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Abstract 

This paper considers the estimation problems of an arbitrary linear function of the character- 
istic values of a finite population under the Linex loss function. We obtain all admissible linear 
estimators when the variance o -2 is known and all admissible linear estimators in the class of 
linear estimators when O "2 is unknown. 
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1. Introduction 

Because the use of symmetric loss functions may be inappropriate in some practical 
problems, discussion of the estimation problems under asymmetric loss functions 
receives much attention recently (see, for example, Zellner, 1986; Bischoff et al., 199 5). 
Varian (1975) introduced the following useful asymmetric Linex loss function: 

L(& 0) = b(exp {a(/5 - 0)} - a(8 - 0) - 1), (1.1) 

where a va 0, b > 0 are known constants. 
Zellner (1986) proved that the usual sample mean is inadmissible for estimating 

normal mean (in the case in which the variance is known) under the above loss 
function, Later, Rojo (1987) considered the admissibility of linear functions of the 
sample mean under the Linex loss function (1.1) and generalized Zellner's result. 
Bolfarine (1989) considered the estimation problems of the finite population total 
under the Linex loss function (at this time, 0 in (1.1) means the population total). He 
gave the Bayes estimators of the population total and discussed the admissibility of 
some of the derived estimators. The objective of this paper is to investigate the 
admissibility of linear estimators of an arbitrary linear function of the characteristic 
values of a finite population under the Linex loss function. 
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Suppose  the finite popula t ion  { Ya . . . .  , YN } is a r a n d o m  sample f rom the following 
superpopula t ion  model:  

Yk = ak f l  -t- b k -t- g'k, (1.2) 

where k = 1 . . . . .  N,  ak > 0 and bk are known constants, /~ is unknown  parameter ,  Sk is 
no rma l  with mean  zero and variance a z and s~ . . . . .  eu are mutual ly  independent .  This 

model  is very useful and was discussed in detail by Cassel et al. (1976, 1977). G o d a m b e  
(1982) also considered it. 

We will consider  the es t imat ion p rob lems  of linear function y~= ~Pk Yk(Pk > O, 
k = 1, . . . ,  N), using the Linex loss function (1.1), under the superpopulat ion model  (1.2). 
We assume that  the sample {Yk, k e s} is drawn by an arbi trary sampling design p (i.e., 
p(s) satisfies p(s) > 0, and ~ ~ s p(s) = 1, where S is a class of subsets of 1 . . . . .  N). For  the 
case in which cr z is known, we obtain all admissible linear estimators of 5~= ~p~ Yk. 
Because a z is often unknown in the practical problems, we also investigate the 

admissibility of a linear es t imator  in this case. We obtain all admissible linear estimators 

of ~Nk: ~ Pk Yk in the class of linear estimators. Unlike under the squared error loss, for 
the cases in which a 2 is known or unknown,  the necessary and sufficient conditions for 
a linear es t imator  to be admissible under the Linex loss are quite different, at  least in the 
class of  linear estimators,  which is somewhat  surprising (see Remark  3). 

The  reasons why the au thor  considers linear function ~ :  1 Pk Yk are the following: 
(a) By t ransformat ion,  it includes the usual case of E(s 2) = a z ag (g />  0 is a known 

constant).  
(b) In some practical  problems,  it is necessary to est imate linear function 52~'= ~ Pk Yk 

(cf., Page et al., 1993). 
Since the values of  b have no effect on the admissibility, we assume b = 1 in the 

Linex loss function (1.1). 

2. All admissible linear estimators of  ZkS= l Pk Y~ when 0 .2 is known 

Theorem 1. Suppose (7 2 is known. Then the necessary and sufficient conditions for  the 

estimator T(s)  ~k ~ ~ COksYk + COOs of  linear function N = Y,k = l Pk Yk to be admissible are 
that there exists 2s such that COks = 2sak + Pk (k ~ s), and one o f  the following two 
conditions is satisfied: 

(i) 0 ~< 2s < cs/ds, where Cs~--Zk~.~pkak and ds~--Zk~ a~; 
(ii) 2s = cs/d~, and 

COot - 7; Z + Z - -5- \ ; + . 
~s kes  k~s k4:s 

Proof.  By linear t ransformat ion,  we need only consider the case of  bk = 0 
(k = 1 , . . . ,  N). In this case, condi t ion (ii) becomes 

(ii)' ).s = ~ ,  and COos - 2 ds -['- ~.kCs p2 . 
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First it can be seen that  the risk of the es t imator  T(s) = Zk~O)kA'k + (OO~ is 

g ( r "  ~ ,PkYk)~EIexp{a(W{S) - -h~ lPkYk)} - -aQW(S ' - - k~ lPkYk) - - I  ] 

+ - 2 -  ((ok~ - pk + ~ p; 

The p roof  of necessity consists of the following three steps. 
(1) We prove  that  there exists )o~ such that  (Ok.~ = 2~a~ + pk(k C s). In facL if it is not 

the case, then (mk.~ --pk)/ak (k ~ s) are not a constant .  Define 

(Ok* = Eke,, (COk~ - pDak 

(O~s ~ (OOs. 
Then we have 

k e s  kE . s  

and by the C a u c h y - S c h w a r z  inequality-, 

Z (COts-p~)~ - Z ( o ~ - p O ' -  

• ak + Pk (k e s); (2.'2) 

(2.3) 

So, f rom (2.1), (2.3) and (2.4), the es t imator  T*(s) = ~j .... v)*j.'k + (,o*, is superior  to 
T(s), which contradicts  the admissibil i ty of T(s). 

(2) We prove  0 <~ Zs <~ cs/ds. Because we have shown in (1) that  there exists ,~ such 
that  (Ok., = ,;t~ak + Pk (k e s), the risk of T(s) can be expressed as 

R T, PkYk = e x p  a E f l ( 2 f l ~ - - c ~ ) + ( % ~ ] + ~ -  ,%d~+~p~  
/, = 1 k¢, 

- -  a E f i ( ) . , d ~  - c , )  + e)o.~] - 1 ~ t'(,~,~, c')o~). (2 .5)  

Let e)Os be a function of ).~ such that  its derivative with respect to 2~ satisfies 

deJos I ao'2 f 2 ) ] ,,,'/( Cs) 
d;., (Oo~ + + Y~ p~" - 

kcs  , 

k E s k E s 

EZk~ ((ok~ -pkia~] 2 
= ~ - ~ !,'oks _ p k ) 2  

< 0 .  (2.4) 
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(Eq. (2.6) always has solutions since it is a linear first-order differential equation.) Then 
from (2.5) and (2.6), we get 

- a rids+ d2s // exp a [3ds ,z~s-~ + mOs 

act2~ 2d k~p2)) -11 

{ ( ( ) a°-2/" 2\ ))} 
_ cs - ~ -  12 ,  d, 2 +aZaZ2sdsexp a rids 2s ~ +ram,+ + ~Pk 

k4-s / 

= a(flds + drams 

• exp{a(fids dmos~['2 _c~ 

Note that if 2s < 0, then 

a(flds+ dmOS~[ [ dmos"~(2sCS _ 1 1  ~<0. ~-fz~ )kexp)a(flds +--~, ) ~ ) }  (2.8) 

So, df/d2~ < 0 when 2s < 0. That is, f(2~) is a strictly decreasing function of ,~ when 
2s < 0. Thus, increasing 2s will reduce the risk of T(s). This shows that T(s) with 
2s < 0 is not admissible. 

Similarly, f(2s) is a strictly increasing function Of 2s when 2s > cJds. Therefore, T(s) 
with 2~ > cs/ds is not admissible either. 

(3) Now we prove that if 2s = c~/ds, then 

mo~ - 2 ds + Y p~ 
k~:s 

This conclusion can be obtained readily: it follows from (2.5) that when 2s = c~/d~, 

( ~ ) { a2°2 [QCs) 2 It 
R T, PkYk = e x p  amos+-~- ~ ds+  E P 2  - a m o s - l ,  (2.9) 

k ~ 1 k~s I ) 

which attains its minimum only at 

m0~- 2 d~+ ~ p Z  . k~s 
Summarizing (l)-(3), necessity is proved. 
In order to prove sufficiency, we consider the following three cases. 
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in (2.13), we get 

Epo(eXp{a[6--(~,PkYk+O)Os)I}--alc~--(~PkYk+CO0s)]--I)<~O' 

(2.14) 

where E~o denotes expectation when the parameter is flo. Since the integrand in (2.14) 
is nonnegative, we have 6 = ~k ~, PkYk + a)o~ = T(s) (a.e. Lebesgue). Therefore, T(s) is 
admissible. 

(2) Assume 0 < 2s < c~/ds. Let fl have the prior distribution N(/~, ~2) (where /~, 
r2 > 0 are known). After some calculations, we can obtain the corresponding Bayes 
estimator to be 

( ) i)B(yk, k ~ s) = kesZ (72 -t- z2ds ak d- Pk Yk + 62 -b z2ds - -  - ~  k~,s 

(2.15) 

R(6*' ~ PkYk)<~R( T' ~ k=l f o r a l l f i ,  (2.17) 

R((~*' ~-~ P k g k ) < R (  r '  ~ k=l f ° r s ° m e f l ° "  (2.18, 

Using the fact that R(6*, Z2= 1 Pk Yk) is a continuous function offi, we can find an ~ > 0 
and fll < fi2 such that 

for all fll < fl < f12. (2.19) 

Therefore, when 0 < 2s < c~/d,, the estimator T(s) = ~k~,(]tsak +Pk)Yk + O)Os is the 
Bayes estimator with respect to some prior distribution N(#o, r2). Since the loss 
function (1.1) is strictly convex, T(s) is the unique Bayes estimator and hence 
admissible. 

(3) When 2~ = c~/d~, and 

2 ds + , kCs 

by using the limiting Bayes method (see Lehmann, 1983, p. 265 or Rojo, 1987), we can 
show that T(s) is admissible. In fact, from (2.5), we have 

( ~ )a2~rZI(cs']2 ; 
R T, PkYk = ~  \ ~ j  d,+ ~,p~ ~r. (2.16) 

k = 1 kCs 

Suppose that the estimator ~*(Yk, k ~ s) is superior to T(s), then 
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Let now c~ be the Bayes estimator with respect to the prior distribution N (0, r= l, and 
let B(aD be the Bayes risk of (5~. Then from (2.15}, we have 

T2Cs ) UO "2 T. C s 

~ -  a2 + r 2 d  + E P{ , 12.20) 

and from (2.5}, its Bayes risk is 

( 22 ) (120"2 .~ C s 
B{&} = ~ -  ~ + ,~a, + y" d • 

k 4", / 
{2.2l) 

Let B(6*) be the Bayes risk of the estimator 6" with respect to the prior distribution 
N(0, r=). Then from (2.16), (2.17), (2.19) and (2.21), we get 

r -  B(6*) 

1 

x/2rtr 

r -- N({SB) 2202 [ (cs ~2 ds 12c~ 1 
2 L ~ d s /  " {72 4- "c2ds 

2ds(a2 + r2ds)e/'/~, 
e r<'2~:dfi --+ + m. {2.22) > .,~a=~4c2 J,,, 

when r --+ + ~ .  Thus, if r is sufficiently large, then B(6*) < B(ah), which contradicts 
the fact that 6h is the Bayes estimator with respect to the prior distribution N{0, r-'}. 
Therefore, T(s) is admissible. 

From (1) (3), sufficiency is proved. This completes the proof of Theorem 1. [3 

R e m a r k  1. For the regression superpopulation model through the origin considered 
by Bolfarine (1989) 

Yk = Xkfi  -t- f;k, (2.23) 

where ~:k is normal with mean zero and variance a2xk and ::1 . . . .  ,~:,~, are mutually 

independent. By making transformation zk = .~k,%, xk and taking/.~ = c/d~, 

k 4 

we can see that T(s) = Xk~(2.~,f-'ck + pk)zk + {'30~ is an admissible estimator of 

,~,Nz_k = 1 P k Z k .  Further, we take Pk = ,/'xk, then the estimator 

W(s) - E2= , Xk y,  Yk ~ (2.241 

is an admissible estimator of the population total y~= I Yk" The estimator T(s) in 
(2.24) is just the estimator TRe in Bolfarine (1989), whose admissibility was also shown 
by Bolfarine (1989). 
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3. All admissible linear estimators of  ~,~= ~ p~ Yk in the class of  linear estimators when 
a 2 is unknown 

D e n o t e  the  class of  l i nea r  e s t i m a t o r s  by  ,Y-. 

Theorem 2. Suppose  a 2 is unknown.  Then  the necessary  and suff icient  condit ions f o r  the 

es t imator  T ( s )  = Zk ~ ~ ~OksYk + COOs o f  linear func t ion  ~Nk__ ~ Pk Yk to be admissible in the 

class ~ -  are that  there ex i s t s  A~ such that  eJk~ = Asak + Pk (k ~ s), and one o f  the fo l lowing  

two condit ions is satisfied: 

A~ (i) - ~  ~< + d~ ' d~ 

(ii) A~ = - - ,  and aO)o~ <<, - a ~, akbk -- pkbk . 
ds k~s 

Proof .  As  in the  p r o o f  of  T h e o r e m  1, we a s s u m e  bk = 0 (k = 1, . . . ,  N). In  this  case,  

c o n d i t i o n  (ii) b e c o m e s  

(ii)' A~ = c~/d~, a n d  a¢oo~ <~ O. 

Necess i t y :  F r o m  the p r o o f  of  T h e o r e m  1, we can  see t ha t  if the  e s t i m a t o r  T(s )  is 

a d m i s s i b l e  in the  class  J - ,  t hen  the re  m u s t  exis t  2~ such t ha t  (Ok~ = 2~ak + Pk (k E s), 

even  t h o u g h  a 2 is u n k n o w n .  In  the  fo l lowing  we will  p r o v e  t ha t  2~ a n d  ~Oo, sat isfy (i) or  

(ii)'. 

F i r s t  it  is ea sy  to  see t ha t  if A~ = c~/d~, t hen  a~Oo~ ~< 0. O the rwi se ,  a s s u m e  a~Oo~ > 0. 

T h e n  the  e s t i m a t o r  

z ) T ° ( s )  = k ~  \ d ~ ak + pk Yk 

is s u p e r i o r  to  T(s) ,  a c o n t r a d i c t i o n  to  the  a d m i s s i b i l i t y  of  T(s) .  

N o w  we s h o w  tha t  if 2~ ¢ cs/ds, then  

As /(c V 

If  it is n o t  the  case,  then  the o p p o s i t e  i n e q u a l i t y  h o l d s  s t r ic t ly .  Def ine  

o, L c .  + E~+.p~ 
A s = 

A~d~ - c~ 

A'~d~ - c~ 
' - • ~Oo~. (3.2) 

~os Asds -- Cs 



G. Zou / Journal of'Statistical Planning and lr~/erence 61 (1997) 373 384 381 

It (:an be shown that the corresponding est imator T'(s)  = ~k ~ (),~ak + Pk )Yk + ~o',~ is 
superior to T(s), which contradicts  the admissibility of T(s). In fact, let 

a20 -2 / . , .  ' '~ 

Then from (3.2), 0 < t < 1, and from (2.5), we have 

= [e ' i * + ~ ; t - t a ]  - ( e  A+~-' d). (3.3) 

It is easy to see that  A is a strictly increasing function of t when t > 0. Hence A < 0. 
Su[ficiency. F r o m  the proof  of the necessity of Theorem 1, we can see that in order to 

show the admissibility of the est imator T(s) = }~k ~., ()~ak + Pk)Yk + {0o.,, it is enough 

to prove that there are no estimators of the form T*(s) = ~k~., ()o*ak + Pk)Yk + ¢')*~ 
superior to it. 

, N PkYk) <~ R(T,y,) '=~pkYk) if and only if F r o m  (2.5), R ( T  , ~k= i 

exp a[fi(2*d~ - c'~) + ~o~] + ~ - -  , 

{ 2)1 4 exp a[[J().,d, - Cs) + O)o.~] + ~ -  ),~d~ + Y, p 

-- a[fi(2~ds - c~) + ~')o~]. (3.41 

(1) Assume that condit ion (i) holds. F rom Theorem 1, for the case in which c* z is 

known,  the est imator T(s) = }~k~()'~ak + Pk)Yk + ~00,~ is admissible when 
0 <~ ).~ < cjds.  Clearly, for the case in which ~r= is unknown,  T(st is also admissible at 

tMs time. So, it suffices to consider the cases of c,/d~ <~).~ <~ c/d~ + 

,¢/(c.,/d~) 2 + Zk¢~p2/ds and c~,/d, - x / ( c s /d s )  2 q- E k ~ p ~ , ' d ,  ~ ]'.s < O. 

Let t* = ().*d~ - c,)/(2sd, - c~). By taking fi = - O)o~ ~(2~d~ - c.0 in (3.4), we obtain 

{ ; (  exp a ( -  t*eOo~ + ¢oa~) + ).*ads + E p2 - a( - t*(Oos + (o~,,} 
kCs / )  

<~exp{a2~2( ) ' 2d '+  ~ P ~ t }  / (3.5, 

Letting 0 .2 ~ 0 in (3.5), we get 

o)*~ = t*e)o~. (3.6) 

Substituting (3.6) in (3.5), we have 2 *2 ~< 2 2. F r o m  this and the hypothesis condit ion 

on 2s, we can see that if ).* ¢ 2,, then 

p2 > t , ( 2 2 d ,  + ~ Pe ~. (3.7) ).*~2d s + E 
k ¢ .s \ k ¢ s / 
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Now taking 

fl= - [e)Os + ~-(kffd~ + ~ P# ) ]/(2~ds -cs) 

in (3.4) and using (3.6), we have 

exp{a2~2[(2*2ds+k~c~P2)--t*().2d~+k~,P2)]} 

~<1 + ( 1 - t * ) ~ - -  22ds+ ~ p #  . (3.8) 
k ~ ,s 

However, from (3.7), if ¢~ ¢ 2s, then the right-hand side of (3.8) goes to + oc much 
slower than the left-hand side of (3.8) when cr 2 --+ + oo, which is impossible. So we must 
have 2s* = 2s. From this and (3.6), o)*~ = COos. Thus, T(s) is admissible. 

(2) Now assume that condition (ii)' holds. At this time, 2s = cjd~, so (3.4) is 
equivalent to 

exp a[/7(X*ds - Cs) + co~] + --~- ~s d~ + y, p# 
kCs 

~<exp a o J o s + - - f - L \ ~ ]  d,+ pk -aaJo,+a[[3(2*ds-c,)+o,~*,]. 

(3.9) 

If 2* ¢- cs/d,, then the right-hand side of (3.9) goes to + oo much slower than the 
left-hand side of (3.9) when fla(2*ds-cs)--++oo, which is impossible. Hence 
2* = cs/ds. Substituting it in (3.9), we obtain 

exp ~a~o~, + a 2 ° 2  ( C ' s ' ~  2 

t 

{ a2°2[ (cs'~2 21 t  
~<exp aCOos+~--  \ • ]  d , + Z p  k -aCoos. (3.10) 

kCs i ) 

If amos = 0, then by letting ~r 2 --+ 0 on the two sides of (3.10), we get aoo~s = 0. If 
aCOo~ < 0, then by taking 

a2~r2 [ (cs "] 2 2] 
2 \~j d s + Z P k  =--aCOos 

kCs _l 

on the two sides of (3.10), we have 

e,,~ . . . . . . . .  (a~o~s -aCOos) - 1  ~ 0, (3.11) 

which implies aco~ = aOOos, that is, (o*~ = O)Os. Thus, T*(s) = T(s), which shows that 
T(s) is admissible. This completes the proof of Theorem 2. [] 
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R e m a r k  2. F r o m  the p r o o f  of Theo rem l, we can see that  when c, 2 is known,  a l inear 

e s t ima to r  is admiss ib le  in the class of  all e s t imators  if and  only if it is admiss ib le  in the 

class of l inear  es t imators .  When  a 2 is unknown,  whether  the s imilar  conclus ion holds 

(i.e., whether  the cond i t ions  in T h e o r e m  2 are also the necessary and  sufficient 

condi t ions  for a l inear  e s t ima to r  to be admiss ib le  in the class of all es t imators)  is an 

interest ing prob lem.  

R e m a r k  3. It can be verified that  the necessary and sufficient condi t ions  for the 

e s t ima to r  T(s)  = Y~k~.~ UOksYk + (0o~ of l inear  function ~k : I Pk Yk to be admiss ib le  in 

the class of l inear  (or all) es t imators  under  the squared  er ror  loss function (of course,  

for the case in which the class of l inear  es t imators  is considered,  the a s sumpt ion  on the 

d i s t r ibu t ion  of ~:k is unnecessary)  are that  there  exists ,;,~ such that  ~,)~, ::: 

)~ak + pk(k e s), and one of the fol lowing two condi t ions  is satisfied: 

C s ('~ 
(ii) ,;~ = ~ and ~Oo~ - d, Z akbk + ~ pkhk, 

whenever  a z is known  or  unknown.  C o m p a r i n g  this conclus ion with Theorems  1 and 

2, we can see that  when O "2 is known,  the necessary and  sufficient condi t ions  for 

a l inear  e s t ima to r  to be admiss ib le  under  the Linex loss are very s imilar  to those under  

the squared  er ror  loss. Actual ly ,  they are a lmos t  exact ly the same unless ,;.~ = c~/d,. 

But for the case in which a 2 is unknown,  the necessary and sufficient condi t ions  for 

a l inear  e s t ima to r  to be admiss ib le  under  the two losses are quite different, at least in 

the class of l inear  es t imators ,  which is somewha t  surprising.  
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