ O  as n ~ .  Moreover, if 
Er(G,d . )  - r(G, de) = O(~.), where {~.}.%1 is a sequence of positive numbers such 
that l im.~o ct. = 0, then {d.}.% 1 is said to be asymptotically optimal with conver- 
gence rate of order { ct. }~= 1. Here we shall discuss the asymptotic optimality property 
for G in Ca, the most general class of priors, and also various convergence rates of 
Er(G, d,) - r(G, de) for G in restricted classes C1 and C2, respectively. 

3.1. Asymptot ic  optimality f o r  Ca 

By (2.4) and (3.4), we have 

0 <~ Er(G,d . )  - r(G,d~) 

= (d , (x )  - d G ( x ) ) q ) G ( x ) f e ( x ) d x d # ~ ,  (3.5) 
= O0 

where #~ is the product measure on the space of sequence (xl, x2,x3 . . . .  ) resulting 
from the joint distribution of (Xx, X2, X3 . . . .  ). For  any prior G in Ca, it is easy to see 
from the finiteness of (2.4) that q)e (x ) f e (x )  is integrable with respect to the Lebesgue 
measure, and hence is integrable with respect to dx d#~. By the Lebesgue-dominated 
convergence theorem applied to (3.5), we have 

0 ~< lim Er(G,d , )  - r(G, dG) 
n ~ o~3 

= lim d , (x )  - de (x  ¢pa (x ) fG(x )dxdp~ .  
=00 n ~ o o  

Thus the asymptotic optimality can be obtained by showing 

lim d , (x )  = de (x )  a.s., 
n ~ c t )  

which is easily seen from that 

H , ( x )  ~ H e ( x )  a.s. 

with respect to the product measure of Lebesgue measure a n d / ~ .  

3.2. Convergence rate over C1 

Suppose G has discontinuity at {mi}~=l. It is easy to see that Ha(x) ,  ~oe(x) and 

fa(x)  have jumps at { mi}/u= 1, and are continuous on [mi, mi +1), i =  1 . . . . .  N. 
By (2.4) and (3.4), we have 

0 <~ Er(G,d , )  - r(G, dG) 

~0  °C' = (Ed , ( x )  - d o ( x ) ) t p o ( x ) f G ( x ) d x .  (3.6) 
o 
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From the definitions of ~G, fig and do, and from Eqs. (3.2), (3.3) and (3.6), we have 

Er(G,d , )  - r(G, do) 

= ~°P.d~(x)  = 1} qoo(x) fo (x )dx  + P{d~(x)  = 0} I~%(x) l fo (x )dx  
0 C 

f; + P { d , ( x )  = 0} Iq~o(x)lfG(x)dx 
N 

= ~°P{Hn(x)~O}~oG(x)fG(x)dx+ e{H.(x)>O}l~oG(x)lfo(x)dx 
0 G 

f; + P { H , ( x )  > 0} Iq~o(x) l f~(x)dx,  (3.7) 
N 

if mN >~ fl~, where Fo is the distribution function of fo. As for c~ ~ mN ~< fiG, the 
second term above drops; and as for mN< c~G, the second term above drops and the 
upper bound of the integral in the first term is replaced by raN. However, without loss 
of generality, we may assume mN ~> riO. The convergence rate of (3.6) is investigated 
through the following lemmas. 

Lemma 5. For mi <<. x < mi+ l - h <~ aG, we have 

P { H n ( x )  <<. 0} = O(e -r'~'nh) for some constant ¢1 o > 0 

uniformly in x. 

Proof. 

P { H , ( x )  <~ O} = P { H a ( x )  - H . ( x )  >>. Ha(x)} 

P { f ( x ) ( f . ( x )  - fG(x)) + a ( x ) b ( ~ 2 ( x )  - ~2(x)) 

+ 2a(x)b(~2(Oo) - ~/'2(0o)) + a(x)beb°°(~3(x)  -- ~3(x)) 

+ 2a(x)beb°°(~b3(Oo) - ~3(0o))/> n o ( x ) }  

P { f ( x ) ( f . ( x ) - f ~ ( x ) ) > ~ H G ~ ( s X )  } 

+ P 2a(x)beb°°(Os(Oo) -- ~(0o) )  > / ~  • 

~< 

(3.8) 
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The first term in (3.8) is 

= P {F , (x  + h) - F,(x)  - FG(x + h) + FG(x) 

hn~(x)  } 
~> 5f(x) + h f ~ ( x ) - F o ( x + h ) + F o ( x )  . 

Now 

(3.9) 

~x+h 
hr . ( x )  - F~(x + h) + FG(x) = hfG(x) -- ~ f~(t)dt .  (3.10) 

By Lemma 3, fG(t) being decreasing on [mi, mi+l), (3.10) is nonnegative for 
x ~ [mi,m~+~ - h ) .  Also note that HG(x)> 0 for x < ~ .  Therefore the right-hand 
side of the inequality in (3.9) is positive. For h small enough, we also have 

Iltx<X,<x+h) - FG(x + h) + Fo(x)l <~ 1 - FG(x + h) + Fo(x). 

Hence by Bernstein's (Bennett, 1962, p. 34) inequality, the tail probability in (3.9) can 
be bounded as follows. 

(3.9) ~ exp - 2 n ( f  ~(x + h) - F6(x)) + t(x)(1 - Fa(x + h) + F~(x))/3 ' 

where t(x) = (nhH~(x)/5~(x)) + nhf~(x) - nFG(x + h) + nFG(x). Continued from 
the above inequality, we have 

(3.9) ~< exp - 2 n ( f  ~(x + h) - FG(x)) + t(x)/3 

{ (nhHa(x)/25¢(x))2 } 
~< exp - 2n(Fo(x + h) - Fa(x)) + nhno(x) /15f(x)  + nhfo(x)/3 

~< exp { -- nhHZ(x)/25e2(x) 

{ nhf~(x)q~Z(x)/251'Z(x) } 
~< exp - 7/3 + q~(x)/15g(x) ' 

~< e-~'~ "n, (3.11) 

with y]~) = fG(m~-+ ~ )q~(m~)/(175~'Z(m~+ ~ )/3 + 5t~(m~+ 1)q~(m~)/3), where f~(mT+ t) = 
lim~o.fG(m~+ ~ - e) = a(m~+ 1 )¢/~(m~). The last inequality of (3.11) holds because, on 
[rni, mi+ 1), ~oc(x) is constant, fG(x) is decreasing and g(x) is increasing. 

The second term in (3.8) is 

H~(x) 
P { a ( x ) b ( ~ b z ( X ) - ~ 2 ( x ) ) > ~ H ~ ( 5 x ) } = P { ~ 2 ( x ) - ~ 2 ( x ) > ~  5~a(x) }. (3.12) 
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Note  that 

1 

and that, for ml ~< x < mi+ 1, 

1 1 
0 <~ a~j~)I~x,<.x) <~ 

a(x)"  

By Theorem 2 of Hoeffding (1963), we have 

(3.12) ~< exp { - 2n(Ho(x) /5b)  2 } 

= exp{ - 7~'n}, (3.13) 

where 7~ ~ 2 2 - 2 = 2tpo(mi)fd(mi+l)/25b . By applying Theorem 2 of Hoeffding (1963) in 
a similar way to the rest terms in (3.8), we have 

- -  t o  n 

P { 2 a ( x ) b ( g ) 2 ( O o ) -  ~k2(0o))/> H e ( x ) / 5 }  <<, e ~3 , (3.14) 

n {a(x)beb°°(~3(x)  -- ¢ s ( x ) )  >~ He(x ) /5  } ~< e -r'~", (3.15) 

P {2a(x)beb°°(O3(Oo)-  q~3(0o)) ~> H e ( x ) / 5 }  <~ e -~'" (3.16) 

for mi ~ x < mi+l <~ eta, where ¢~), 7~ ) and 7(~ ) are some positive constants. By (3.11) 
and (3.13) to (3.16), Lemma 5 follows. [] 

Lemma 6. For fie <~ mi ~ x < mi+ 1 - h <<. m, we have 

P { H , ( x )  > 0} = O(e  ~'g,h) for some constant 7~ ) > 0 

uniformly in x. 

Proof. 
P{ H . ( x )  > O} = P { H e ( x )  - U . ( x )  < He(x)}  

hHe(x )  
= P F . ( x  + h ) -  F . ( x ) - -  F e ( x  + h) + Fe (x )  < 5Y(x) 

- F e ( x  + h) + Fe(x)} 

+ P { a ( x ) b e b ° ° ( t ~ 3 ( x ) - O 3 ( x ) ) < H ~ ( 5 x )  } 

+ h fe (x )  

(3.17) 
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Note that H a ( x ) =  ~p~(mi)f~(x)<~ qg~(mi)fo(m:~+l)< 0 and that, when h is suffi- 
ciently small 

('x+h 

0 <~ h fa(x)  - Jx fG( t )d t  

h O l ( x ) ( a ( x )  -- a(x  + h)) = O(h2).  

Therefore 

hH~(x)  
- -  + hf~(x)  - FG(X + h) + F~(x)  < O, 
5:(x) 

when h is sufficiently small. Then we can apply Bernstein's inequality to the first term 
in (3.17) and get 

hH6(x)  
P F , ( x + h ) - F , ( x ) - F G ( x + h ) + F ~ ( x ) <  5:(x) 

+ h f6(x )  - FG(x + h) + Fc(x)}  

~< exp - 2n (Fo(x  + h) - Fo(x) )  - t(x)(1 - FG(x + h) + f ~(x))/3 ' 

= O (exp { nhHg(x)  
5 0 f a ( x ) : 2 ( x ) } )  

= O(e-  ~'~"h), 

where 7~ ) = fG(m(+ x ) ~0g (rni)/50: Z(mi + 1). 
Note that as m~ ~< x < rn~+ ~, by the decreasing property of a(x), 

1 1 
0 ~< a ~ I ~ . <  ~ ~< 

a(x~ ' 

e -bx I 
0 <<. a~X)) I,x <.~, <<. a(x~)" 

Again apply Theorem 2 of Hoeffding (1963) to the rest four terms in (3.17). Similar to 
the proof of Lemma 5, they can easily be shown to be of order O(e-~'~'"), for some 
constant 7~ ) > 0, uniformly in x. Proof is completed. [] 

Note that the constants 7~ °,v~), i = 1 . . . . .  N - 1, can be bounded below simulta- 
neously by 

/4~(x)/25~'2(x) 
inf 

%<. . . . . .  # ~  . . . .  7fG(x)/3 + H ~ ( x ) / 1 5 : ( x ) '  

which is greater than zero by the definition of ~G and/3G and the discreteness of the 
prior G. (Both ~a a n d / ~  must be one of the support points.) 
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Lemma 7. 

fm ~e{nn(x )  > 0} Iq)G(x)lfo(x)dx = O(e -~8"h) 
N 

for some constant 7a > O. 

Proof. Follow the argument in the proof of Lemma 6, one can get 

fm ' P { n , ( x )  > 0} IrPG(x)lfG(x)dx 
N 

= O  

Note that ~0~ ) and 01(x)  are both constants on [mN, 0O ). Therefore, 

H2(x)  Ol(mN)~p6(mN) 2 a(x) 

fo(x):2(x) ~v2 (x) 

is continuous on IroN, 0O ) and then one can apply the mean-value theorem to the 
above integral. 

,n~P{H,,(x) > O} I'VG(x)lf~(x)dx 

= O ( e x p { _ n h ~ b , ( m N ) t p ~ ( m N ) 2 a ( m * ) }  ~ 

= O ( e - " ~ " ) ,  m* • ( m r ,  ~ ), 

where 7a = g/l(mN)q~6(mN)2a(m*)/50:2(m*) and that q)~(x)f~(x) is integrable by the 
finiteness of the Bayes risk in (2.4). [] 

Theorem 1. Let {dn }~% ~ be the sequence of empirical Bayes testino procedures construc- 
ted through (3.2) and (3.3) with h = O(n-1  (log n) 1 +") for arbitrarily small e > 0. Then 
{ dn } ~  1 has the following asymptotic optimality: 

Er(G,d~) - r(G,d~) = O(n -  l ( logn)l  +') 

for all G ~ C1. 

Proof. Note that 

f " (Ed,(x)  d~(x))q)G(x) f~(x)dx = O(h)  
i - h  

for i = 1 . . . . .  N. Therefore, from (3.7), Lemmas 5-7, we have 

0 <~ Er(G,d~) - r(G, d6) 

= O(e -vnh) + O(h), 
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for some constant 7 > 0. By choosing h = O(n-1( log  n) 1 +~), we have 

Er(G, dn) r(G, da) O (  (l°gn)l  +~ ) 

3.3. Convergence rate over C2 

Lemma 8. Any prior distribution G in C2 is continuous. 

Proof. Suppose G is discontinuous with a jump at mo ~ [0, m]. By definition of ~b~(x) 

~ , ( x )= f~Al (o )dG(O) ,  

~Ol(x) is increasing and has a jump at mo. Thus, fa(x)  = a (x )~ l ( x )  has a jump at mo 
too. Since a(x) is continuous by assumption, f~(mo)<fG(mo),  which contradicts 
the condition f~(x)  being decreasing. Hence G has to be continuous. Proof is 
completed. [] 

Since G is continuous, the function ~oG(x) is continuous too. Thus 

~0~(~G) = ~%(f~ )  = 0. 

The following lemmas are useful to study the asymptotic behavior of 
Er(G, dn) - r(G, da). 

Lemma 9. (a) For ~tG -- ho <~ x <<. ~a, we have 

qoG(x) >>. c~(otG - x) for some constant c~ > O. 

(b) For fl~ <~ x <~ fig + ho, we have 

I~%(x)l >f c ,~(x  - f i e ) .  

Proof. We will give the proof for the first statement only. The proof for the second 
statement is similar. Since ~OG(~G) = O, we have 

~oG(x) = ,pc(x) - 'VG("G)q'I("G) 
¢ 1 ( x )  

1 ( foo t(o) da'O" 1 "~o ao) da(0)) 
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_ 1 f~'~ E(O) dG(O) 
4,~(x).Ix A(O) 

E(oto - ho) 
>1 ~Ol(ao)A(ao -- ho) c°(ct° - x),  

VarH.(x) ~< 5E2(x)Varf.(x) + 5b2a2(x ) (Var~2(x )  

+ 4Var ~2(0o) + e 2b°° Var 1ff3(X ) + 4e 2b°° Var ~3(0o)), 
where 

1 
Varf.(x) ~< - ~ ( f a ( x  + h) - t o ( x ) )  

1 
<~ ~ f o ( x )  (since fo  is decreasig) 

Var~2(x) 1 v a r l t x ~ x )  < 1 fifo(t). 1 
= n a ( X )  n a~fj) at <<" a2(x)n 

Now 

by condition (2.5). [] 

Lemma 10. 

f0 'o o ( E d . ( x ) -  dG(x ) )q )G(x ) fo (x )dx  = \ \ n h ]  ] + O(h2-~) 

for  any arbitrarily small 6 > O. 

Proof. 

fl ,o ;o ,o 
(Ed . ( x )  - d o ( x ) ) q ~ o ( x ) f o ( x ) d x  = P { H . ( x )  <~ O } H o ( x ) d x  

0 0 

~ e{IN.(x) - H~(x)l >//-/o (x)} HG(x)dx 
O 

f; <~ E I H , ( x )  - g o ( x ) 1 2 - ~ ( g o ( x ) ) - l + ~ d x ,  
0 

by Chebyshev's inequality, for any arbitrarily small ~ > 0. The asymptotic behavior ot 
H,(x) is studied below. 

By the c,-inequality (Lo~ve, 1962, p. 155) and then Jensen's inequality, we have 

E I H . ( x )  - HG(x)[ 2-° ~< 2E l B . ( x )  - EH. (x ) [  2-~ + 2 1 E H . ( x )  - Ha(x)[ 2-° 

~< 2(Var n.(x))1-~/2 + 2 I E H . ( x )  - Ho(x)l 2-~. 
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and 

Var q~3(x) = 1 Var e-bx I,x ~x, <~ 1 
n a(X)  a2(x)n" 

Therefore, 

V a r H " ( x ) = O ( s u p ° ° < ' x ~ d - 2 ( x ) f ° ( x ) ) \  nh = O ( 1 )  (3.18) 

uniformly in x e [0o,C~a]. Since q~2(x) and q~3(x) are both unbiased estimators of 
O2(x) and O3(x) respectively, 

EH.(x)  - Ha(x) = -- f l (x)(Ef . (x)  -- fa(x))  

And since fois  decreasing, 

0 4  E H , ( x ) - - H o ( x )  

¢(x) 
- - ( F a ( x  + h) - Fo(x) - hfa(x)). 

¢ ( x ) ( £ ( x )  - f~(x + h)) 

~ f ( x ) ( fa (x )  - fa (x  + h))} 
~< sup ~ ( h h 

Oo <~ x <~ 

= O(h), (3.19) 

as a(x) is Lipschitz continuous. 
Now we only need to check that the following integral is finite to complete the 

proofi 

;? f° (Ha(x) ) - l+adx  = (~oa(x)fa(x))-l+adx 
a ho a -  ho 

;i ,o <<. (fa(~xo)) -1+° e ;  1 +~ (O~G - -  x)-l+Odx 
o - h o  

by Lemma 9(a) 

< o o .  [] 

Lemma 11. We have 

fi ' (Ed.(x)  - do(x)) ~oa(x)fa(x)dx 
6 

o((S p o x m  
,~h } ) 

+O((,, ,o,<x ~,.sup f ( x ) ( f a ( x ) - f a ( x + h ) ) h ) Z - ~ h  ) 
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(Ed. (m)-  1)tpa(m)(1 - F~(m)) 

= 0 ( (  supo~<~x<<'m¢2(x)fG(x)~l-6/2-~ /I ) 

+ 0 ( (  sup g ' ( x ) ( f a ( x ) - f o ( x + h ) ) h ) 2 - ' )  
aa~x~<,, h " 

Proof.  Fol low the a rgument  in the p roof  of L e m m a  10 and replace sUp0o ~ x ~ ,o by 
suppo~x~r,  in (3.18) and (3.19). [] 

Suppose  that,  as x goes to infinity, fo(x) = O ( x - a ) ,  q > 1 to insure integrabili ty of  
fG, and that  (fG(x) - f a ( x  + h))/h = O ( x - a - 1 ) .  Then  we have the following result. 

Lemma 12. 

~ O((m2_q/,h ) . . . .  ) + O ( h  2-~) for l < q < 2, 
Er(G,d.) - r(G,d~) = [O((nh)_l+a/2) + O(h2_a) for q >~ 2. 

Proof.  As x goes to infinity, we have 

g2(x)fG(x) = O ( x  2-q) and E(x)(f~(x) - fG(x  + h))/h = O(x-q). 

Therefore,  as m ~ oo, 

O ( m  -q) for l < q < 2 ,  
sup f2(x)fa(x) = O(1)  for q >/2  

Oa <~ x <<. m 

and 

sup 
Ba<~x<~m 

¢(x)(fa(x) -- fG(x + h))/h = O(1). [] 

" O(m(2  - q)(213 -t~*) n -  2/3 +di*) 
Er(G,d,) - r(G, da) = [ O ( n _ a / 3 +  ~ ) 

for any arbitrarily small 6" > O. 

Proof.  Theo rem 2 follows immediate ly  f rom the discussion above  with 6* = 6/3. [] 

for l < q < 2 ,  

for q >~ 2 

Theorem 2. Let {d.(x)}~=l  be the sequence of empirical Bayes testing procedures 
constructed through (3.2) and (3.3) with 

~O(mt2-q)/3n -1/3) for 1 < q < 2, 
h = ~ O ( n _ l / 3 )  for q >1 2. 

Then {d.}.%1 has the following asymptotic optimality: 
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Theoretically, for a fixed value m the convergence rate is O(n-2/3 + t~*) as n ~ ~ .  In 

addition to the rate, Theorem 2 also tells us the effect of the values of m, small versus 

large, on the convergence rate. For  1 < q < 2, the large m is, the larger the sample size 
n is required for the asymptotic optimality result to take effect. However, when f~(x) 
decays to zero at a rate not slower than x-2,  the value m has no effect on the rate. 
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