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Abstract

This paper considers the problems of minimax and �-minimax estimation under the LINEX loss function when the
parameter space is restricted. A general property of the risk of the Bayes estimator with respect to the two-point prior
is presented. Minimax and �-minimax estimators of the parameter of the Poisson distribution are obtained when the
parameter of interest is known to lie in a small parameter space. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

Minimax estimation of unknown parameters in restricted parameter space has been a subject of interest over
the past decades. Suppose that X ∼ N(�; 1); �∈ [�; �]; �¿�; Ghosh (1964) gives a sequence of estimators
of � in the space of estimators with uniformly bounded risk whose maximum risk converges to the minimax
value. Following this work, Casella and Strawderman (1981) derive the exact form of the minimax estimator
of � and the least favorable prior for the case where �–� is su�ciently small. Zinzius (1979, 1981) uses a
convexity argument to investigate the problem considered by Casella and Strawderman (1981). The convexity
technique is a powerful tool for �nding minimax estimators. This method has been used to �nd minimax
estimators for di�erent distributions by many authors. See, for example, Bischo� et al. (1995a), DasGupta
(1985), Eichenauer-Herrmann and Fieger (1989) and Zou (1993).
It is interesting to note that virtually all of the aforementioned studies relate only to quadratic loss. Being

symmetric, the quadratic loss imposes equal penalty on over- and under-estimation of the same magnitude.
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There are situations where over- and under-estimation can lead to di�erent consequences. For example, when
estimating the average life of the components of a spaceship or an aircraft, over-estimation is usually more
serious than under-estimation. In fact, Feynman’s (1987) report suggests that the space shuttle disaster of
1986 was partly the result of the management’s over-estimation of the average life of the solid fuel rocket
booster. Zellner (1986) also suggests that in dam construction, under-estimation of the peak water level is
often much more serious than over-estimation. These examples illustrate that in many situations, the quadratic
loss function can be unduly restrictive and inappropriate, and suggest that we should consider properties of
estimators based on an asymmetric loss function instead.
In a study of real estate assessment, Varian (1975) introduces the following asymmetric linear exponential

(LINEX) loss function:

L(�; �) = b{ea(�−�) − a(�− �)− 1}; (1.1)

where a( 6=0) is a shape parameter and b¿ 0 is a factor of proportionality. The LINEX loss reduces to
quadratic loss for small values of a. If a is positive (negative), then over (under)-estimation is considered
to be more serious than under (over)-estimation of the same magnitude, and vice versa. Numerous authors
have considered the LINEX loss in various problems of interest. Examples are Zellner (1986), Parsian (1990),
Takagi (1994), Cain and Janssen (1995), Ohtani (1995), Zou (1997), Wan (1999) and Wan and Kurumai
(1999).
Using Zinzius’s (1979, 1981) convexity technique, Bischo� et al. (1995b) obtain minimax and �-minimax

estimators for estimating a bounded normal mean under LINEX loss. In this paper, we take their analysis
further by considering the problems of minimax and �-minimax estimation of the parameter of the Poisson
distribution under the same loss. In Section 2, we consider a general family of distributions and discuss the
risk properties of the Bayes estimators of the parameters of this family of distributions. A result of Bischo�
et al. (1995b) concerning the Bayes estimator is nested as a special case in our �ndings. In Section 3, we
derive, for the Poisson distribution with su�ciently small parameter space [0; �], the least favorable prior and
minimax estimator using the convexity technique of Zinzius (1979, 1981) for the case of n¿1 observations.
Finally, in Section 4, we consider �-minimax estimation of the Poisson parameter for a special type of priors.
Since b is only a factor of proportionality, we assume, without loss of generality, that b=1 in the subsequent

analysis.

2. Preliminary results

Let X1; : : : ; Xn be i.i.d. random variables, P� be the distribution of X = (X1; : : : ; Xn) with the parameter
�∈ [�; �]; �¡�. Assume that P� is dominated by some �-�nite measure �. Further, let f(x; �) be the Radon–
Nikodym derivative of P� with respect to �. We assume that f(x; �) +f(x; �) 6= 0 for all x∈X, where X is
sample space, and P�{x:f(x; �)f(x; �)¿ 0}¿ 0 when �= � and �= �.
Consider the following two-point prior �:

�({�}) = �; �({�}) = 1− �; (2.1)

where 0¡�¡ 1.
It can be shown that the corresponding Bayes estimator is

��(x) =
1
a
log

�f(x; �) + (1− �)f(x; �)
�f(x; �)e−a� + (1− �)f(x; �)e−a� : (2.2)

Note that ��(x) = � if f(x; �) = 0; and ��(x) = � if f(x; �) = 0.
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Theorem 2.1. There exists a unique �∗ ∈ (0; 1) such that
R(��∗ ; �) = R(��∗ ; �); (2.3)

where �∗ is the prior distribution for �= �∗. Moreover;

R(��; �)¡R(��; �) for �∈ (�∗; 1) (2.4)

and

R(��; �)¿R(��; �) for �∈ (0; �∗): (2.5)

Proof. Denote

X1 = {x: f(x; �)f(x; �)¿ 0}; (2.6)

X2 = {x: f(x; �) = 0; f(x; �) 6= 0} (2.7)

and

X3 = {x: f(x; �) = 0; f(x; �) 6= 0}: (2.8)

It is readily seen that

R(��; �) =
∫
X1

(e−a�A− logA+ a�− 1) dP�

+[ea(�−�) − a(� − �)− 1]P�(X2) + [ea(�−�) − a(�− �)− 1]P�(X3); (2.9)

where

A=
�f(x; �) + (1− �)f(x; �)

�f(x; �)e−a� + (1− �)f(x; �)e−a� : (2.10)

Observe that P�(X2) = P�(X3) = 0. So we have

R(��; �)− R(��; �) =
∫
X1

(e−a�A− logA+ a�− 1) dP� −
∫
X1

(e−a�A− logA+ a� − 1) dP�: (2.11)

It is easily seen that if a¿ 0, then ea� ¡A¡ ea�; alternatively, if a¡ 0, then ea� ¿A¿ ea�. Hence, using
the dominated convergence theorem, we obtain

lim
�→0+

[R(��; �)− R(��; �)] = [ea(�−�) − a(� − �)− 1]P�(X1)¿ 0 (2.12)

and

lim
�→1−

[R(��; �)− R(��; �)] =−[ea(�−�) − a(�− �)− 1]P�(X1)¡ 0: (2.13)

Since R(��; �) is continuous in �, there exists �∗ ∈ (0; 1) such that R(��∗ ; �) = R(��∗ ; �).
Obviously, (2.11) can be rewritten as

R(��; �)− R(��; �) =
∫
X1

{[e−a�f(x; �)− e−a�f(x; �)]A− [f(x; �)− f(x; �)]logA} d�

+(a�− 1)P�(X1)− (a� − 1)P�(X1): (2.14)
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Denote

h(�) = [e−a�f(x; �)− e−a�f(x; �)]A− [f(x; �)− f(x; �)]logA: (2.15)

Then for x∈X1,

h′(�) =
A′

A
{[e−a�f(x; �)− e−a�f(x; �)]A− [f(x; �)− f(x; �)]}

=
A′

A
f(x; �)f(x; �)(e−a� − e−a�)

�f(x; �)e−a� + (1− �)f(x; �)e−a�

= − 1
A

f2(x; �)f2(x; �)(e−a� − e−a�)2

[�f(x; �)e−a� + (1− �)f(x; �)e−a�]3

¡ 0; (2.16)

where A′ is the derivative of A with respect to �. So, h(�) is a strictly decreasing function of �, which
shows from (2.14) that R(��; �)− R(��; �) is also a strictly decreasing function of �. Therefore, �∗ such that
R(��∗ ; �) = R(��∗ ; �) in (0; 1) is unique, and R(��; �)¡R(��; �) for �∈ (�∗; 1) and R(��; �)¿R(��; �) for
�∈ (0; �∗). This completes the proof of Theorem 2.1.

The above theorem represents a general result which holds for a range of distributions. For example, taking
n= 1 and f(x; �) = (1=

√
2�)e−(1=2)(x−�)2 , i.e., X ∼ N(�; 1), we obtain the following results given in Bischo�

et al. (1995b).

Corollary 2.1. For the case of X ∼ N(�; 1); �∈ [−m;m]; the Bayes estimator of � with respect to the prior
� is

��(x) =
1
a
log

�e−mx + (1− �)emx

�e−m(x−a) + (1− �)em(x−a) : (2.17)

Further; there exists a unique �∗ ∈ (0; 1) such that R(��∗ ;−m) = R(��∗ ; m); and R(��;−m)¡R(��; m) for
�∈ (�∗; 1) and R(��;−m)¿R(��; m) for �∈ (0; �∗).

Remark 2.1. From Bischo� et al. (1995b), we observe that for the above normal case, if m is small enough,
then min{R(��;−m); R(��; m)}¿ inf �∈[−m;m] R(��; �). However, as we shall see later, this property does not
hold in general (see Remark 3.4).

In the next section, we consider the application of Theorem 2.1 to the Poisson distribution.

3. Minimax estimation for Poisson parameter

Let X1; : : : ; Xn be i.i.d. random variables, X1∼Poisson(�); �∈ [0; �]; �¿ 0. Consider the following two-point
prior �:

�({0}) = �; �({�}) = 1− �; (3.1)

where 0¡�¡ 1.
Using (2.2), the corresponding Bayes estimator is

��(x1; : : : ; xn) =




1
a log

�+(1−�)e−n�

�+(1−�)e−(a+n)� ; x1 = · · ·= xn = 0;

�; x1 + · · ·+ xn¿1:
(3.2)
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Lemma 3.1. Suppose that either of the following conditions holds:
(i) a¿− 2n; �6�0; where �0 ∈ (0;+∞) is the unique root of the equation

−
(
1 +

2a
n

)
ea� + a� +

(
1 +

a
n

)2
= 0 (3.3)

or
(ii) a¡− 2n and �6�1; where �1 ∈ (−(1=a)log(1 + a=n)2;+∞) is the unique root of the equation

−
(
1 +

2a
n

)
ea� + a� + log

(
1 +

a
n

)2
+ 1 = 0; (3.4)

then the risk function R(��; �) of the Bayes estimator �� is strictly convex on [0; �] for every �∈ (0; 1).

Proof. It can be shown that the risk function of �� is

R(��; �) = ea(�−�) − a(� − �)− 1 + (B− ea�)e−(a+n)� − (logB− a�)e−n�; (3.5)

where

B=
�+ (1− �)e−n�

�+ (1− �)e−(a+n)� : (3.6)

Hence, the second derivative of R(��; �) with respect to � is

R′′(��; �) = a2ea(�−�) + (B− ea�)(a+ n)2e−(a+n)� − (logB− a�)n2e−n�: (3.7)

Consider the cases of a¿− 2n and a¡− 2n.
(10) When a¿ 0, we have 1¡B¡ ea�. So, from (3.7), we have

R′′(��; �) = e−(a+n)�[a2ea�+n� + (B− ea�)(a+ n)2 − (logB− a�)n2ea�]

¿ e−(a+n)�[a2ea� + (B− ea�)(a+ n)2 − (logB− a�)n2]: (3.8)

It is easy to see that the function �(t) = (a+ n)2t − n2 log t is strictly increasing in t when t ¿n2=(a+ n)2.
So, we have �(B)¿�(1) = (a+ n)2. Recognizing this and using (3.8), we obtain

R′′(��; �)¿ e−(a+n)�{[a2 − (a+ n)2]ea� + a�n2 + (a+ n)2}
=̂ e−(a+n)� 1(�) (say): (3.9)

Note that  ′
1 (�) =−2a2nea� − an2(ea� − 1)¡ 0. Hence,  1(�) is strictly decreasing in � when �¿ 0. On the

other hand, we have

lim
�→0+

 1(�) = a2 and lim
�→+∞

 1(�) =−∞: (3.10)

Therefore, there exists a unique �0 ∈ (0;+∞) such that  1(�0)=0, and  1(�)¿ 1(�0)=0 for �¡�0. Thus,
from (3.9), R′′(��; �)¿ 0 for �6�0.
If −2n6a¡ 0, then 1¿B¿ ea�, and (a+ n)26n2. Therefore, from (3.7), we have

R′′(��; �) = e−n�[a2ea�+(n−a)� + (B− ea�)(a+ n)2e−a� − (logB− a�)n2]

¿ e−n�[a2ea� + (B− ea�)(a+ n)2 − (logB− a�)n2]: (3.11)

It can be seen that the function �(t)= (a+ n)2t− n2 log t is strictly decreasing in t when 0¡t¡n2=(a+ n)2.
So, we have �(B)¿�(1) = (a+ n)2.
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The remainder of the proof is similar to that of the case of a¿ 0.
(20) When a¡− 2n, we have (a+ n)2¿n2. It is easily seen that the function �(t) = (a+ n)2t − n2 log t

attains a minimum at t = n2=(a+ n)2. Hence, we have

�(B)¿�
(

n2

(a+ n)2

)
= n2 − n2 log

n2

(a+ n)2
(3.12)

and it follows from (3.11) that

R′′(��; �)¿ e−n�
{
[a2 − (a+ n)2]ea� + a�n2 + n2 − n2 log

n2

(a+ n)2

}

=̂ e−n� 2(�) (say): (3.13)

It can be seen that the function  2(�) is strictly decreasing in � when �¿ 0. Moreover,

 2

(
−1

a
log

(
1 +

a
n

)2)
=

a2n2

(a+ n)2
¿ 0 (3.14)

and

lim
�→+∞

 2(�) =−∞: (3.15)

So there exists a unique �1 ∈ (−(1=a)log(1 + a=n)2;+∞) such that  2(�1) = 0 and  2(�)¿ 2(�1) = 0 for
�¡�1. Therefore, from (3.13), R′′(��; �)¿ 0 for �¡�1. Note that the inequality symbol in (3.11) becomes
a strict equality only when � = 0. Thus, R(��; �) is strictly convex for �6�1. This completes the proof of
Lemma 3.1.

Remark 3.1. In the proof of the second part of Lemma 3:1, the equality of (3.12) holds for some �∈ (0; 1)
when �¿ − (1=a)log(1 + a=n)2. This means that the right-hand side of (3.13) is su�ciently close to the
lower bound of the right-hand side of (3.11). Note that when �¿− (1=a)log(1+a=n)2, ea� ¡n2=(a+n)2¡ 1
and B is a continuous function of �, so there exists a �0 ∈ (0; 1) such that B|�=�0 = n2=(a + n)2 (note that
ea� ¡B¡ 1).

Remark 3.2. Note that Eq. (3.3) coincides with Eq. (3.4) for the boundary case of a=−2n.

Remark 3.3. It can be shown that when a¿− 2n, R(��; �) is not strictly convex on [0; �] for some �∈ (0; 1)
if �¿�0; and when a¡ − 2n, R(��; �) is not strictly convex on [0; �] for some �∈ (0; 1) if �¿�1. Thus,
condition (i) or (ii) given in Lemma 3.1 is also the necessary condition for R(��; �) to be strictly convex on
[0; �] for every �∈ (0; 1). In fact, let a¿− 2n. If �¿�0, then from the proof of part (i) of Lemma 3.1, we
have  1(�)¡ 1(�0) = 0. Note that

lim
�→0+ ; �→1−

R′′(��; �) = [a2 − (a+ n)2]ea� + a�n2 + (a+ n)2

=  1(�)¡ 0: (3.16)

So there exist �¿ 0 and �¿ 0 such that

R′′(��; �)¡ 0 for �∈ (0; �); �∈ (1− �; 1): (3.17)

This illustrates that R(��; �) is strictly concave in (0; �) and hence not convex on [0; �] for �∈ (1 − �; 1).
Similarly, for the case of a¡− 2n, if �¿�1, then  2(�)¡ 2(�1) = 0, and �¿− (1=a)log(1 + a=n)2. From
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Remark 3.1, we see that there exists a �0 ∈ (0; 1) such that B|�=�0 = n2=(a+ n)2. Therefore,

lim
�→0+ ; �→�0

R′′(��; �) = [a2 − (a+ n)2]ea� + a�n2 + n2 − n2 log n2

(a+n)2

=  2(�)¡ 0: (3.18)

This also shows that R(��; �) is not convex on [0; �] for some �∈ (0; 1).

Lemma 3.2. There exists a unique �∗ ∈ (0; 1), such that
R(��∗ ; 0) = R(��∗ ; �); (3.19)

where �∗ is the prior distribution for � = �∗. Moreover; R(��; 0)¡R(��; �) for �∈ (�∗; 1) and R(��; 0)¿
R(��; �) for �∈ (0; �∗).

Proof. Lemma 3.2 is a direct result of Theorem 2.1.

Remark 3.4. Contrary to the normal case, for the Poisson distribution, min{R(��; 0), R(��; �)} can equal
inf �∈[0;�] R(��; �) for some �∈ (0; 1). For example, if we let a¿ − 2n; �¿�∗, then from Lemma 3.2, we
have R(��; 0)¡R(��; �). Further, let �6�0, then from (3.5), we have

R′(��; 0) =−aea� + a− (a+ n)(B− ea�) + n(logB− a�)

=̂ g1(�) (say): (3.20)

It can be shown that g1(�) is strictly increasing in �∈ (0; 1). So if g1(�∗)¿0, then g1(�)¿g1(�∗)¿0 for
�¿�∗, which implies R′(��; 0)¿ 0 for �¿�∗. If g1(�∗)¡ 0, then there exists a unique �∗∗ ∈ (�∗; 1) such that
g1(�∗∗)=0 (note that lim�→1− g1(�)=n(ea�−1−a�)¿ 0). Thus, g1(�)¿g1(�∗∗)=0 for �¿�∗∗, which implies
R′(��; 0)¿ 0 for �¿�∗∗. Further, note that R′′(��; �)¿ 0 for �6�0. So we have R′(��; �)¿R′(��; 0)¿ 0
when �¿�∗ or �¿�∗∗. Therefore, R(��; 0) is the minimum of R(��; �) when �¿�∗ or �¿�∗∗. Similar
results can be shown for a¡− 2n; �¿�∗ and �6�1.

Theorem 3.1. Suppose that either condition (i) or (ii) of Lemma 3:1 holds; then the two-point prior �∗;

�∗({0}) = �∗; �∗({�}) = 1− �∗ (3.21)

is the least favorable prior; and the corresponding Bayes estimator;

��∗(x1; : : : ; xn) =




1
a log

�∗+(1−�∗)e−n�

�∗+(1−�∗)e−(a+n)� ; x1 = · · ·= xn = 0;

�; x1 + · · ·+ xn¿1
(3.22)

is the minimax estimator of �.

Proof. The proof follows from Lemmas 3:1 and 3:2.

To illustrate our results further, we perform a simple numerical exercise to �nd the greatest values of �
for di�erent n for which the estimator ��∗ is minimax. In Tables 1–4, �′ is the upper bound of � obtained
analytically; �′′ is the largest value of � such that the risk function R(��∗ ; �) of the estimator ��∗ is strictly
convex; and �′′′ is the maximal value of � such that the estimator ��∗ is minimax. Note that �′ equals �0 if
a¿− 2n and equals �1 if a¡− 2n.
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Table 1
Numerical bounds of � for various a when n = 1

a −5 −3 −1 −0:2 0.2 1 3 5

�′ 0.789 0.906 0.567 0.468 0.433 0.378 0.293 0.244
�′′ 0.813 0.906 0.797 0.709 0.667 0.595 0.466 0.386
�′′′ 2.849 1.951 1.151 0.953 0.877 0.757 0.571 0.463

Table 2
Numerical bounds of � for various a when n = 3

a −5 −3 −1 −0:2 0.2 1 3 5

�′ 0.234 0.189 0.161 0.152 0.148 0.141 0.126 0.115
�′′ 0.287 0.266 0.241 0.231 0.227 0.218 0.198 0.181
�′′′ 0.459 0.384 0.327 0.309 0.300 0.285 0.252 0.227

Table 3
Numerical bounds of � for various a when n = 5

a −5 −3 −1 −0:2 0.2 1 3 5

�′ 0.113 0.102 0.094 0.091 0.089 0.087 0.081 0.076
�′′ 0.159 0.150 0.142 0.138 0.137 0.133 0.126 0.119
�′′′ 0.230 0.209 0.191 0.184 0.181 0.175 0.162 0.151

Table 4
Numerical bounds of � for various a when n = 10

a −5 −3 −1 −0:2 0.2 1 3 5

�′ 0.05 0.048 0.046 0.045 0.045 0.044 0.042 0.041
�′′ 0.074 0.072 0.070 0.069 0.069 0.068 0.066 0.064
�′′′ 0.102 0.097 0.093 0.092 0.091 0.089 0.086 0.083

4. �-minimax estimation for Poisson parameter

In this section, we consider the following class of priors:

��;� = {�= ��1 + (1− �)�2: �1([0; �]) = �2([�; �]) = 1}; (4.1)

where �∈ (0; 1) and �∈ (0; �) are �xed. Numerous authors have used this type of priors in various contexts of
interest. Examples are Lehn and Rummel (1987), Chen and Eichenauer-Herrmann (1988), Eichenauer-Herrmann
et al. (1988), Bischo� and Fieger (1992) and Bischo� et al. (1995b).
It can be seen from (3.5) that

R′(��; �) =−(a+ n)(B− ea�)e−(a+n)� + n(logB− a�)e−n�

=̂ g2(B) (say): (4.2)

Obviously, when

a¿ 0 and 0¡�6
1
a
log

(
1 +

a
n

)
; (4.3)
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we have g′2(B)¡ 0. Also, when

− n¡a¡ 0 and 0¡�6
1
a
log

(
1 +

a
n

)
(4.4)

or

a6− n; (4.5)

we have g′2(B)¿ 0.
Recalling that 1¡B¡ ea� if a¿ 0 and ea� ¡B¡ 1 if a¡ 0, and noting that g2(ea�)= 0, we can see that

under conditions (4.3) and (4.4) or (4.5)

g2(B)¿g2
(
ea�

)
= 0; (4.6)

which implies that R′(��; �)¿ 0. Therefore, R(��; �)¿ inf �∈[0;�] R(��; �) if conditions (4.3) and (4.4) or
(4.5) holds. Making use of this and Lemma 3.2, we see that when 0¡�¡�∗ and the conditions (4.3) and
(4.4) or (4.5) holds, there exists a �∗ ∈ (0; �) such that R(��; �∗) = R(��; �). In the case where R′′(��; �)¿ 0
for �∈ (0; �], such �∗ is unique.
Further, we can show that �0¡ (1=a)log(1 + a=n) for a¿− n. Thus, we obtain the following theorem.

Theorem 4.1. Assume that either conditions (i) or (ii) of Lemma 3:1 holds; and 0¡�¡�∗ and �∗6�¡�;
then the prior �;

�({0}) = �; �({�}) = 1− � (4.7)

is least favorable in ��;� and the corresponding Bayes estimator �� is ��;�-minimax.

Remark 4.1. Obviously, the minimax estimators and �-minimax estimators obtained in this paper are also
admissible.
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