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Abstract In this paper we generalize the quality and cost trade-off problem of Chang and
Hung (Qual Quant 41: 291–301, 2007) under the LINEX loss function. We consider the gen-
eral input characteristic given by the random variable X with moment generating function
m X (t) and output characteristic given by the deterministic transformation Y = g(X). The
two cases we consider are when g(X) is an affine function of X and X follows (1) the gamma
distribution, and (2) the double exponential distribution.

Keywords Asymmetric loss function · Taguchi quality model · Gamma distribution ·
Double exponential distribution · Laplace distribution

1 Introduction

In this paper we generalize the work of Chang and Hung (2007) who examine the trade-
off problem between quality and cost defined by Huang (2001). Huang defines the trade-off
between quality and cost as an extension of the classical Taguchi quality model. In this model
the firm’s total quality cost includes a financial loss due to the loss in quality (the Taguchi loss)
and the cost to control the mean and standard deviation of the input quality characteristic. In
the classical Taguchi model, the quality loss is measured using the symmetric square error
loss function. Chen and Chou (2004) generalize Huang’s trade-off problem between quality
and cost by introducing asymmetric loss functions. Chen and Chou consider the asymmet-
ric quadratic quality loss function and the asymmetric linear quality loss function. Chang
and Hung have further generalized the work of Chen and Chou by considering the trade-off
problem between quality and cost under the asymmetric LINEX (LINear EXponential) loss
function of Varian (1975). The LINEX loss function has received considerable attention over
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the years. Some basic properties of the LINEX loss function and the effects of asymmetry
on some well-known statistical models are discussed in Zellner (1986).

Chang and Hung (2007) consider the trade-off problem between quality and cost for the
case when the input quality characteristic is normally distributed. In this paper we will gen-
eralize that result and show that the input quality characteristic may have any distribution for
which a moment generating function exists provided that the input–output relationship is an
affine function. However, some distributions are analytically and numerically more tractable
than others. As examples we consider input quality characteristics from the gamma distri-
bution and the double exponential distribution. These distributions are of particular interest
because they provide alternatives to the log-normal distribution and the normal distribution,
respectively. The gamma distribution provides a flexible family of distributions which con-
tains other well-known distributions such as the chi-squared distribution and the exponential
distribution as members. The gamma distribution can be parameterized to take many shapes
to describe the stochastic behavior of non-negative random variables. The double exponential
distribution provides an alternative to the symmetric normal distribution which has heavier
tails than the normal distribution.

The remainder of this paper is organized as follows. In Sect. 2 we discuss quality loss
under the LINEX loss function and some potential difficulties and restrictions in using the
LINEX loss function to measure quality loss. In particular we will address the quality loss
problem when the input quality characteristic has a gamma distribution and a double expo-
nential distribution. In Sect. 3 we will consider the corresponding trade-off problems for the
input quality characteristics in the case of the gamma distribution and the double exponential
distribution with numerical examples. We conclude the paper in Sect. 4.

2 Quality loss under the LINEX loss function

We follow the standard notational conventions and let X and Y represent random variables
and x and y represent realizations of these random variables. The input quality characteristic
X is related to the output quality characteristic Y by the transformation Y = g(X). The func-
tion g(X) is commonly taken to be a polynomial function of X . We define the polynomial
function pn(X) as

pn(X) = a0 + a1 X + · · · + an Xn . (1)

The two particular polynomial functions typically assumed in the literature are the affine
function

p1(X) = a0 + a1 X (2)

and the quadratic function

p2(X) = a0 + a1 X + a2 X2. (3)

We denote the target value of the output quality characteristic Y by y0. The loss L y0(Y )

is a measure of the deviance of Y from the desired target value y0. Under the LINEX loss
specification, this loss is given by

L y0(Y ) = k (exp(φ(Y − y0)) − φ(Y − y0) − 1) (4)

for φ �= 0 and k > 0. The sign of φ determines whether over-estimates or under-estimates
are more heavily penalized. If φ > 0, the LINEX loss function penalizes over-estimation
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Optimal process parameters under LINEX loss 967

more heavily, the term exp(φ(Y − y0)) → ∞ as (Y − y0) → ∞. If φ < 0, the LINEX
loss function penalizes under-estimation more heavily, the term exp(φ(Y − y0)) → 0 as
(Y − y0) → ∞.

In the quality loss problem we are interested in selecting the optimal process parameters
to minimize the expected loss E[L y0(Y )]. By computing the expected loss under the LINEX
loss function, we can see the limitation in the input–output transformations of the quality
characteristics we can consider.

E[L y0(Y )] = E
[
k (exp(φ(Y − y0)) − φ(Y − y0) − 1)

]
(5)

= kE
[
exp(φY ) exp(−φy0) − φY + φy0 − 1

]
(6)

= k (E[exp(φY )] exp(−φy0) − φE[Y ] + φy0 − 1) (7)

Different specifications of the input–output relationship Y = g(X) make E[exp(φY )] easy,
difficult, or impossible to compute analytically. The LINEX loss function is well suited when
the input–output relationship is an affine transformation. The affine function Y = a0 + a1 X
yields

E[exp(φY )] = E[exp(φ(a0 + a1 X))] (8)

= exp(a0φ)E[exp(φa1 X)] (9)

where E[exp(φa1 X)] is the moment generating function of X defined by m X (t) = E[exp(t X)]
with t = φa1. In this case we can rewrite the expected loss in a more convenient and general
form which we will reference throughout the paper.

E[L y0(Y )] = k (exp (φ(a0 − y0)) m X (φa1) − φa1E[X ] − φ(a0 − y0) − 1) (10)

Other specifications for Y = g(X) are not as mathematically tractable. We are not guar-
anteed that E[exp(φY )] will exist in cases where Y = g(X) is a quadratic (or higher order)
polynomial. When g(X) is affine, the LINEX loss function has obtained its maximum math-
ematical tractability. In this case we can consider input quality characteristics from any
distribution for which the moment generating function exists. However, this restriction pro-
hibits the use of several popular continuous distributions such as the log-normal distribution,
the Pareto distribution, and the t-distribution as input quality characteristics.

Chang and Hung (2007) consider the case when g(X) is an affine transformation of the
N (µ, σ 2) random variable X . As a generalization of their work, we will consider the affine
transformation when X follows the gamma distribution and when X follows the double expo-
nential distribution. As mentioned in the introduction, the gamma distribution is a flexible
family of distributions for which the moment generating function exists and which contains
the chi-squared distribution and the exponential distribution as members. The gamma dis-
tribution can be parameterized to approximate the log-normal distribution, which has no
moment generating function, and other distributions restricted to positive values for the sup-
port. The gamma distribution is a viable and useful distribution to consider in connection
with the LINEX loss function. The double exponential distribution is another distribution
for which the moment generating function exists. It is a symmetric distribution which pro-
vides an alternative to the normal distribution and the t-distribution, which has no moment
generating function.

2.1 The gamma input quality characteristic

We first consider the case where g(X) is an affine function and X is a Gamma(α,β) random
variable. We use the typical parameterization of the gamma probability density function
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(pdf). Since several parameterizations exist, we explicitly state the parameterization for the
reader’s convenience. The pdf of a Gamma(α,β) random variable will be given by

f (x) = 1

βα�(α)
xα−1 exp

(−x

β

)
, x > 0 (11)

for α, β > 0. The parameter α is called the shape parameter, β is called the scale parameter,
and �(α) is the typical gamma function defined by the integral

�(α) =
∫ ∞

0
xα−1 exp(−x)dx (12)

for α > 0. In this parameterization the mean is given by E[X ] = αβ and the variance is given
by V[X ] = αβ2. The moment generating function of a gamma random variable exists, and
it is given by

m X (t) =
(

1

1 − βt

)α

. (13)

Substituting the moment generating function and the mean for a gamma random variable
into Eq. 10, the expected loss of quality for a gamma distributed input quality characteristic
is given by

E[L y0(Y )] = k

(
exp (�)

(
1

�

)α

− φa1(αβ) − � − 1

)
(14)

where � = φ(a0 − y0) and � = 1 − a1φβ. The presence of α as an exponent does not
yield an analytical solution. This function will have to be minimized numerically in order to
solve for the optimal parameters α∗ and β∗. However, we can derive an analytical sufficient
condition for a local minimum for the given system parameters. We will first compute the first
partial derivatives with respect to α and β. We remind the reader that d/dx

[
ax

] = ax ln(a)

for a constant a.

∂

∂α
E[L y0(Y )] = − k exp(�)�−α ln(�) − ka1φβ (15)

∂

∂β
E[L y0(Y )] = αka1φ

[
exp(�)�−(α+1) − 1

]
(16)

The second partial derivatives are given by

∂2

∂α2 E[L y0(Y )] = k exp(�)�−α ln(�)2 (17)

∂2

∂β∂α
E[L y0(Y )] = ka1φ

[
exp(�)�−(α+1) (1 − α ln(�)) − 1

]
(18)

∂2

∂β2 E[L y0(Y )] = α(α + 1)k(a1φ)2 exp(�)�−(α+2). (19)

From the second partial derivatives the determinant of the Hessian matrix is given by

|H| = (ka1φ)2 exp(2�)�−2(α+1)
[
α(α + 1) ln(�)2 − [1 − α ln(�)]2

+ 2�α+1[1 − α ln(�)] − exp(−2�)�2(α+1)
]

(20)
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where α and β are restricted to begin positive. After simplifying the determinant, a sufficient
condition for the Hessian matrix to be positive definite is given by

α ln(�)
[
ln(�) − 2�α+1 + 2

] + �α+1 (
2 − exp(−2�)�α+1) − 1 > 0 (21)

for α = α∗ and β = β∗. Notice that we require � = 1 − a1φβ > 0 in order for ln(�) to be
defined. This restriction requires that a1 and φ be opposite in sign.

Analytically, we may consider a more mathematically tractable case by restricting the
shape parameter to the fixed value α0. In this case Eq. 14 is a function of β alone. We can
solve Eq. 16 for β∗

β∗ = 1

a1φ

(

1 −
(

exp(φ(a0 − y0))

α0ka1φ

)1/(α0+1)
)

, (22)

and show that β∗ is a well defined minimum. Substituting β∗ into Eq. 19, we see that
∂2

E[L y0(Y )]/∂β2 > 0 if a1φ > 0.

2.2 The double exponential input quality characteristic

We now consider the case where g(X) is an affine function and X is a double exponential
random variable. The double exponential distribution is a location-scale family with location
parameter α and scale parameter β. We will denote the distribution by DE(α,β). The pdf for
a DE(α,β) random variable is given by

f (x) = 1

2β
exp

(−|x − α|
β

)
, −∞ < x < ∞ (23)

for α ∈ R and β > 0. You may recognize this distribution by another name. The double
exponential distribution is also known as the Laplace distribution. The mean is given by
E[X ] = α and the variance is given by V[X ] = 2β2. The moment generating function of a
double exponential random variable exists, and it is given by

m X (t) = exp(αt)

1 − (βt)2 . (24)

If we substitute the mean and the moment generating function into Eq. 10, the expected
loss of quality is given by

E[L y0(Y )] = k
[
exp (	) 
−1 − φ	 − 1

]
(25)

where 	 = φ(a0 − y0 + αa1) and 
 = 1 − (a1φβ)2. Once again, the expected loss will
need to be minimized numerically to solve for the optimal parameters α∗ and β∗. The first
partial derivatives are given by

∂

∂α
E[L y0(Y )] = ka1φ

[
exp(	)
−1 − 1

]
(26)

∂

∂β
E[L y0(Y )] = 2βk(a1φ)2 exp(	)
−2. (27)

We should remember that β is restricted to be positive. Finding a root of Eq. 27 may be
difficult, and it my be better to apply standard techniques for the optimization of nonlinear
functions (Dennis and Schnabel 1987) directly to Eq. 25. The second partial derivatives are
given by
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∂2

∂α2 E[L y0(Y )] = k(a1φ)2 exp(	)
−1 (28)

∂2

∂β∂α
E[L y0(Y )] = 2βk(a1φ)3 exp(	)
−2 (29)

∂2

∂β2 E[L y0(Y )] = 2k(a1φ)2 exp(	)
−2 [
(2βa1φ)2
−1 + 1

]
. (30)

The first and second partial derivatives require that 1 − (a1φβ)2 �= 0. The determinant of the
Hessian matrix is given by

|H| = 2k2(a1φ)4 exp(2	)
−3 [
2(a1φβ)2
−1 + 1

]
. (31)

After simplifying the expression for the determinant of the Hessian matrix, a sufficient con-
dition for the Hessian matrix to be positive definite is given by

1 + (a1φβ)2 > 0. (32)

This condition is true for all values of a1, φ, and β such that 
 = 1 − (a1φβ)2 �= 0.
Similar to the case of the gamma distribution, we can restrict the double exponential

distribution to have a known scale parameter β0. In this case we can solve Eq. 26 for α∗.

α∗ = 1

a1

[
1

φ
ln

(
1

ka1φ
[1 − (a1φβ0)

2]
)

+ (y0 − a0)

]
(33)

The optimal solution α∗ requires that [1 − (a1φβ0)
2]/ka1φ > 0 in order for

ln
(

1
ka1φ

[1 − (a1φβ0)
2]

)
to be defined. In addition Eq. 28 requires the restriction that


 = (
1 − (a1φβ)2

)−1
> 0, which seems highly restrictive.

While we are able to derive analytical expressions for the partial derivatives and the deter-
minant of the Hessian matrix for both the gamma distribution and the double exponential
distribution, the existence of solutions α∗ and β∗ strongly depends on the values of the system
parameters. Most cases will need to be considered individually, but these general expressions
have yielded some necessary conditions on the system parameters. In the following section
we will combine the loss of quality with the cost to control the process mean and standard
deviation. We will consider cases in which one the parameters α or β is fixed. In these cases
we will find that the solutions are well behaved in practice.

3 The quality and cost trade-off problem

Following Chang and Hung (2007), the cost to control the mean µ and the standard deviation
σ of the input quality characteristic X is given by

CX (µ, σ ) = κ1|µ|r + κ2

σ s
(34)

for κ1, κ2 ≥ 0, r ≥ 1, and s > 0.
We denote the loss of profit due to the loss of quality by π̃ . Huang (2001) assumes that

the loss of profit π̃(Y ) is proportional to the loss of quality, that is π̃(Y ) = δL y0(Y ) where
δ > 0 is the coefficient of loss of profit due to loss of quality or the financial penalty for loss
of quality. Under the LINEX loss function,
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Optimal process parameters under LINEX loss 971

π̃(Y ) = δk
[
exp(φ(Y − y0)) − φ(Y − y0) − 1

]

= γ
[
exp(φ(Y − y0)) − φ(Y − y0) − 1

]
(35)

for γ = δk > 0.
The trade-off problem between quality and cost is defined by the total cost due to the loss

of profit due to the loss of quality and the cost to control the mean and standard deviation of
the input quality characteristic. The total cost function is given by

T (µ, σ ) = CX (µ, σ ) + π̃(Y ) (36)

= κ1|µ|r + κ2

σ s
+ γ

[
exp(φ(Y − y0)) − φ(Y − y0) − 1

]
. (37)

In general we cannot simultaneously minimize both CX (µ, σ ) and π̃(Y ), hence we have a
trade-off problem. When Y is an affine function of the random variable X with mean µ, stan-
dard deviation σ , and moment generating function m X (φa1), the expected total cost function
is given by

E[T (µ, σ )] = κ1|µ|r + κ2

σ s
+ γ

[
exp (φ(a0 − y0)) m X (φa1)

− φa1E[X ] − φ(a0 − y0) − 1] . (38)

Substituting the mean, variance, and moment generating function of the gamma random
variable into Eq. 38, the expected total cost function for the quality and cost trade-off problem
is given by

E[T (α, β)] = κ1|αβ|r + κ2

(αβ2)s/2 + γ exp(φ(a0 − y0))(1 − a1φβ)−α

− γ a1φ(αβ) − γ [φ(a0 − y0) − 1] . (39)

The analogous substitutions for the double exponential random variable yields the expected
total cost function

E[T (α, β)] = κ1|α|r + κ2

(2β2)s/2 + γ exp(φ(a0 − y0))
(
1 − (a1φβ)2)−1

− γ a1φα − γ [φ(a0 − y0) − 1] . (40)

Neither expected total cost functions in Eq. 39 nor Eq. 40 yield nice analytical solutions, as
in the case of the normal input quality characteristic in Chang and Hung (2007). Instead,
both of these expected total cost functions will have to be minimized numerically for given
system parameters κ1, κ2, r , s, γ , φ, a0, a1, and y0.

Both Eq. 39 and 40 indicate that the total cost functions cannot be treated as functions
of two parameters. For the gamma random variable the parameters α and β in Eq. 39 are
not identifiable since they appear together as αβ and αβ2. Heuristically, the total cost func-
tion would be minimized if αβ → 0 and αβ2 → ∞. Similarly, for the double exponential
distribution Eq. 40 would be minimized if α → 0 and β → ∞.

In order to make the optimization problems better posed, we treat the shape parameter
of the gamma distribution as a system parameter, α = α0, and optimize over β. In this
formulation the expected total cost function is now function of a single unknown, β.

E[T (β)] = κ1|α0β|r + κ2

(α0β2)s/2 + γ exp(φ(a0 − y0))(1 − a1φβ)−α0

− γ a1φ(α0β) − γ [φ(a0 − y0) − 1] . (41)

Notice that we require that 1 − a1φβ > 0 if 0 < α0 < 1. The expected total cost function
will have to be minimized numerically. While the flexibility of the gamma distribution is the
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Fig. 1 Gamma distribution with scale parameter β = 1 and different values for the shape parameter α
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Fig. 2 Gamma distribution with shape parameter α = 5 and different values for the scale parameter β

primary source of its attraction, it is also the source of potential intractability. As illustrated in
Fig. 1 and Fig. 2, similar gamma distributions can be constructed from different combinations
of α and β. By fixing α we still have sufficient flexibility to parameterize a variety of gamma
distributions with different shapes.

For the double exponential distribution, we treat the scale parameter β = β0 as a system
parameter and optimize over α. As displayed in Fig. 3, the double exponential distribution
can become so peaked that in extreme cases controlling the mean could be like “finding a
needle in a haystack.” In practice we should expect large values for the system parameter κ1.

E[T (α)] = κ1|α|r + κ2

(2β2
0 )s/2

+ γ exp(φ(a0 − y0))
(
1 − (a1φβ0)

2)−1

− γ a1φα − γ [φ(a0 − y0) − 1] . (42)
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Fig. 3 Double exponential
distribution with location
parameter α = 0 and different
values for the scale parameter β
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As a function of α, Eq. 42 can be minimized analytically when r ≥ 2. In this case,

∂

∂α
E[T (α)] = rκ1α

r−1 − γ a1φ (43)

which yields the minimizer

α∗ =
(

γ a1φ

rκ1

)1/(r−1)

. (44)

When a1φ > 0, the neighborhood of α∗ is locally quadratic with

∂2

∂α2 E[T (α∗)] = r(r − 1)κ1

(
γ a1φ

rκ1

)1/(r−1)

> 0. (45)

3.1 Numerical examples

We consider two numerical examples similar to the examples of Chang and Hung (2007) and
Huang (2001) as illustrations. Let the cost to control the mean and standard deviation of the
input quality characteristic be given by CX (µ, σ ) = 2µ2 + 1/σ 2 by setting κ1 = 2, r = 2,
κ2 = 1 and s = 2. Let the relationship between the input and output quality characteristics
be given by the affine function Y = 50 + 5X by setting a0 = 50 and a1 = 5, and set the loss
of quality penalty γ = 5, the LINEX parameter φ = 1, and the target value y0 = 100.

In the case of the gamma input characteristic we will also set the shape parameter α0 = 5.
Substituting these system parameters into Eq. 39, we obtain the expected total cost function

E[T (β)] = 2|5β|2 + 2

5β2 + 5 exp(−50)(1 − 5β)−5 − 25(5β) + 255. (46)

Using the BFGS quasi-Newton algorithm for numerical optimization, we obtain a min-
imizer β∗ = 1.252 with a minimum expected total cost of 177.002. The optimal mean is
α0β

∗ = 6.260, and the optimal variance is α0 (β∗)2 = 7.837. The objective function in the
neighborhood of the minimizer for this example is locally quadratic (see Fig. 4).
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Fig. 4 Expected total cost
function for the gamma input
characteristic in the
neighborhood of the minimizer
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Fig. 5 Expected total cost for the
double exponential input
characteristic in the
neighborhood of the minimizer
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For the double exponential input characteristic, we will set the scale parameter β0 = 1.
Substituting the system parameters into Eq. 40, we obtain the expected total cost function

E[T (α)] = 2|α|2 + 1

2
+ 5 exp(−50)

(
1 − (5)2)−1 − 25α + 255. (47)

Using the BFGS quasi-Newton algorithm for numerical optimization, we obtain a minimizer
α∗ = 6.250 with a minimum expected total cost of 177.375. The value for α∗ is the optimal
mean for the fixed variance 2β0 = 2, and it is also the minimizer obtained from the analytical
solution. Figure 5 displays the locally quadratic behavior of the objective function in the
neighborhood of α∗.

4 Conclusions

In this paper we have generalized the work of Chang and Hung (2007) to include the gamma
distribution and the double exponential distribution in the Taguchi quality model with the
LINEX loss function and the trade-off between quality and cost proposed by Huang (2001)
for the case when the input–output transformation Y = g(X) is an affine function. Both the
gamma distribution and the double exponential distribution represent important alternative
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Optimal process parameters under LINEX loss 975

distributions for departures from normality. The family of gamma distributions contains the
exponential and chi-squared distributions as specific cases, and it provides a flexible family
of distributions which may be used to approximate non-negative and asymmetric random
variables such as the log-normal distribution. The double exponential distribution provides
an alternative to the two most popular symmetric distributions: the normal distribution and
the t-distribution. Since the moment generating function does not exist for the t-distribution,
the double exponential distribution is a symmetric heavy tailed distribution which can be
used with the LINEX loss function.

In addition to deriving sufficient conditions for the existence of a global minimum for
the Taguchi model with LINEX loss function in each case, we have also considered the
reduced parameter restricted cases. Due to the large number of parameters from the LINEX
loss function and the transformation Y = g(X) and the necessity of numerical solutions, we
can only make limited general statements. However, these general statements can be used
effectively for the solution of particular problems, in particular the problems which may arise
in practice. In the numerical examples we demonstrate that solutions to the trade-off problem
between quality and cost can be easily obtained and well-behaved. While the gamma and
double exponential distributions are generally more difficult to use than the normal distribu-
tion for analytical solutions, they can be numerically solved and offer useful alternatives to
accommodate the departures from normality frequently found in practice.
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