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Abstract

This paper considers the estimation problems of an arbitrary hinear function of the character-
istic values of a finite population under the Linex loss function. We obtain all admissible linear
estimators when the variance ¢? is known and all admissible linear estimators in the class of
linear estimators when ¢? is unknown.
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1. Introduction

Because the use of symmetric loss functions may be inappropriate in some practical
problems, discussion of the estimation problems under asymmetric loss functions
receives much attention recently (see, for example, Zellner, 1986; Bischofl et al., 1995).
Varian (1975) introduced the following useful asymmetric Linex loss function:

L(,0) = blexp{a(d — )} —a(d —0) —1). (1.1

where a # 0, b > 0 are known constants.

Zellner (1986) proved that the usual sample mean 1s inadmissible for estimating
normal mean (in the case in which the variance 1s known) under the above loss
function. Later, Rojo (1987) considered the admissibility of linear functions of the
sample mean under the Linex loss function (1.1} and generalized Zellner's result.
Bolfarine (1989) considered the estimation problems of the finite population total
under the Linex loss function (at this time, € in (1.1) means the population total). He
gave the Bayes estimators of the population total and discussed the admissibility of
some of the derived estimators. The objective of this paper is to investigate the
admissibility of linear estimators of an arbitrary linear function of the characteristic
values of a finite population under the Linex loss function.
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Suppose the finite population {Y, ..., Y} is a random sample from the following
superpopulation model:

Ve =aff + by + &, (1.2)
where k =1, ..., N, g, > 0 and b, are known constants, § is unknown parameter, &, is
normal with mean zero and variance 62 and ¢4, ..., &y are mutually independent. This

model is very useful and was discussed in detail by Cassel et al. (1976, 1977). Godambe
(1982) also considered it.

We will consider the estimation problems of linear function Zf’: DY (o >0,
k =1,..., N), using the Linex loss function (1.1), under the superpopulation model (1.2).
We assume that the sample {y,, k € s} is drawn by an arbitrary sampling design p (ie.,
p(s)satisfies p(s) > 0,and y__ p(s) = 1, where Sis a class of subsets of 1, ..., N). For the
case in which ¢ is known, we obtain all admissible linear estimators of Z:’:lpk Y.
Because ¢? is often unknown in the practical problems, we also investigate the
admissibility of a linear estimator in this case. We obtain all admissible linear estimators
of Y¥_, p Yy in the class of linear estimators. Unlike under the squared error loss, for
the cases in which ¢? is known or unknown, the necessary and sufficient conditions for
a linear estimator to be admissible under the Linex loss are quite different, at least in the
class of linear estimators, which is somewhat surprising (see Remark 3).

The reasons why the author considers linear function Z,Ij: , x Yy are the following:

(a) By transformation, it includes the usual case of E(e; ) = o2 af (g > 0 is a known
constant).

(b) In some practical problems, it is necessary to estimate linear function Zfz L Pe Y
(cf., Page et al., 1993).

Since the values of b have no effect on the admissibility, we assume b = 1 in the
Linex loss function (1.1).

2. All admissible linear estimators of ¥, _, p, Y; when o? is known

Theorem 1. Suppose o2 is known. Then the necessary and sufficient conditions for the
estimator T(s) =Y, _ . s Yx + Wos of linear function Y, _, p Yy to be admissible are
that there exists iy such that oy = Asay + py (k € 3), and one of the following two
conditions is satisfied:

(i) 0 < 74 < cy/dy, where c;2 Y, prar and dy =Y, az;
(ii) A = cy/ds, and

¢, ac? 2
Wos = —a‘zakbk‘f'zpkbk—';—[(‘;—) ds+zplg]~

Skes k¢s kés

Proof. By linear transformation, we need only consider the case of b, =0
(k =1,...,N). In this case, condition (ii) becomes

oo, . G ac?{ (¢, \?
(11) /,S:Z,and Wos = ——2—[(d~> ds+zk¢spf:l.
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First it can be seen that the risk of the estimator T(s) = Y e s i + o, 1S

N N
R<T~ Y kak>£E|:exp{a<T(s)— Y kak>}—a<T(s Z kak> ]
Ko k=1 y K=
= GXP{ [/3< Z (Wi — pr)a Z Pk"k) + (')()s:l
I:Z (s — p)? + Z[’f}}

—a[ﬁ( Y (s — pag — Z pkak> + (Uoi -1 (2.1)

ke s

22
+aa
2

The proof of necessity consists of the following three steps.
(1) We prove that there exists 4, such that w,, = A;a, + pe(k € s). In fact, if it is not
the case, then (wy, — pi)/ax (k € s) are not a constant. Define

Ve (Wi = Pr)ai

Wiy = =Sz et (k € s); (2.2)
Les i

Wy = W
Then we have

AZ (Wi — Po)ay = "Z (ks — Pr) (2.3)
and by the Cauchy-Schwarz inequality,

AZ (i _pk)z - AZ (s — Pk)l

[ZA o (O —Pk)ak] z (04, —
Dies ai ke
<. (2.4)

So, from (2.1), (2.3) and (2.4), the estimator T*(s) =Y, _ wiys + wf, is superior (o

T (s), which contradicts the admissibility of T(s ).
(2) We prove 0 < 7, < ¢,/d,. Because we have shown 1n (1) that there exists A, such
that wy, = Asa; + py (k € s), the risk of T(s) can be expressed as

N aZO.Z . ) b
R (T, Z i Yr ) =exp<al f(Ad, —c) + woe] + 3 (/VS d, + Z p;)}
kés

k=1

- a[ﬂ()*sds - Cs) + (UOS] 1 vf Lys Dog) (25)

Let wq, be a function of /, such that its derivative with respect to 4, satisfies

dewg, ac? ([ | N Cy
d}(j = l:(()()s + —2‘ </‘,3ds + ;\v p;: /):l,”’ (AS — a:) (26)
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(Eq. (2.6) always has solutions since it is a linear first-order differential equation.) Then
from (2.5) and (2.6), we get

9

¥ (ﬂd N w(:s) [exp {a(ﬂds <)VS — 2—:) + Wos
EAGEL)IS]
kés
+ a2 d, exp{ <ﬁd < p ) + wos + <,{2d + Y pi ))}
s kés
_a< dd) )[exp{a<ﬁds+%‘?)<ls——%)}—l]+azg2isd.
dwOs Cs
- exp {a(ﬁds + ) )(is — Z)} 2.7)

Note that if A, < 0, then

d d Os s
a(ﬁds + (ﬁ°> [exp {a(ﬁds + d“;s )(l -2—5)} —1] <0. (2.8)

So, df/dA; < 0 when A, < 0. That is, f(4,) is a strictly decreasing function of i; when
4s < 0. Thus, increasing A, will reduce the risk of T(s). This shows that T'(s) with
/s < 0 1s not admissible.

Similarly, f(4;)is a strictly increasing function of 4, when 4, > c,/d,. Therefore, T'(s)
with A > c,/d, is not admissible either.

(3) Now we prove that if 4, = ¢,;/d;, then

ac?| [, \?
-GSy 2|
w0, = = [(d) s+k§pk]

This conclusion can be obtained readily: it follows from (2.5) that when A = ¢,/d,,

N 2o e \2
R{T, Z Y | =expawgs + —— =) d, + Z pf —awgs — 1, (2.9)
k=1 2 ds k¢s

which attains its minimum only at

ac?[ (¢ \? 2
Wos = _T[<_js> d, +I§;Pk :]

Summarizing (1)—(3), necessity is proved.
In order to prove sufficiency, we consider the following three cases.
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(1) Assume /i, = 0. At this time, the risk of T(s) is

N aZO.Z 5
R(T. z‘lkak> = exp{a( — feg + W) + 5 E\‘pk } —a(— fe, + o) — 1

(2.10)

Now we suppose that the estimator 6( v, k € s) satisfies

N N
R(é, > kak><R<T, ¥ kak> for all . 210

k=1 k=1

Note that

N N N
R<(3. Z kak >=E|:Cxp{a<(3— z p;ﬁﬂ)}—a(é— Z p;\Y]\)—l]

k=1 k=1 K=

/
:Eexp{a[d—( Y v +u)03>}}
\Nkes
erxp{-a<2pkyk—(u()s>}

kés

- aE[é - < Z Peyx + U)()s>i| + aE(Z piYi — oy ) —1
kes /

kés

= Eexp {a[(s - < Y Py + woSﬂ } exp {a(— P, + o)
kes

22
+ 47 pr] —aE|:r5 - < Y Pk +w05>]
2 k¢s j kes

+ a(fe; — o) — 1. (2.12)
So, from (2.10) and (2.12), we can sec that (2.11) is equivalent to
) a’o? 5
Eexplald —| 3 pyi + wos exp {a(— fe, +mos) + -5 Y pi
kes Ky
. a’a? ,
—ak [() - < Z Py + w(u)] < exp {a(— Bey + wos) + > Pk } (2.13)
kes ks

Taking

ac?
ﬁ = <(l)0s + —2— Z p£>’/(;s = [))0
/

kés
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in (2.13), we get

oo (g s -] e

(2.14)

where E; denotes expectation when the parameter is fi,. Since the integrand in (2.14)
is nonnegative, we have d = Y, . iy + @os = T(s) (a.e. Lebesgue). Therefore, T (s) is
admissible.

(2) Assume 0 < A, < ¢,/d,. Let B have the prior distribution N(gu, %) (where g,
72 > 0 are known). After some calculations, we can obtain the corresponding Bayes
estimator to be

2,.2.2

‘EZC 'uazc —asc°to¢ /2 (10'2
gy, kes)= S 4 + + : - L
B( Vi ) k§5(02+12d5 t T Dk | Vi o2 + 12, 2 gil’k

(2.15)

Therefore, when 0 < A; < ¢,/d;, the estimator T(s) =Y, _ (Asax + px) yi + wos 1s the
Bayes estimator with respect to some prior distribution N(uo, t3). Since the loss
function (1.1) is strictly convex, T(s) is the unique Bayes estimator and hence
admissible.

(3) When 4, = ¢,/d,, and

ac? | e \?
= =X = ds : s
oo~ | (3] s 21t

by using the limiting Bayes method (see Lehmann, 1983, p. 265 or Rojo, 1987), we can
show that T'(s) is admissible. In fact, from (2.5), we have

N azo,z ¢ 2
RIT,Y pYy | = =) di+ Y pi|=r (2.16)
k=1 2 dy k¢s

Suppose that the estimator 6*(y,, k € s) is superior to T'(s), then

N N
R(&*, Y kak><R<T, Y kak> for all B, (2.17)

k=1 k=1
N N

R(é*, Y kak> <R<T, Y kak> for some B,. (2.18)
k=1 k=1

Using the fact that R(d*, Z,f’: ; Px Yi) is a continuous function of f, we can find an¢ > 0
and f; < f, such that

N N
R<5*, Z kak)<R<T, Z kak>_87 for all ﬁl <ﬂ<ﬁ2 (219)

k=1 k=1
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Let now Jy be the Bayes estimator with respect to the prior distribution N(0, t?), and
let B(8y) be the Bayes risk of 5. Then from (2.15). we have

., T3¢ ac? 2¢? ,
dp(yi-kes)=73 (A—*:J‘ s+ Pk>,\’k - _7_< + 3 Pk) {2.20)

Ko oF + 7, 7

and from (2.5), its Bayes risk is

a*c? 12¢l 5
5 5 4 ol 2.21)

Blow) = 2 (62 + 12d, %pk ( i
Let B{0*) be the Bayes risk of the estimator 6* with respect to the prior distribution

N(0. 7%). Then from (2.16), (2.17), (2.19) and (2.21), we get

“OIR(T.SY  piYe) — R(3*, P Y ufgn—fe FREdp
_ B(s*) I, i= 1Pt L nY e

— B(dg) - a*e’| [ ¢, zd 72¢t
2 d,) 0 o 4 o,

2 2
>2ds(0 + t%d,)e 532

I ‘ )
= ,——27-5-[([20-4(3 J/)’l < d,B — -+ 30, («-. 4

when © — + oo, Thus, if 7 is sufficiently large, then B(0*) < B(dg), which contradicts
the fact that 85 is the Bayes estimator with respect to the prior distribution N(0, %),
Therefore, T (s) is admissible.

From (1)-(3), sufficiency is proved. This completes the proof of Theorem 1. []

Remark 1. For the regression superpopulation model through the origin considered
by Bolfarine (1989)
Vi = X[+ s (2.23)

where ¢, is normal with mean zero and variance ¢2x, and &,....,ty are mutually

independent. By making transformation z, = y,/</x, and taking 7, = ¢,/d,.
p y g Yi/~ g

aoc
Mgy = ~—2T‘|:<dé> d +"Z¢;§pk]

we can see that T(s) = Zkgv(/lw/;,; + pu)zi + o 1s an admissible estimator of
jﬂf’f , P2y Further, we take p, = \/",\'k, then the estimator

N 2N .

T(s) = i1 Xk Y v — ag” 3, - XiYigs X
Zke_\xk kes 2 Zké\xk

is an admissible estimator of the population total Zle Y. The estimator T(s} in

(2.24)is just the estimator Tg,, in Bolfarine (1989), whose admissibility was also shown
by Bolfarine (1989).

(2.24)
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3. All admissible linear estimators of Zf _; P Yy in the class of linear estimators when
& is unknown

Denote the class of linear estimators by 7

Theorem 2. Suppose o2 is unknown. Then the necessary and sufficient conditions for the
estimator T(s) =Y, _, Wk Vi + 0o of linear function Z,{V” , D Yy to be admissible in the
class T are that there exists A, such that wy, = Asa, + py{k € ), and one of the following
two conditions is satisfied:

¢ TSI YT ¢
. L) P s k¢s Pk ) oS,
(1) j's ds ~ (ds> + ds bl )s ?é dsa

(]1) /15 = %ﬁ, and aWos & — a<§_ z akbk Z pkbk)

Skes kés

Proof. As in the proof of Theorem 1, we assume b, =0 (k= 1,..., N). In this case,
condition (ii) becomes

(i) As = ¢/d,, and awg, < 0.

Necessity: From the proof of Theorem 1, we can see that if the estimator T(s) is
admissible in the class .7, then there must exist A such that w,, = Aq, + py (k € 5),
even though 62 is unknown. In the following we will prove that A; and wy, satisfy (1) or
(ii)’.

First it is easy to see that if 1, = ¢,/d;, then aw,, < 0. Otherwise, assume awq, > 0.
Then the estimator

kes

T (s) = Z <§ - + pk),vk

is superior to T'(s), a contradiction to the admissibility of T'(s).
Now we show that if A, # ¢,/d;, then

.\ 2 2
< (i> PITH: G.)

If it is not the case, then the opposite inequality holds strictly. Define

/»/ . scs + Zkﬁ pk

. Acdy —

G N
’ /“sds — s

Wos = /lsds — .. * Wog- (32)



G. Zou [ Journal of Statistical Planning and Inference 61 (1997) 373-384 381

It can be shown that the corresponding estimator T'(s) =3, ., (Fiay + Pi) Vi + oy 18
superior to T (s), which contradicts the admissibility of T(s). In fact, let

;d\ — Cy 5 2g? -2 2 :
r= i——( A = a[ flAd, — ¢;) + wos ] B° = ik sidg + Z Pi 1.
Addy — ¢y 2 =
Then from (3.2). 0 < t < 1, and from (2.5), we have
N N
A £R<T', Z kak>—R<T, > kak>
k=1 K=
=[e™ B —r4] — (e — A). (3.3)

It is easy to see that 4 is a strictly increasing function of t when t > 0. Hence 4 < 0.
Sufficiency. From the proof of the necessity of Theorem 1, we can see that in order to
show the admissibility of the estimator T(s) =Y, ., (% a,‘ + PV + W, it 1S enough
to prove that there are no estimators of the form T*(s) =S, ., (A¥ax + p)y + b,
superior to it.
From (2.5, R(T* Y, pYe) < R(T, ¥4, p Yi) if and only if

exp {a[ﬁ(/lfdx —¢,) + o] + a’2(7“ </1;"2dx +> pf)} —alpA¥d, — c;) + 0d]

ks

, a’e? .2 2
< exXp a[ﬁ(/'sds - Cs) + U)Os] + 2 L ds + 2 Pk

ks
—alBdy — ;) + wos)- (3.4

(1) Assume that condition (i) holds. From Theorem 1, for the case in which o2 is
known, the estimator T(s)=Y,_ . (Aax + pe)Vk + wos 18 admissible when
0 < 4, < ¢,/d;. Clearly, for the case in which o2 is unknown, T(s) is also admissible at
this time. So, it suffices to consider the cases of ¢ /dy < /iy <y dy +
v (c;/dg)? + Ve pi /dg and ¢/d; — \/(cs/ds)z + Zké\.l?f/ds </, <0

Let t* = (/¥d, —¢,)/(/sd, — ;). By taking f = — Wos/(Ads — ¢) in (3.4), we obtain

2.2
a“c-
o o+ (0. 1)
ks

2.2
< exp{a; ().fds + > pf)} (3.5)
k¢s

Letting 6 — 0 in (3.5), we get

wE, = Fwgs. (3.6)

Substituting (3.6) in (3.5), we have 4*¥? < 22, From this and the hypothesis condition
on /,, we can see that if 2¥ # 4, then

¥ Y pE > </1§ds + 3 pf). (3.7)

ks kés
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Now taking

ﬂ = - [wOs + a_gf<}%2dx + Z plf):l/(/sds _CS)
kés

in (3.4) and using (3.6), we have

a’q? *2 2 .2 2
exps——| | A5ds+ > pi ) —t*(Aild, + > pi
2 kés k¢s

a*e? [, R
<1+(1—t*)7<lsds+ Zpk). (3.8)
kés
However, from (3.7), if A7 # A,, then the right-hand side of (3.8) goes to + oo much
slower than the left-hand side of (3.8) when o2 — + oo, which is impossible. So we must
have A7 = /,. From this and (3.6), o}, = w,. Thus, T(s) is admissible.
(2) Now assume that condition (i) holds. At this time, A = ¢,/d,, so (3.4) is
equivalent to

a*e* (., R
cXp {a[ﬂ(i:‘ds - Cs) + wﬁs] + (’13‘ ds + Z Pk >}

2 ks

2.2 2
<emﬁ}wm+9§1[<§> 44-pr]}—awm+wﬁﬁuﬁk—g)+w&1
s kés

(3.9)

If A # ¢,/d,, then the right-hand side of (3.9) goes to + oo much slower than the
left-hand side of (3.9) when Ba(i¥d, —c,)— +oc, which is impossible. Hence
Ay = ¢,/d,. Substituting it in (3.9), we obtain

a2 2 s 2
exp{aw& + 26 [ (;—) do+ 3 pf]} —aw},
s ks

2.2 2
< exp<awy, + a9 e do+ Y pe |t — amq,. (3.10)
2 d Pl

If awys = 0, then by letting 6> >0 on the two sides of (3.10), we get awd, =0. If
awgs < 0, then by taking

a*c? [ (¢, \? 5
| (5) 4 2ot |- o

on the two sides of (3.10), we have

08 — amo, _ (awd, — awes) —1 <0, (3.11)

which implies aw§; = awy,, that is, @&, = w,. Thus, T *(s) = T (s), which shows that
T'(s) is admissible. This completes the proof of Theorem 2. [
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Remark 2. From the proof of Theorem 1, we can see that when ¢ is known, a linear
estimator is admissible in the class of all estimators if and only if it is admissible in the
class of linear estimators. When &2 is unknown, whether the similar conclusion holds
(i.e., whether the conditions in Theorem 2 are also the necessary and sufficient
conditions for a linear estimator to be admissible in the class of all estimators) is an
interesting problem.

Remark 3. It can be verified that the necessary and sufficient conditions for the
estimator T(s) =Y, .. oy Vk + W of linear function Z‘:’; . Px Yy to be admissible in
the class of linear (or all) estimators under the squared error loss function (of course,
for the case in which the class of linear estimators is considered, the assumption on the
distribution of ¢, 1s unnecessary) are that there exists 4, such that o, =
Jstiy + pre(k € 5), and one of the following two conditions is satisfied:

(1) 0 < 4, < ¢ /d,,

()S

(11) Ay = I

and wgy, = — & Y awbe + Y. pibi.
is kes kes

whenever ¢? is known or unknown. Comparing this conclusion with Theorems 1 and
2, we can see that when o2 is known, the necessary and sufficient conditions for
a linear estimator to be admissible under the Linex loss are very similar to those under
the squared error loss. Actually, they are almost exactly the same unless 4, = ¢,/d,.
But for the case in which ¢ is unknown, the necessary and sufficient conditions for
a linear estimator to be admissible under the two losses are quite different, at least in
the class of linear estimators, which is somewhat surprising.
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