The angle between the $\mathrm{S}-\mathrm{P}-\mathrm{N}(1)$ and $\mathrm{C}-\mathrm{P}-\mathrm{N}(2)$ planes is 92.9°. In contrast to the planar ring containing the Si atom, the other ring is puckered (angle between the planes $\mathrm{S}-\mathrm{Mn}-\mathrm{N}(1)$ and $\left.\mathrm{S}-\mathrm{P}-\mathrm{N}(1)=20.8^{\circ}\right)$.

Received: July 28, in altered form October 29, 1981 [Z 998 IE] German version: Angew. Chem. 94 (1982) 149 The complete manuscript of this communication appears in: Angew. Chem. Suppl. 1982, 169-174
[1] E. Niecke, R. Kröher, S. Pohi, Angew. Chem. 89 (1977) 902; Angew. Chem. Int. Ed. Engl. 16 (1977) 864.
[2] W. Keim, R. Appel, A. Storeck, C. Krüger, R. Goddard, Angew. Chem. 93 (1981) 91; Angew. Chem. Int. Ed. Engl. 20 (1981) 116.
[3] O. J. Scherer, A. Nahrstedt, Angew. Chem. 91 (1979) 238; Angew. Chem. Int. Ed. Engl. 18 (1979) 234.
[4] O. J. Scherer, H. Jungmann, Angew. Chem. 9 (1979) 1020; Angew. Chem. Int. Ed. Engl. 18 (1979) 953.
[6] 'H-NMR [C6 ${ }_{6} \mathrm{D}_{5} \mathrm{CD}_{3} ;-60^{\circ} \mathrm{C}: \delta=0.45$ (s, 18 H), 0.22 (s, 9 H), -0.17 (s , $\left.9 \mathrm{H}) ; 20^{\circ} \mathrm{C}: \delta=0.45(\mathrm{~s}, 18 \mathrm{H}), 0.24(\mathrm{~s}, 18 \mathrm{H})\right] .{ }^{31} \mathrm{P}\left|{ }^{1} \mathrm{H}\right|-\mathrm{NMR}\left[\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right.$; $-60^{\circ} \mathrm{C}$ as well as $20^{\circ} \mathrm{C}$: $\delta=-1.6$ (s) $\left.]\left.\cdot{ }^{13} \mathrm{C}\right|^{\dagger} \mathrm{H}\right\}-\mathrm{NMR}\left[\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}\right.$; $-60^{\circ} \mathrm{C}: \delta \mathrm{CO}=227$ (s); the appearance of a single CO signal is an indication of a trans-configuration in 3]. IR [n-hexane; metalcarbonyl region: $v=2030$ (s), 1935 (vs), 1904 (w) $\mathrm{cm}^{-1} \mathrm{~J}$.

Efficient Synthesis of 8-Oxabicyclo|3.2.1loct-6-en-3-ones, Preparatively Useful $14+31$-Cycloadducts**

By Baldur Föhlisch*, Eberhard Gehrlach, and Rolf Herter
The title compounds 2 , accessible by cycloaddition of allylium-2-olates to furans have proven to be valuable educts for the synthesis of natural products and biologically active analogues. Previously, however, the cycloadducts could only be synthesized using tedious and expensive methods ${ }^{[2 a, 3 a, 4,5,7]}$. We have now found a method in which not only α-bromoketones but also the less expensive and more stable α-chloroketones can be reacted with readily available bases.

The α-haloketones 1a-h react with furan in 2,2,2-trifluoroethanol (TFE), a very weakly nucleophilic and powerful ionizing solvent, in the presence of triethylamine or sodium 2,2,2-trifluoroethoxide generated in situ to give 8-oxabicyclo[3.2.1]oct-6-en-3-ones 2 (Table 1). The yields are good, and work-up is simple. The bicyclic compounds $\mathbf{2 b} \mathbf{- f}$ are formed stereoselectively. By reduction of $\mathbf{2 f}$ or $\mathbf{2 g}$ with the $\mathrm{Zn} / \mathrm{Cu}$ couple, the unsubstituted ketone 2, $R^{i}-R^{4}=H$, is also accessible in good yields. α-Chloroke-

	\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	\mathbf{R}^{4}	\mathbf{X}		\mathbf{R}^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	\mathbf{R}^{4}	\mathbf{X}
\mathbf{a}	CH_{3}	CH_{3}	\mathbf{H}	\mathbf{H}	Cl	\mathbf{e}	CH_{3}	CH_{3}	\mathbf{H}	CH_{3}	Cl
\mathbf{b}	CH_{3}	\mathbf{H}	\mathbf{H}	CH_{3}	Cl	\mathbf{f}	Cl	$\mathbf{C l}$	\mathbf{H}	Cl	Cl
\mathbf{c}	CH_{3}	\mathbf{H}	\mathbf{H}	CH_{3}	Br	\mathbf{g}	Cl	Cl	Cl	Cl	Cl
\mathbf{d}	CH_{3}	\mathbf{H}	CH_{3}	CH_{3}	Cl	\mathbf{h}	\mathbf{H}	$-\left(\mathrm{CH}_{2}\right)_{3}$	\mathbf{H}	$\mathbf{B r}$	

[^0]Table 1. 8-Oxabicyclo[3.2.1]oct-6-en-3-ones 2 by reaction of α-haloketones $\mathbf{1}$ and furan in TFE/furan ($1: 1 \mathrm{v} / \mathrm{v}$) at room temperature with triethylamine (Method A: molar ratio $1: 2$) or sodium trifluoroethoxide (Method B: molar ratio 1:1) as base. All products except $\mathbf{2 g}$ are known.

Educt 1	Method	Reaction time	Product 2	Yield [\%]	$T\left[{ }^{\circ} \mathrm{C} /\right.$ torr $]$ [a] M.p. $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right]$
a	A	25 d	a	$45\}$	120-140/12
a	B	29 d	a	$56\}$	41-42
b	A	5 d	b [b]	77	120-140/12
b	B	6 d	b [b]	$80\}$	33-35
c	B	1 d	$\mathbf{c} \equiv \mathrm{b}$ [b]	93	
d	A	4 d	d	73)	130-150/12
d	B	3 d	d	$91\}$	70-90/0.3
e	A	10 d	$e \equiv d$	68)	13-16
f	A	75 min	1	55	70-90/0.001
					88-89
g	A	75 min	g [c]	52	90-120/0.001
					88-89
h	A	1 d	h	84	60-70/0.002
					43-44

[a] Kugelrohr temperature. [b] The product contains at maximum 6% of the $\mathrm{C}-2 / \mathrm{C}-4$ epimers. M.p. of isomerically pure $2 \mathrm{~b}: 45-46^{\circ} \mathrm{C}$. [c] 'H-NMR $\left(\mathrm{CDCl}_{3}\right): \delta=5.25(\mathrm{~s}, 1-\mathrm{H}, 5 \cdot \mathrm{H}), 6.65(\mathrm{~s}, 6-\mathrm{H}, 7-\mathrm{H}) ;$ IR $\left(\mathrm{CHCl}_{3}\right): 1765 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$).
tones can not only be prepared by chlorination of ketones, but also via several other routes, by $\mathrm{C}-\mathrm{C}$ coupling reactions. Thus, the [4+3]-cycloaddition of allylium-2-olates opens up promising applications in synthetic chemistry. Received: April 21, 1981 [Z 993 IE]
German version: Angew. Chem. 94 (1982) 144 The complete manuscript of this communication appears in: Angew. Chem. Suppl. 1982, 241-249
[2] a) H. M. R. Hoffmann, Angew. Chem. 85 (1973) 877; Angew. Chem. Int. Ed. Engl. 12 (1973) 819.
[3] a) H. Takaya, S. Makino, Y. Hayakawa, R. Noyori, J. Am. Chem. Soc. 100 (1978) 1755.
[4] J. Mann, A. A. Usmani, J. Chem. Soc. Chem. Commun. 1980, 1119.
[5] H. Sakurai, A. Shirata, A. Hosomi, Angew. Chem. 91 (1979) 178; Angew. Chem. Int. Ed. Engl. I8 (1979) 163.
[7] H. M. R. Hoffmann, J. Matthei, Chem. Ber. 113 (1980) 3837.

Optically Active Glycerol Derivatives from 1,3(R):4,6(R)-Di-O-benzylidene-D-mannitolThe First Structural Analogues of Moenomycin A**

By Thomas Schubert and Peter Welzel*

Morpain and Tisserand recently reported ${ }^{(5)}$ that optically active glycerides are accessible from D-mannitol derivatives of type 2 in fewer steps than from the "classical" educt $1^{[1]}$. Presumably, di- O-benzylidene compound 3 is

1

2

3. $R=H$

4, $R=C_{18} \mathrm{H}_{37}$
5, $\mathrm{R}=\mathrm{C}_{20} \mathrm{H}_{41}$

[^1]an even better starting material. Certain types of optically active glycerol derivatives can be prepared from 3 with a minimum of protecting group chemistry. Starting from 3 we have synthesized 6 and 7 , as well as 15 , a structural analogue of the antibiotic moenomycin $A^{[6]}$.

Alkylation of $3^{[8]}$ with 1 -bromooctadecane or with 2,3dihydrophytyl bromide in dimethylformamide afforded 4 (81%) and 5 (70\%), respectively. Hydrolytic cleavage of the benzylidene protecting groups, followed by diol cleavage with sodium metaperiodate, subsequent oxidation of the aldehyde with silver(II) oxide and esterification of the resulting acid then furnished the R-glyceric acid derivatives $6(36 \%)$ and $7(56 \%)$, respectively.

6, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OC}_{18} \mathrm{H}_{37}$
7, $R^{1}=H, R^{2}=O C_{20} \mathrm{H}_{41}$
8, $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{OC}_{18} \mathrm{H}_{37}$

9, $\mathrm{R}=\mathrm{H}$
10, $\mathrm{R}=\mathrm{C}_{18} \mathrm{H}_{37}$

11, $\mathrm{R}^{1}=\mathrm{COC}_{6} \mathrm{H}_{5}, \mathrm{R}^{2}=\mathrm{C}_{18} \mathrm{H}_{37}$
12, $\mathrm{R}^{1}=\mathrm{COCH}_{3}, \quad \mathrm{R}^{2}=\mathrm{C}_{18} \mathrm{H}_{37}$
The racemic ester 8 was synthesized from cis-5-hydroxy-2-phenyl-1,3-dioxane 9 . O-Alkylation with 1 -chlorooctadecane (phase-transfer catalysis) furnished 10 in 67\% yield. Deslongchamps opening ${ }^{[14]}$ of $\mathbf{1 0}$ to the hydroxybenzoate 11, Jones oxidation, and esterification of the acid afforded the racemic ester 8 (51%, referred to $\mathbf{1 0}$). 8 is also accessible in a total yield of 61% from 10 by hydrolytic cleavage of the benzylidene group, monoacetylation to 12, Jones oxidation, and subsequent esterification.

In presence of the optically active shift reagent $\mathrm{Eu}(\mathrm{tfc})_{3}$ the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{8}$ shows two OCH_{3} signals (ratio: $1: 1$), while the spectrum of 6 recorded under the same conditions shows only one: hence, within the limits of NMR detection, 6 is formed in optically pure form.

For the preparation of 15,7 was allowed to react with 2,3,4,6-tetra- O-acetyl- α-D-glucopyranosyl 1-phosphate according to the phosphoric acid diester method using 2,4,6triisopropylbenzenesulfonyl chloride to give the diester 13. Cleavage of the protecting groups with lithium hydroxide yielded the dilithium salt of $\mathbf{1 4}$, which was converted by catalytic oxidation into the glucuronic acid derivative $\mathbf{1 5}$ (after ion-exchange).

13, $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OAc}, \mathrm{R}^{2}=\mathrm{Ac}, \mathrm{R}^{3}=\mathrm{CH}_{3}$
14, $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{H}$
15, $\mathrm{R}^{1}=\mathrm{COOH}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{H}$
The antibiotic moenomycin A is one of the most active inhibitors of bacterial cell-wall biosynthesis ${ }^{[6]}$. However, a correlation between its very complex structure and biological activity has thus far been lacking. The synthetic access to model substances such as $\mathbf{1 5}$ now opens up the possibility of investigating this problem experimentally.

Received: July 6, 1981 [Z 976 IE] German version: Angew. Chem. 94 (1982) 135 The complete manuscript of this communication appears in: Angew. Chem. Suppl. 1982, 361-367
[1] M. E. Jung, T. J. Shaw, J. Am. Chem. Soc. 102 (1980) 6304.
[5] C. Morpain, M. Tisserand, J. Chem. Soc. Perkin Trans. I 1979, 1379.
[6] P. Welzel, F.-J. Witteler, D. Müller, W. Riemer, Angew. Chem. 93 (198!) 130; Angew. Chem. Int. Ed. Engl. 20 (1981) 121.
[8] N. Baggett, P. Stribblehill, J. Chem. Soc. Perkin Trans. I 1977, 1123.
[14] P. Deslongchamps, C. Moreau, D. Frehél, R. Chênevert, Can. J. Chem. 53 (1975) 1204.

The Effect of an Annelated Cyclobutene or Cyclobutadiene Ring on the Norcaradiene-Cycloheptatriene Equilibrium**

By Frank-Gerrit Klärner*, Eckhart K. G. Schmidt, and Mahmoud Abdel Rahman

The question of the antiaromaticity of 1,3 -cyclobutadiene has been the subject of repeated theoretical and experimental investigations ${ }^{[1]}$. In the valence tautomeric equilibrium $\mathbf{1 a}, \mathbf{b} \rightleftharpoons \mathbf{1 c}$, the cycloheptatriene derivative $\mathbf{1 c}$ contains a cyclobutadiene ring as a subunit. Provided that cyclobutadiene is antiaromatic, the equilibrium is expected to be shifted in favor of the norcaradienes $\mathbf{1 a}$ and $\mathbf{1 b}$. We report here on the syntheses and properties of the systems 1,2 , and 3.

The syntheses of $\mathbf{1 , 2}$, and $\mathbf{3}$ start from 7-methyl-1,3,5-cycloheptatrien-7-carbonitrile ${ }^{[3]}$. Addition of ${ }^{1} \mathrm{O}_{2}$ leads to 4 (yield 96%), which on subsequent reduction $\left(\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}\right.$ or $\left.\mathrm{Pt} / \mathrm{H}_{2}\right)$ and oxidation $\left(\mathrm{MnO}_{2}\right.$ or $\left.\mathrm{CrO}_{3}\right)$ is converted into 5 (64%) or $6(54 \%)$, respectively. Photochemical addition of

4

5

6

7

[^2][**] This work was supported by the Fonds der Chemischen Industrie.

[^0]: [*] Prof. Dr. B. Föhlisch, E. Gehrlach, Dr. R. Herter
 Institut für Organische Chemie, Biochemie und Isotopenforschung der Universität
 Pfaffenwaldring 55, D-7000 Stuttgart 80 (Germany)
 [**] This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

[^1]: [*] Prof. Dr. P. Welzel, Dr. Th. Schubert Abteilung für Chemie der Universitảt Postfach 102148 , D-4630 Bochum (Germany)
 [**] This work was supported by the Fonds der Chemischen Industrie and by Hoechst AG.

[^2]: [*] Prof. Dr. F.-G. Klärner, Priv.-Doz. Dr. E. K. G. Schmidt, M. A. Abdel Rahman

 Abteilung für Chemie der Ruhr-Universität Postfach 102148, D-4630 Bochum 1 (Germany)

