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Abstract 

In this paper we consider the risk of an estimator of the error variance after a pre-test for 
homoscedasticity of the variances in the two-sample heteroscedastic linear regression model. 
This particular pre-test problem has been well investigated but always under the restrictive 
assumption of a squared error loss function. We consider an asymmetric loss function - -  the 
LINEX loss function - -  and derive the exact risks of various estimators of the error variance. 
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1. Introduction and model framework 

We consider a regression model  which uses two samples with T 1 and 7"2 observations: 

or y = Xfl + u. Yi is a (Ti x i) vector  of observat ions  on the dependent  variable,  X~ is 
a (T~ x k~) full-rank non-stochast ic  matr ix  of  explanatory  variables,  fl~ is a (kl x 1) 
vector  of coefficients and u~ is a (T~ x 1) vector  of dis turbance terms, i = 1, 2. We 
assume that  

We also suppose that  we are interested in est imating e~ but  we are uncertain of the 
equality of  the error  variances and whether  the samples should be pooled or not  f rom 
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an estimation efficiency viewpoint. The usual procedure is to undertake a preliminary 
test of: 

Ho: 0.~ = 0.~ vs HA: 0.~ < 0.~ 

or equivalently 

Ho: ~ b = l  vs HA: ~k< 1, (2) 

where ~ 2 2 = 0"1/0"2, and we have assumed a one-sided alternative hypothesis for 
simplicity. The usual test statistic for (2) is 

Vl (Y2 - X 2 b 2 ) ' ( Y 2  - X2b2) VlU2M2u2 s2 
- - 2 '  ( 3 )  

J = v 2 ( Y l  - X a b l ) ' ( y x  - X x b l )  v 2 u ' I M l u l  s l  

i. i - 1  , . S 2 ~. where vi = Ti - kl; M i  = IT,  - X I ( X i X i ) - 1  X i ,  bi = ( X i X i )  X i y i ,  

( y i - X i b i ) l ( y i - X i b i ) / v i ;  i =  1,2. It is straightforward to show that f ( J ) =  
- l f ( F v 2 ,  ~1) where F . . . . .  is a central F variate with v 2 and Vl degrees of freedom. The 

testing strategy is to use the so-called 'always-pool' estimator of a~ 2, s 2, if we cannot 

reject H o :  

s 2 = (vlS~l + v 2 s ~ ) / ( V l  + v~); (4) 

but to use the 'never-pool' estimator, s 2, if we reject Ho" 

s~ = sf.  (5) 

So, the estimator actually reported is the pre-test estimator: 

~'s~ if J >c ,  (6) 
s e Z=[ s  2 if J ~ c ,  

where c is the critical value of the test associated with an ~t% significance level. 
The sampling properties of s~, s 2 and s~ have been examined in the literature (see, 

for example, Bancroft, 1944; Toyoda and Wallace, 1975; Ohtani and Toyoda, 1978; 
Bancroft and Han, 1983; Giles, 1992; Giles and Giles, 1993b) for a survey of this 
literature) assuming a quadratic loss function. 1 This is a symmetric loss function 
which implies that under- and over-estimation are equally penalised. However, we 
may believe that under-estimation of the scale parameter has greater consequences 
than over-estimation, as under-estimating the error variance in a regression model 
will lead to calculated t-statistics which make the regressors appear to be more 
'significant' than is warranted. A conservative researcher may prefer to err in the 
opposite direction, which suggests that we should consider the properties of the 
estimators using an asymmetric loss function which penalises under-estimation 
more heavily than over-estimation. One such commonly suggested loss function is 
the LINEX loss function, initially proposed by Varian (1975). When estimating a 

1 The estimation of the coefficient vector under the assumption that fll = f12 after the pre-test of Ho is 
considered by, for example, Taylor (1977, 1978) and Greenberg (1980). 
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parameter  0 by 0 this loss function is given by: 

L(/~, 0) = b(exp [ a ( / ~ -  0)/0] - a ( O -  0)/0 - 1), (7) 

where a ~ 0, and b > 0. In our investigation we assume (without loss of generality) that 
b = 1. The sign of the shape parameter a reflects the direction of asymmetry - -  we set 
a > 0 (a < 0) if over-estimation is more (less) serious than under-estimation. The 
magnitude of a reflects the degree of asymmetry. For small values of lal, L(/~, 0 ) -  
ba2(O - 0)/(202) which is proportional to a squared error loss. So, the LINEX loss 

function can be regarded as a generalization of the squared error loss function allowing 
for asymmetry. In this paper we are particularly interested in choices of a < 0. 

Various authors have used this form of loss function in a number of studies 
including Zellner (1986), Rojo (1987), Sadooghi-Alvandi and Nematollahi (1989), Kuo 
and Dey (1990), Parsian (1990a, b), Sadooghi-Alvandi (1990), Srivastava and Rao 

(1992), Basu and Ebrahimi (1991), Giles and Giles (1993a), Parsian and Sanjari 
Farsipour (1992), Parsian et al. (1992), and Sadooghi-Alvandi and Parsian (1992). In 
particular, Giles and Giles (1993a) consider the estimation of the scale parameter  after 

a pre-test for exact linear restrictions on the regression model's coefficients. They find 
that the known quadratic risk properties of the pre-test estimator need not be robust 
to this alternative choice of loss function. 

In the next section we derive the risks of s 2, s 2 and s 2 under LINEX loss. We follow 
in Section 3 with a discussion of some numerical evaluations of the risk functions and 

Section 4 contains some conclusions. 

2. Risk under LINEX loss 

We define the (relative) risk of an estimator s ,  z of a 2 as R ( s  2) = E [L(s 2, a2)] /a  4. 

Then, using the LINEX loss function in (7) with b --- 1 we have: 2 

Theorem 1. 

R ( s  2) = e - a ( v l / ( v t  - 2a)) v'/2 - 1 

e-ad/v2/Z(v 1 + 1.)2) (v'+v2)/2 

R ( s 2 )  = (vl + v2 --  2a)V~/2(qJ(Vx + v2) - 2a) v2/z 

R ( s  2) = R( s  2) + e -~ 

(8) 

av2(1 - ~) 1 (9) 
~(v~ + v : )  

2' _ ~ (2a/v~)' ] 0.o<:,, 
i~=l ~. L'l iL2i ,=lL" 1 i. 

avz(Q2o -- ~Qo2) 
~(v~ + v2) ' 

(1o) 

2 For a < 0 these risks are well defined. Some obvious constraints are required for a > 0. 
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where 

Qmn = Pr.[Fw2+ . . . .  +,) < (v2(/31 + n)e~k)/(vl(v2 + m))], m,n  = O, 1 . . . . .  

L'll is a (1 x (i + 1)) vector equal to the (i + 1)th row of  Pascal's Triangle; L2i is an 

((i + 1)x 1) vector with elements for  j = O, 1 . . . . .  i 

( ) F F v 2 + 2 ( i - j )  

: i  = (a/(vl + v2))i~k j i 2 Q(2(i-j))(2i). 

\ 2 /  \ 2 /  

Proof. See the appendix. 

Remarks. (i) As cc--, 0, c ~  0o and Q , . . ~  1: we never reject Ho. Then, repeatedly 
using the Binomial Theorem, R(sZp) ~ R(s~). Conversely, as c( --+ I, c ~ 0 and Q=. ~ 0: 
we always reject Ho. Then, we can show that R ( s 2 ) ~  R(s2). 

(ii) Using the infinite series expansion of the exponential function, it can be shown 
that (8)-(10) collapse to their quadratic loss counterparts (scaled by a2/2) if a is 
sufficiently small so that third-order and higher-order terms are negligible. The 
quadratic loss functions are given by: 

Ro(s~) = 2/v~, (I 1) 

RQ(s 2) = (/32(~k - 1) 2 + 2 ( / 3 1 ~  2 + V2))/(I/]2(/31 -'[- /32)2), (12) 

Re(s  2) = (I]/2[2(/)1 --[- I)2) 2 - -  12(u 1 --~ 2)(2vl + v2)Qo4 + 2/31/32(/31 +/32)Q02] 

+ 2vl/32~[vlQ2= - (/31 +/32)Q20] + /31/32(/32 -~- 2)Q4o)/ 

(/31 ~//2(/31 + /32)2). (13) 

We note that these expressions are not identical to those given by, for example, 
Toyoda and Wallace (1975). The differences arise because we consider risk relative to 
a~ while Toyoda and Wallace, for example, define risk to be relative to a~. We have 
used the former definition as this results in R(s~) being independent of ff and risk 
diagrams that have many characteristics which are similar to those which arise when 
the pre-test is of exact linear restrictions on the coefficient vector. 

(iii) lim,~o(R(sv2)) = R(s~)  while R ( s ~ ) ~  oo as ~, --* 0. Intuitively, pre-testing leads 
us to follow the correct strategy of rejecting Ho when it is in fact very false. 

(iv) If Ho is true (~ = 1) then 

R(s2 I$ = 1)/R(s 2) = (1 - 2a//3t)v'/2(1 - 2a/(vl + v2))-(v,+~,)/2 

= [(1 -- 2a/vl)  v' (1 -- 2a(vl + v2))-w'+v2)] 1/2 (14) 
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Now, using the binomial expansion, we have: 

(1 -- 2a/v l )  ~' = 1 - 2a + 2a2(vl - 1)/vl - 4a3(vt - 1)(vl - 2)/(3v 2) + ... 

= l - 2 a + T l +  T 2 + . . .  

and 

(1 -- 2a/(vl + v2)) -~'+v2~ 

= 1 -- 2a + 2a2(vl + v2 -- 1)/(vl + vz) -- 4a3(vl + D 2  - -  1)(vl + Vz - 2)/ 

(3(vl + v2) 2) + "" 

= I - 2 a + S I + S E + . . .  

with S~ > Ti, i - - 1 , 2  if a <  0 (which is the case of interest here). So, 
(1 -2a /v l )V ' (1  - 2 a / ( v l  + vz))-~'+~2~ < 1 and likewise expression (14) is less than 
unity and, irrespective of the value of a (<0), imposing valid prior information 
produces a gain in risk over simply ignoring the second sample. Accordingly, there is 
a region of the ~O-space over which s 2 dominates s 2 and also a region for which the 

converse occurs. 
(v) Bancroft (1944) and Toyoda and Wallace (1975) show that under quadratic loss 

there always exists a range of ~ values over which pre-testing is the preferred strategy. 
They find that there is a family of pre-test estimators with c ~ (0, 2) which strictly 
dominate the never-pool estimator and dominate the always-pool estimator for 
a wide range of ~,: s 2 has smaller risk than this family of pre-test estimators only 

around the neighbourhood of the null hypothesis. Ohtani and Toyoda (1978) prove 
that the pre-test estimator with c = 1 strictly dominates all other members with 

c E (0, 2). So, under quadratic loss, there exists a ~b-range over which it is preferable to 

pre-test and to use c = 1. 
A question of interest is whether this result carries over in general to the LINEX 

family of loss functions. This can be answered by considering the first and second 

derivatives of R(s 2) with respect to c. Theorem 2 derives the values of c for which 
dR (s 2)/dc = O. 

Theorem 2. dR (s 2)/dc = 0 when c = 0, ~ and 1. 

Proof. See the appendix. 

It is straightforward to show that as c ~ 0 or c ~ 0 0 ,  d2R(s2) /dc  2 = O, SO that these 

two critical values result in points of inflexion of the risk function. In the case of 
quadratic loss it can also be shown that d2R(s2) /dc  2 > 0 when c = 1 so that this 

choice of critical value always results in a minimum of the risk function. However, this 
cannot be shown in general under a LINEX loss function: it is not possible to sign 
d2R(s2) /dc  2 for all values of a. When the degree of asymmetry is sufficiently large 

(depending on the values of the other arguments) this second derivative can be 
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negative so that in these cases the choice of c = 1 results in a maximum of the pre-test 
risk function. We now turn to the numerical evaluations of R(s2), R(s 2) and R(s 2) 
which will illustrate this last result. 

3. Numerical evaluations of the risk functions 

We have numerically evaluated the risk functions for various values of ~, vl, V2, I~ 
and a (<0).  In particular, we consider vl = 6, 10, 20, 30; v2 = 6, 10, 20, 30; ~ = 0, 0.01, 
0.05, 0.75, 1 and that value corresponding to c = 1; a = - 0.5, - 2.0, - 5.0 and 

e (0, 1 ]. The full details of the results relating to all of these cases are available on 
request. 

We have computed the exact risk functions on a VAXstation 4000 using a 

F O R T R A N  program which incorporates Davies' (1980) algoi-ithm to evaluate the 

central F probabilities and various other algorithms from Press et al. (1986). The 
infinite series in (10) converge rapidly with a convergence tolerafice of 10-6. We also 
obtained the corresponding risks under a quadratic loss using equations (11)-(13) 

though for comparabili ty with the LINEX results we scaled the quadratic results by 
a2/2. 

Unfortunately, we found that our algorithm failed in some cases for high degrees of 
asymmetry, and in these cases we undertook a Monte Carlo experiment with 5000 
replications using the SHAZAM econometrics package (SHAZAM, 1993) on a 

VAXstation 4000. For  the Monte Carlo experiment we assumed tr 2 = 1 so that 
a 2 = 1/~, and we generated approximate X 2 random variables to obtain s 2 and s 2 

(this was also undertaken in SHAZAM using the normal random number generator 
proposed by Brent (1974)). For  this particular problem it is not necessary to assign 

values to the regressors or to the coefficients. Where possible we compared the risks 
generated from the Monte Carlo experiment with those from the exact evaluations. 
These comparisons suggested that 5000 replications were sufficient to replicate the 
exact results to at least three decimal places. 

Typical LINEX risk results are illustrated in Figs. 1-3 for Vl = 16 and v2 = 8 with 
a = - 0.5, - 2.0 and - 5.0, respectively. The loss function when a = - 0.5 exhibits 
relatively little asymmetry and so, qualitatively, Fig. 1 is similar to that which would 
be observed under a quadratic loss function. The features discussed in the previous 
section are clearly evident. In particular, it is preferable to pool the samples when the 
null hypothesis is true, and the never-pool estimator is strictly dominated by a family 
of pre-test estimators. The estimator which uses a critical value of unity has the 
smallest risk of this family. 

As discussed in Section 2, ceteris paribus there exists a degree of asymmetry such 
that this latter feature does not occur. Fig. 3, with a = - 5.0 clearly illustrates such an 
example. Then we find that the pre-test estimator which uses c = 1 has the highest risk 
of all the considered estimators around the region of the null hypothesis - -  this 
estimator no longer strictly dominates the never-pool estimator. 
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Our results also show that the range of ff over which we prefer the always-pool 
estimator increases as the degree of asymmetry increases. This suggests that when 
considering an asymmetric loss function with a reasonable belief that the null 
hypothesis is true, it is generally preferable to pool the samples without testing. 

4. Concluding remarks 

In this paper we have extended some well known risk results, associated with 
pre-testing for variance homogeneity in regression prior to pooling sub-sample 
information, to the realistic situation where the underlying loss structure is asymmet- 
ric. In particular, risk under quadratic loss is generalised to risk under LINEX loss, 
with under-estimation of the regression scale being penalised more heavily than 
over-estimation. 

This generalisation of the loss structure produces at least two results which differ in 
an important way from their quadratic loss counterparts. First, in the latter case, 
pre-testing with a critical value of unity is always preferred to ignoring the prior 
information. This does not hold if a sufficiently asymmetric LINEX loss is adopted. 

Second, the range of ~, over which we prefer the always pool estimator increases as 
the degree of loss asymmetry increases. This suggests that it may be preferable to use 
this estimator, rather than undertake a pre-test, if we have a sufficiently asymmetric 
LINEX loss function. This contrasts with the typical advice under quadratic loss, 

which is to pre-test using a critical value of unity. 
Much remains to be done to determine the sensitivity of established results in the 

pre-test literature to departures from the usual assumption of quadratic loss. Our 
results and those of Giles and Giles (1993a) and Giles (1993) suggest that there is less 
robustness to asymmetric departures than to symmetric ones. 

Appendix 

Proof of Theorem 1. 

R ( s ~ )  = E ( e x p ( a ( s  2 --  a ~ ) / a  2) - a ( s  2 - a 2 ) / a  2 - 1 

= E ( e x p ( a z l / v l  - a)) - E ( a z l / v l  - a) - 1, (A.1) 

where z l  = U ' l M l U l / a  2 ~ Z2,. Then E ( a z l / v l  -- a) = 0, as s 2 is an unbiased estimator 
of a 2. Further, 

E ( e x p ( a z  l / v l  - a)) = _f~ e"Z'/v' " f (z l ) d z  l , 

where 

f (z l ) = (2 v'/z F (vl  / 2 ) ) -  1 zy,12-  I e -Z ' /2 .  
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E ( e x p ( a z l / v  1 - a)) = ( 2 ~ ' / 2 F ( v l / 2 ) ) - l e  -a e-Z~( a/~,+~2) z~,/2 1 d z l .  

U s i n g  the change  of va r iab le  t = z l  ( -  a /v l  + 1/2) we have  3 

E ( e x p ( a z l / v l  --  a)) - e - a  (2vx)~'/2 f o  
F ( 2 ) 2 v , / 2  ( v ~ , / 2  e 't~'/2 l d t  

\ /  

e - 1 DVl l /2  

= (Vl -- 2a) vl/2" 

S u b s t i t u t i n g  these resul ts  in to  (A.1), R ( s  2) follows. 

R(s  2) = E [ e x p ( a ( s  2 - az) f lr  z - a(s 2 - az)/azl - 1] 

= E { e x p ( a ( w l  + wzAb)/(v l  + v 2 ) -  1 ) -  a( (wl  + w2/qJ)/(vt + v 2 ) -  1) - 1}, 

where  

wl = e * ' M * e * / a  2, i = 1, 2; e* = [e ' l /x / /~  e~]) '  ~ N(0,  a 2 l r ) ,  

( r x T )  ( r x T )  M2 

(A.2) 

I t  is s t r a igh t fo rward  to show tha t  wi ~ Zv 2 a n d  tha t  wl a n d  w 2 are i n d e p e n d e n t .  So, 

E(Wl  + w2AO)/(Vl + v2) - 1 = v2(1 - qJ)/(~O(vl + v2)) (A.3) 

a n d  

E [ e x p ( a ( w l  + w2Ab)/(vl + v 2 ) -  1)] 

= e - " f o f o e " ( W ' + w 2 / q ' ) / ( v ' + v 2 ) f ( w l ) f ( w z ) d W l d W  z 

 lfo 
3 When a < 0 (the case of particular interst here) we require no restrictions on its value for the risk functions 
to be positive. However, certain restrictions are required if a > 0 and depending on whether V l and/or v2 are 
odd or even. As these restrictions are fairly obvious we do not specify them explicitly in this appendix. 
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Using the change in variables 

tl = wl [1/2 -- a/(vl + /22) ] 
and 

t2 = wzE(O(vl + v z ) -  2 a ) / ( 2 O ( v l  +/2z))] 

we have 

E [ e x p ( a ( w l  + wz/O)/(/21 + v 2 ) -  1)] 

= e - ' [  /2' + vz .]v"2F_ 0_(/21 +_v2) -I  ~2/2 

/2, +/22 - 2aJ  [~'(/2, + v2) - 2a j " 

Substituting (A.3) and (A.4) into (A.2) yields R(sl). 
Finally, for the pre-test estimator,  s 2, we have 

and 

S2p = s 2 + (s 2 -- s2)Ito,~](J) 

= a22[~b(vx + v2)wx + (VlW2 -- ~bv2wl)I to,col(vlw2/(v2wl))] /(vx(vl  + v2)) 

(A.4) 

R(s~)  = E {exp[a(s~  - o-~)/a~] - a(s 2 - a~)/a  2 - 1} 

= E{exp [a(s~ - ffa2)/(~'a~)] - a(sr~ - ~ka~)/(~,o'~)- 1}. 

Now, 

E[(s~ - -  OOD/(O,T~)] = E [ ~ ( V l  + V2)Wl + (Vl W2 - -  ~V2Wl)  

x Ilo,c,j(vxw2/(v2wl))]/(~bVl(V 1 + v2)) - 1 

and repeatedly using Lemma 1 of Clarke et al. (1987) (A.6) is 

E [ ( g  - O a D / ( O , ~ ) ]  = v~(Q~o - OQo~)/ (O(v ,  + v~)) 

where 

Q.,, = Pr  [(Fry2 + . . . .  +.) ~< (v2 (v 1 + n) c~)/(v 1 (v2 + m)] 

m, n = 0, 1,... 
Further ,  

E [exp (a (s 2 - ~ tr 2)/(~, a2 2 ))] 

= e - " E { e x p [ a [ ~ ( v l  + v2)wl  

"~- (Vl W 2 -- ~V2W1)I[o,c, j(Vl W2/(U2W1)))/(~/21(Vl ~- V2))] } 

= e - a E { e x p [ b o w l  + (b2w2 - -  b l w l ) l t o , c ~ , l ( / 2 1 W 2 / ( V z W l ) ) ] }  

= e-"E(exp(Q)) ,  

(A.5) 

(A.6) 

(A.7) 

(A.8) 
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where 

bo = a / V l  ; bl = av2/(vl (vl + v2)); b2 = a/(qJ(Vl + v2)); 

Q = exp [bowl + (b2w2 - blwl)Ito,c~,l(vlw2/(v2wl))] 

= exp [bo Wl - bowl lto,c~,l(Vl w2/(v2 wl)) + b2 w2 lto,~,l 

x (vl w2/(v2wl)) + (bo - bx)wx Ito,c,l(Va w2/(v2 wl )3. 

N O W ,  

and using Lemma 1 of Clarke (1990) we have 

2'~F ( v2 2 
+ 2r2) 

r2 E(w'? w2 I~o,~,l(v~ w2/(v2w~))) 

= 2 rl +r2 

QI92, lYl + 2rl 

~[2 + 2r2, Ul 

\ / \ 2 /  

(A.10) 

(A.9) 

where rl and r 2 are any real values such that rl > ( -  vl/2) and r 2 > ( - -  v 2 / 2  ). 

Using these expressions repeatedly along with definition (A.9) in (A.10) we have 

E [exp (Q)] 

v2 + 2 v2 

v 1 + 4  .. _ v 2 + 4  v2 
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vl + 2 v2 + 2 vl 

1. (vl + 4"~ / 

+'22/30 {b3F (~ - -~ ) (1 -  Qo 6)/F (2)-1-b3F ( v 2 ~  6) Q60/F (2)  

v2 + 4 va 

vl + 4  v2+2  
+ 3 b 2 ( b o - b l ) Z F ( ~ - - - ) F ( ~ - f - - ) Q z , J ( 1 . ( 2 ) F ( 2 ) )  

~ Qo6 F Vl +(bo-bi'31.( ) / ( 2 ) }  + ' ' "  

i=o i! ~ (2b°)i JQo¢2o+ ~ 2'L' 
l~ i=1 i=1 

where L'~i is a (1 x (i + 1)) vector equal to the (i + 1)th row of Pascal's Triangle; L2i is 
an ((i + 1) x 1) vector with elements 

' 2=b~-J(bo-bl )J1 . (~)1 . (  v-2+2(i-j))Q,2,i-j)),2j,/( (v,~1.(v2"~'~ 
2 1.\2/ \2Jy 

=(a/(vx+v2))i~kJ-i1.~)F(vz+2(i-J))Q'z'i-J"'zJ)/(F( ) 2 1" 2 ')) 

Finally, if [2a/vl] < 1, which is not restrictive in practice, then 

So, 

i=1 1. 

2 / + ~ ~.L'liL2i. 
i = 1  • 

j = O ,  1 ..... i. 

(A.11) 
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Substituting (A.11) into (A.8) and then this expression and (A.7) into (A.5) yields the 

desired result. [] 

Proof  of Theorem 2. Using the infinite series expansion of the exponential function we 

write 

[ a  2 0 3 ] 
g ( s g )  = E ~ . ( ( s g  - ~r~)/~r~) 2 + ~ ( ( s ~  - cr~) /a f )  3 + ..- 

= E ~([O(vl + v2)w~ - Ov~(v~ + v2)] 

× (VlW2 -- @V2W1)I[o,c,](VlW2/(/)2Wl)))2/(~Vl(Vl "}- V2)) 2 

a 3 
"4- ~..  ([~//(/)1 -}- /)2)W1 -- ~/Vl (/)1 -~ /)2)] 

X (V 1W 2 -- ~IV2W1)I[o,c,](V 1W2/(U2W1)))3/(~IVl (/)1 + V2)) 3 + " " ]  

= EEA* + (v lw2 - @/)2w1)(I)l[o,c,](/)lW2/(v2w1))] (A.12) 

where 

a 2 A2 a3 A * = ~ .  + ~ . , A 3 + ' " ;  A = ~(vl  + /)2)(wl - vl); 

a 2 (/3 
t~ = ~.T (2A -+- (VlW 2 -- I~V2WI)) + ~.((U1W2 --  I//V2W1) 2 

+ 3A 2 + 3A(v lw2 - ~bv2wl)) + "" 

Now, Ito,c~,l(VlWE/(V2Wl) ) = lto.xl(w2) where x = c~kv2wl /v l ,  and as wt and WE are 
independently distributed quadratic forms it follows that (A.12) can be written as 

R(s  2) = Ew, {A* + Ew2[(vl w2 - ~v2wl),l ' lto,xj(w2)] } 

= E w , { , 4 * + f f ( v l w 2 - ~ v 2 w , ) ' ~ f t w 2 ) d w 2 } ,  

where f ( . )  is the density function of a ;tv 2 variate. Then, 

~c Ew, [c9c c3x (v lw2 - @v2wlCPf(w2)dw2 

= Ew, {[ (@w:v2)2/v:] (c  - 1) f (c@/)2wl /v l )¢~*} ,  (A. 13) 

where ~* is ¢ evaluated at w2 = c@v2wl/v~.  (A.13) will clearly be zero when c = 0, 
oo and 1. [] 
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