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Abstract

Based on progressively Type-II censored samples, the empirical estimators of reliability performances for Burr XII distribution
are researched under LINEX error loss. Firstly, we obtain the Bayes estimators of the reliability performances. Secondly, different
from the predecessor, the empirical Bayes estimators of the reliability performances are derived where hyper-parameter is estimated
using maximum likelihood method. In the end, in order to investigate the accuracy of estimations, an illustrative example is examined
numerically by means of Monte-Carlo simulation.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The two-parameter Burr Type-XII distribution has already gained special attention in the literature since Burr first
introduced it. The probability density function and cumulative distribution function of the Burr (c, k) distribution are
given, respectively, by

f (x; c, k) = ckxc−1(1 + xc)−(k+1)
, x > 0, c > 0, k > 0 (1)

F (x; c, k) = 1 − (1 + xc)−k
, x > 0 (2)

where c and k are all shape parameters.
Inferences for Burr XII model were discussed by many authors. Reference [14] presented statistical and probabilistic

properties of the Burr XII distribution and described its relationship to other distributions used in reliability analyses.
Moreover, the author pointed out that the Burr XII could cover the curve shape characteristics for the normal, Weibull,
logistic, lognormal and Extreme Value Type-I distributions. Based on censored data as well as complete data, using
the maximum likelihood method, reference [12] gave the method for obtaining point and interval estimates of the
parameters of the Burr XII distribution. Under squared error loss function, Bayes approximate estimates and maximum
likelihood estimates for the two parameters and the reliability function of the Burr XII distribution have been obtained
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based on progressive Type-II censored samples in reference [3], while reference [7] derived Bayesian estimates of the
parameter k and the reliability function under three different loss functions. Based on the same progressive samples
as above, reference [11] obtained the Bayes estimators using both the symmetric loss function and asymmetric loss
function.

But up to now, the empirical Bayes estimates related to the Burr XII were not addressed under progressively censored
sample which has been described particularly in references [1,4]. So in this paper, under asymmetric loss function, the
empirical Bayes estimator of shape parameter for the Burr XII distribution is derived based on progressively Type-II
censored data, at the same time; we give the empirical Bayes estimators of the reliability function and the failure rate
for reliability assessment in the engineering.

We assume that c is known; k has a gamma conjugate prior density Γ (1, β)

π(k; β) = β exp(−βk), k > 0, β > 0

That is to say, we regard random variable k with prior density as exponential distribution exp(β), which is usually used
in Bayesian theory (see [9,13]).

2. Bayes estimators of the reliability performances

We design an experiment in which n units are placed on the test at the beginning time, and this test can be terminated
at any failure time. Suppose that all units are independent and have identical Burr XII distribution (1). The progressively
Type-II censored test steps are as follows.

When a working unit fails, we refer to the first failure time as X1,n and remove r1 units from the remaining n − 1
units. That is, at the time of the first failure X1,n, r1 units are randomly removed from the remaining n − 1 surviving
units. Similarly, at the second failure time X2,n, r2 units from the remaining n − 2 − r1 units are randomly removed.
The test continues until the mth failure. At this time, all remaining rm = n − m − r1 − r2··· − rm−1 units are removed.
In this censoring scheme, ri and m are pre-fixed.

In this test, we can see that when r1 = r2 = ··· = rm = 0, it reduces to the case of no censoring (complete sample case)
and when r1 = r2 = ··· = rm−1 = 0, it reduces to a Type-II censored sample.

Suppose that X = (X1,m,n, X2,m,n, . . ., Xm,m,n) is a progressively Type-II censored sample from a life test on items
whose lifetimes have Burr (c, k) distribution (1). The likelihood function based on above samples (see [4]) is given by

L(k|x) = A

m∏
i=1

f (xi,m,n; c, k)[1 − F (xi,m,n; c, k)]ri (3)

where A = n(n − 1 − r1)(n − 2 − r1 − r2)· · ·(n − ∑m−1
i=1 (ri + 1)).

From (1) and (2), function L is

L(k|x) = A

m∏
i=1

kcxc−1
i (1 + xc

i )−(k(ri+1)+1) (4)

where xi ≡ xi,m,n.
From Bayesian theorem, the posterior distribution of k can be written as

π∗(k|T ) = π(k; β)L(k|x)∫ +∞
0 π(k; β)L(k|x) dk

= β exp(−βk)A
∏m

i=1kcx
c−1
i (1 + xc

i )−(k(ri+1)+1)∫ +∞
0 β exp(−βk)A

∏m
i=1kcx

c−1
i (1 + xc

i )−(k(ri+1)+1) dk

= (β + T )m+1km exp(−k(β + T ))

Γ (m + 1)
(5)

where T = ∑m
i=1(ri + 1) ln(1 + xc

i ).
Reference [8] pointed out that, in some situations, the use of asymmetric loss functions may be appropriate, so a very

useful asymmetric loss function known as LINEX loss function has been proposed and adopted by some researchers
(see[6]) in recent years. It can be expressed as

L(ũ − u) = b(ea(ũ−u) − a(ũ − u) − 1), a �= 0, b > 0 (6)
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where ũ is an estimation of u.
From (6), we can see that, when a > 0, overestimation is more serious than underestimation; however, when a < 0,

the conclusion is opposite. As ‘a’ nears to zero, the LINEX loss function is approximately the squared error loss, and
therefore almost symmetric.

So the posterior-expectation of (6) is

Epost(L(ũ − u)) = b(eaũEpost(e
−au) + aEpost(u) − aũ − 1), a �= 0, b > 0 (7)

The value of u that minimizes (7), denoted by ũ, is obtained as follows:

ũ = −1

a
ln Epost e−au (8)

So the Bayes estimation of k is

k̃ = −1

a
ln

∫ +∞

0
e−ak π∗(k|T ) dk = m + 1

a
ln

(
1 + a

β + T

)
(9)

As every unit has Burr (c, k) distribution, the reliability function R(t) and the failure rate λ(t) at time t are given by

R(t) = (1 + tc)−k (10)

λ(t) = −R′(t)
R(t)

= cktc−1

1 + tc
(11)

Thus, the Bayes estimators of R(t) and λ(t) at time t under LINEX loss function are

R̃(t) = −1

a
ln

∫ +∞

0
e−a(1+tc)−k

π∗(k|T ) dk = −1

a
ln

∫ +∞

0

∞∑
s=0

[−a(1 + tc)−k]
s

s!
π∗(k|T ) dk

= −1

a
ln

∞∑
s=0

(−a)s

s!

[
1 + s ln(1 + tc)

β + T

]−(m+1)

(12)

λ̃(t) = −1

a
ln

∫ +∞

0
e−a(cktc−1/(1+tc)) π∗(k|T ) dk = m + 1

a
ln

(
1 + actc−1

(1 + tc)(β + T )

)
(13)

3. Empirical Bayes estimators of the reliability performances

In theory, the accuracy of maximum likelihood estimation is higher than that of previous estimation (moment
estimation). In view of this fact, reference [13] used the maximum likelihood method to estimate hyper-parameter of
prior distribution for analyzing the Bayesian reliability quantitative indexes of cold standby system.

In (9), the hyper-parameter β is an unknown constant, so k̃ cannot be used directly. Therefore, we make use of the
maximum likelihood method to estimate β.

As all units have identical Burr XII distribution Burr (c, k), the margin density function is

f (x) =
∫ +∞

0
f (x; c, k)π(k; β) dk =

∫ +∞

0
ckxc−1(1 + xc)−(k+1)

β exp(−βk) dk = βcxc−1

(1 + xc)(β + ln(1 + xc))2

1 − F (x) =
∫ +∞

x

f (x) dx =
∫ +∞

x

βcxc−1

(1 + xc)(β + ln(1 + xc))2 dx = β

β + ln(1 + xc)

Hence, (3) can be expressed as

L(β|X) = A

m∏
i=1

f (xi,m,n)[1 − F (xi,m,n)]ri (14)
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Substituting f(x) and F(x) into (14), function L is

L(k|x) = A

m∏
i=1

βcxc−1
i

(1 + xc
i )(β + ln(1 + xc

i ))2

[
β

β + ln(1 + xc
i )

]ri

ln L = ln A + m(ln c + ln β) +
m∑

i=1

[
ln

xc−1
i

1 + xc
i

− ln((β + ln(1 + xc
i ))2 + ln βri − ln (β + ln(1 + xc

i ))ri
]

d ln L

dβ
= m

β
− 2

m∑
i=1

1

β + ln(1 + xi
c)

+
m∑

i=1

ri

(
1

β
− 1

β + ln(1 + xi
c)

)

Consider function

g1(β) = m

β
+

m∑
i=1

ri

(
1

β
− 1

β + ln(1 + xc
i )

)
, g2(β) = 2

m∑
i=1

1

β + ln(1 + xc
i )

As the MLE of β is needed, we just draw a conclusion that equation g1(β) = g2(β) has only one root. The reasons
are

g1(β) > 0, g1(β) → 0(β → ∞), g1(β) → ∞(β → 0)

g′
1(β) = −

{
mβ−2 +

m∑
i=1

ri ln(1 + xc
i )(2β + ln(1 + xc

i ))[β2(β + ln(1 + xc
i ))2]

−1
}

< 0

g′′
1(β) = 2mβ−3 + 2

m∑
i=1

ri ln(1 + xc
i )(3β2 + 3β ln(1 + xc

i ) + ln2(1 + xc
i ))[β3(β + ln(1 + xc

i ))3]
−1

> 0

So g1(β) is strict monotone increasing concave function. Similarly

g2(β) > 0, g2(β) → 0(β → ∞), g2(β) → ∞(β → 0)

g′
2(β) = −2

m∑
i=1

(β + ln(1 + xc
i ))−2

< 0

g′′
2(β) = 4

m∑
i=1

(β + ln(1 + xc
i ))−3

> 0

Therefore, g2(β) is strict monotone increasing concave function. Moreover

lim
β→∞

g1(β)

g2(β)
= lim

β→∞

[
m

β
+

m∑
i=1

ri

(
1

β
− 1

β + ln(1 + xc
i )

)] [
2

m∑
i=1

1

β + ln(1 + xc
i )

]−1

= 1

2

From above, the equation d ln L/dβ = 0 has only one root (see [13]), and from the equation d ln L/dβ = 0, we can get

β = m

[
2

m∑
i=1

1

β + ln(1 + xc
i )

−
m∑

i=1

ri

(
1

β
− 1

β + ln(1 + xc
i )

)]−1

Using iterative computing method to obtain the solution, the iteration formula is

β(l+1) = m

[
2

m∑
i=1

1

β(l) + ln(1 + xi
c)

−
m∑

i=1

ri

(
1

β(l) − 1

β(l) + ln(1 + xc
i )

)]−1

, l = 1, 2, 3, . . . (15)
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where β(l) is lth iterative value (l = 1, 2, 3, . . .), β(1) is an initial value.
If the iteration solution is denoted by β̂, then the empirical estimation of k̃ is

k̂ = m + 1

a
ln

(
1 + a

β̂ + T

)
(16)

where β is replaced by β̂.
Substituting β̂ into (12), the empirical estimation of R̃(t) is obtained

R̂(t) = −1

a
ln

∞∑
s=0

(−a)s

s!

[
1 + s ln(1 + tc)

β̂ + T

]−(m+1)

(17)

Similarly, the empirical Bayes estimation of λ̃(t) is given as follows:

λ̂(t) = m + 1

a
ln

(
1 + actc−1

(1 + tc)(β̂ + T )

)
(18)

4. An example

We firstly generate progressive Type-II censored samples from Burr (c, k) distribution. Applying the algorithms of
Balakrishnan and Sandhu [5] and Aggarwala and Balakrishnan [2], the steps are:

(A) Generate m independent U(0, 1) random variables W1, W2, . . ., Wm.
(B) For given values of the progressive censoring scheme r1, r2, . . . rm, set

Vi = W1/(i+rm+rm−1+···+rm−i+1)
i , i = 1, 2, . . . , m.

(C) Set Ui = 1 − (VmVm−1 . . . Vm−i+1), i = 1, 2, . . ., m; then U1, U2, . . ., Um are progressive Type-II censored samples
of size m from U(0, 1).

(D) Thus, for given values of parameters c and k, xi = [(1 − Ui)−1/k − 1]1/c, i = 1, 2, . . . m, is the required progressive
Type-II censored sample of size m from Burr (c, k) distribution.

The empirical Bayes estimators of β, k, R(t) and λ(t) are derived by means of Monte-Carlo simulation. The steps
are as follows in detail:

(1) For given value of β, a group of values of k is generated according to π(k; β) = β exp(−βk). Taking one of them as
k*, and substituting k* into (10) and (11), R*(t) and λ*(t) can be obtained.

(2) For given c, k*, m, n and (r1, r2, . . ., rm), (x1, x2, . . ., xm) can be derived via above-mentioned method.
(3) Combining (1) and (2) with given values, we can get β̂ according to (15).
(4) For given t, k̂, R̂(t) and λ̂(t) are obtained, respectively, by (16), (17) and (18).

For 1000 repetitions, the estimated risks (ER) of the different estimators are computed as the average of their squared
deviations. The expression is

1000−1
1000∑
i=1

(q̂ − q∗)2

where q̂ denotes β̂, k̂, R̂(t) and λ̂(t), while q* denotes β* = 2, k*, R*(t) and λ*(t).
Tables 2 and 3 display the estimated risks of the estimates of β, k, R(t) and λ(t) under small-scale simulation.Three

different cases of the sample size and censoring scheme are shown in Table 1. Moreover, Table 4 gives us the estimated
risks of the estimates in large samples.
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Table 1
Censoring scheme (r1, r2, . . ., rm)

Sample size (r1, r2, . . ., rm)

n = 20, m = 10 0 2 1 0 1 1 2 0 0 3
n = 30, m = 20 0 1 0 0 0 0 2 0 0 0 2 0 0 3 0 0 1 0 0 1
n = 40, m = 30 1 0 2 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Table 2
Estimated risks (ER) of the estimates of β, k, R(t) and λ(t) (a = 0.5, t = 2, c = 3, β = 2)

Sample size (n, m) ER, β̂ ER, k̂ ER, R̂(2) ER, λ̂(2)

n = 20, m = 10 0.4682 0.0228 0.0511 0.1386
n = 30, m = 20 0.2376 0.0153 0.0276 0.1017
n = 40, m = 30 0.2058 0.0111 0.0048 0.0619

Table 3
Estimated risks (ER) of the estimates of β, k, R(t) and λ(t) (a = −1.5, t = 3, c = 3, β = 2)

Sample size (n, m) ER, β̂ ER, k̂ ER, R̂(3) ER, λ̂(3)

n = 20, m = 10 0.7010 0.0459 0.0703 0.3386
n = 30, m = 20 0.6257 0.0126 0.0696 0.1017
n = 40, m = 30 0.4351 0.0121 0.0027 0.0519

Table 4
Estimated risks (ER) of the estimates of β, k, R(t) and λ(t) (a = 1, t = 5, c = 3, β = 2)

Sample size (n, m) ER, β̂ ER, k̂ ER, R̂(5) ER, λ̂(5)

n = 100, m = 90 0.2032 0.0108 0.0025 0.0496
n = 80, m = 80 0.1873 0.0101 0.0019 0.0381
n = 100, m = 100 0.1634 0.0098 0.0017 0.0329
n = 200, m = 200 0.1205 0.0092 0.0014 0.0162

5. Conclusions

(1) The Burr model can be widely used in reliability applications because it has many different forms of its reliability
and hazard functions. It gives the reliability practitioner another model for representing failure data. Soliman [10]
told us that it has been applied in areas of quality control, duration and failure time modeling.

(2) Censored life testing plays an important role in reliability studies. The progressively Type-II censored scheme
is a general one. We can see that when r1 = r2 = ··· = rm = 0, it reduces to the complete sample case and when
r1 = r2 = ··· = rm−1 = 0, it reduces to Type-II censored sample.

(3) For a = 0.5 and t = 2, the estimated risks of β̂, k̂, R̂(2) and λ̂(2) are displayed in Table 2, while, for different given
values, all the estimated risks are obtained in Table 3. From the data in table, when m/n increases, the estimated
risk of the estimates decreases.

(4) Tables 2 and 3 use the same sample size n, m and censoring scheme (r1, r2, . . ., rm). The data are given in Table 1.
In fact, different values of the sample size and the censoring scheme do not change the previous conclusions.

(5) Table 4 displays the estimated risks of the estimates in large samples, and, as anticipated, the estimated risks of
the estimates get smaller with increasing samples.
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