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Abstract

Consider an asymmetric Linex loss. We provide the soft wavelet shrinkage estimation of a Bayesian inter-
pretation under such a loss. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the following discrete noisy signal model obtained from a discrete wavelet transform:

w = �+ �;

where w = (w1; : : : ; wn)T are empirical wavelet coe9cients, � = (�1; : : : ; �n)T are iid normal random
errors with zero mean and variance �2, and � = (�1; : : : ; �n)T are the true wavelet coe9cients. Let
�(w)=(�1(w); : : : ; �n(w))T be an estimator for �. The soft thresholding wavelet shrinkage estimation
by Donoho and Johnstone (1994) is given by

�softi (w; 
) = sign(wi)(|wi| − 
)I(|wi|¿ 
); i = 1; : : : ; n; (1)

where I(·) is an indicator function and 
¿ 0 is a threshold parameter.
The wavelet estimation problem can be treated via the estimation of the mean vector � from a

multivariate normal distribution w|� ∼ N (�; �2I), where I is the n×n identity matrix. We employ an
asymmetric Linex loss function (Varian, 1975; Zellner, 1986) as error criterion. Under such a loss
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function, we derive a generalized Bayes estimator, which is also shown to be the unique admissible
and minimax estimator. Then, we show that the soft wavelet shrinkage estimator (1) can be derived
as an empirical version of the admissible-and-minimax generalized Bayes estimator.

2. Linex loss

Consider the following asymmetric Linex loss for �:

L(�; �(w)) =
1
n

n∑
i=1

(eai{�i(w)−�i} − ai{�i(w)− �i} − 1); ai 	=0: (2)

We see that, for a positive ai, the following term:

eai{�i(w)−�i} − ai{�i(w)− �i} − 1 (3)

increases exponentially for over-estimation of a component �i; as �i−�i → ∞; on the other hand, the
loss increases linearly for under-estimation of the component �i, as �i−�i → ∞. Thus, the positivity
of ai discourages over-estimation and results in estimation shifting towards the left. For a negative
ai, this phenomenon is reversed; the single-term loss (3) increases linearly for over-estimation and
exponentially for under-estimation. Thus, the negativity of ai discourages under-estimation and results
in estimation shifting towards the right.

The name “Linex loss” comes from the linearity–exponentiality phenomenon of loss. Applications
of the Linex loss to several Bayesian estimation and prediction problems can be found in Zellner
(1986).

3. The main result

Using Linex loss (2) as the error criterion, we have the following theorem.

Theorem 1. Under loss (2); the estimator �GB(w) given by

�GBi (w) = wi − ai�2

2
; i = 1; : : : ; n (4)

is a generalized Bayes estimator for � with respect to the 6at improper prior on Rn. Moreover;
�GB(w) is the unique admissible and minimax estimator.

For application of the Linex loss to wavelet estimation problem, we consider speciLcally the Linex
loss with ai values depending on signs of �i’s

ai =
{
c for �i¿ 0; i = 1; : : : ; n;
−c for �i ¡ 0; i = 1; : : : ; n; (5)

where c¿ 0 is some constant. Such an error criterion discourages estimators from over-estimation
in magnitude (i.e. in absolute value) and results in shrinkage estimation towards zero. Under such
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a loss criterion, the ideal unique admissble and minimax estimator is given by

�GBi (w) = wi − sign(�i)
; where 
=
c�2

2
:

Often the signs of parameters �i’s are not known. A natural approach is to use sign(wi) to estimate
sign(�i) and make truncation at zero. We then have the following empirical version of �GB.

�softi (w) =
{
(wi − 
) ∨ 0 wi¿ 0;
(wi + 
) ∧ 0 wi ¡ 0;

= sign(wi)(|wi| − 
)+: (6)

The above estimator is the renowned soft wavelet shrinkage estimator.

4. Proof for Theorem 1

4.1. Generalized Bayes estimator

Let � be the Nat improper prior with probability density function �(�) = 1, �∈Rn. Then, the
posterior distribution is �(�|w) ∼ N (w; �2I). It is straightforward to check that the posterior expected
loss of an arbitrary estimator �(w) is given by

�(�(�|w); �(w)) =
∫
L(�; �(w)) d�(�|w)

=
1
n

n∑
i=1

(eai(�i−wi)+a
2
i �

2=2 − ai{�i − wi} − 1): (7)

A generalized Bayes estimator is an estimator � which minimizes (7). First, we take derivatives with
respect to �i and set them to zero. We get the system of equations.

eai(�i−wi)+a
2
i �

2=2 − 1 = 0; i = 1; : : : ; n

or equivalently,

ai(�i − wi) + a2i �2=2 = 0; i = 1; : : : ; n:

The unique solution for the above system of equations, which is the generalized Bayes estimator
with respect to the Nat prior over Rn, is given by (4).

4.2. Admissibility

Let �(w; �; �2I) be the distribution function for N (�; �2I), then

R(�; �) =
1
n

n∑
i=1

∫
Rn
(eai{�i(w)−�i} − ai{�i(w)− �i} − 1) d�(w; �; �2I):

We see that R(�; �) is continuous in � for any �. Suppose �GB is not admissible. Then, there exists
an estimator � such that R(�; �)6R(�; �GB), with strict inequality for some �, say �0. Since R(�; �)



174 S.-Y. Huang / Statistics & Probability Letters 56 (2002) 171–175

and R(�; �GB) are continuous in �, there exist strictly positive constants c1 and c2 such that

R(�; �)¡R(�; �GB)− c1 for �∈{�: |�− �0|¡c2}:
Consider a sequence of priors �k(�) ∼ N (0; �2k I), with limk→∞ �2k = ∞. Using the technique of
minimizing posterior expected loss, the Bayes estimator under the prior �k and Linex loss (2) can
be shown by

��ki (w) =
�2k

�2 + �2k

(
wi − ai�2

2

)
; i = 1; : : : ; n (8)

with the Bayes risk

r(�k; ��k ) =
�2�2k

2n(�2 + �2k)

n∑
i=1

a2i : (9)

One can also compute the Bayes risk for �GB, and the result is

r(�k; �GB) =
�2

2n

n∑
i=1

a2i : (10)

Let c3 = lim inf k→∞
∫
|�−�0|¡c2 �k(�) d�. Since limk→∞ �2k =∞, we have

c3 = lim inf
k→∞

∫
|�−�0|¡c2

�k(�) d�¿ 0:

Therefore, for k is large enough

r(�k; �GB)− r(�k; ��k )¿ r(�k; �GB)− r(�k; �)

=
∫
Rn
(R(�; �GB)− R(�; �))�k(�) d�

¿
∫
|�−�0|¡c2

(R(�; �GB)− R(�; �))�k(�) d�¿c1c3¿ 0:

This contradicts with the fact that limk→∞{r(�k; �GB)− r(�k; ��k )}= 0.

4.3. Minimaxity

The minimaxity of �GB follows from its admissibility and the constant risk phenomenon R(�; �GB)=
�2

∑n
i=1 a

2
i =(2n).

5. Remarks

The estimation of normal mean under certain Linex loss functions can also be found in the
literature. Zellner (1986) has studied the estimation problem for the univariate case. It was assumed
that w1; : : : ; wn were iid univariate normal random variables with a common mean � and variance �2.
The estimator Ow − a�2=2 was proposed therein. Later in Parsian (1990), the multivariate case was
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studied via a three-stage Bayesian framework. Therein, a generalized Bayes estimator was derived
and also shown to be admissible. The generalized Bayes estimator in our Theorem 1 is diPerent
from Parsian’s, as the Bayesian model setup in this article is diPerent from his.
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