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High-affinity melatonin receptors are present in rat 
suprachiasmatic nuclei (SCN), and their density ex- 
hibits a daily rhythm regulated by the light/dark cy- 
cle. In this study we demonstrate that the light regu- 
lation of these receptors depends on a circadian 
mechanism. Pinealectomized rats kept in constant 
darkness were subjected to l-hr light pulses delivered 
across the circadian cycle. The density of melatonin 
receptors was significantly increased when photic ex- 
posure was performed during subjective night, and 
not different from control animals kept in darkness 
when the light pulse was applied during subjective 
day. The protein product (Fos) of the immediate early 
gene c-fos studied in the same paradigm showed glo- 
bally the same circadian sensitivity phase. These re- 
sults clearly show that, although the rhythmic ap- 
pearance of melatonin receptor density in SCN 
follows and is directly regulated by the standard light/ 
dark cycle, this light regulation is not passive. As is 
the case with Fos-like protein, it is only during a pre- 
cise phase of the circadian cycle that light is able to 
regulate the density of melatonin receptors in SCN. 
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INTRODUCTION 
Mammalian suprachiasmatic nuclei (SCN) contain 

the circadian biological clock that controls a wide array 
of behavioral and physiological rhythms including loco- 
motion, sleep-wake cycle, thermoregulation, cardiovas- 
cular function, and many endocrine processes (reviewed 
in Moore, 1983; Turek, 1985; Meijer and Rietveld, 
1989). Among these are the night synthesis and secretion 
of the pineal hormone melatonin (Klein, 1979). High- 
affinity melatonin receptors are present in SCN of many 

species of mammals (Vanecek et al., 1987; Weaver et 
al., 1991; Morgan et al., 1993; Stankov et al., 1993; 
Masson-PCvet et al., 1994; Reppert et al., 1994), and 
some evidence indicates that melatonin might feed back 
on SCN to modulate circadian patterns of activity (Red- 
man et al., 1983; Cassone, 1990; Kirsch et al., 1993). 
Receptor autoradiography has revealed that the density 
of melatonin receptors in rat SCN exhibits diurnal vari- 
ations, with low levels during the night (Gauer et al., 
1993; Tenn and Niles, 1993). These dayhight variations 
are independent of circulating melatonin concentrations, 
and are directly induced by the light/dark cycle (Gauer et 
al., 1994a). Moreover, the decrease in melatonin recep- 
tor density during the night is suppressed by exposing the 
animals to 1 hr of light (Gauer et al., 1994a), and this 
light effect is mediated through activation of N-methyl- 
D-aspartic acid (NMDA) receptors (Gauer et al., 1994b). 
Exposure of rats to light pulses during the night is also 
known to increase immunoreactivity for the protein prod- 
uct of the immediate-early gene c-fos within SCN (Aro- 
nin et al., 1990; Earnest et al., 1990; Rusak et al., 1990), 
through activation of NMDA receptors (Abe et al., 
1991). This effect has been shown to be dependent on 
periods of sensitivity to light only during subjective night 
(Rusak et al., 1992; Earnest and Olschowka, 1993). The 
aim of the present study was to determine whether the 
dayhight variation in melatonin receptor density is pas- 
sively dependent on the light/dark cycle or, as with Fos, 
it depends on a circadian phase of light sensitivity. To 
answer this question, the density of melatonin receptors 
was measured in SCN of rats kept in constant darkness 
and subjected to light pulses delivered across the circa- 
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melatonin (synthesized according to the method of Vak- 
kuri et al. (1984) and purified by high performance liquid 
chromatography [HPLC]). Sections were washed twice 
for 30 sec in assay buffer, followed by a 30-sec wash in 
distilled water at 4°C with agitation. Hyperfilm (3H, Am- 
ersham, Les Ulis, France) were placed on the air-dried 
sections for 10 days in the presence of 20-pm thick '251 
microscales standards (Amersham). Quantitative analy- 
sis of autoradiograms was performed using the comput- 
erized analysis system Biocom-program RAG 200. Op- 
tical density of autoradiograms was converted into 
fmoYmg polymer using the microscale standards, and the 
resulting data were then converted into fmol/mg protein 
as described by Nazarali et al. (1989). Specific 2-"'1- 
melatonin binding (binding to receptors only) was deter- 
mined as the difference between total and nonspecific 
binding (not displaced in the presence of 1 pM cold 
melatonin). The saturation curve was analyzed by the 
equation 

dian cycle. As melatonin is known to autoregulate its 
own receptors in SCN (Gauer et al., 1993), these exper- 
iments were performed in pinealectomized animals to 
eliminate the presence of this hormone. To compare the 
results obtained with a known circadian light-sensitive 
system, Fos immunoreactivity was concomitantly ana- 
lyzed in the same paradigm. 

MATERIALS AND METHODS 
Animals and Protocols 

Male Wistar rats (200-250 g) (Iffa Credo, 1'Ar- 
bresle, France) were maintained under a 12-hr light/ 
12-hr dark cycle (12L/12D), with lights on at 07.00 hr 
(300-550 lux) for 2 weeks prior to experimentation. A 
dim red light (<1 lux) was always present during the 
dark period of the cycle, and food and water were pro- 
vided ad libitum. 

Experiment 1: Effect of 1-hr light pulses on den- 
sity of SCN melatonin receptors. Rats (n = 96) were 
pinealectomized under pentobarbital anesthesia (35 mg/ 
kg, i.p., Sanofi, Libourne, France) 3 days prior to ex- 
perimentation and kept afterwards in constant darkness 
(DD) (with a permanent dim red light). They were sac- 
rificed at eight different circadian times (CT) relative to 
predicted activity onset (CT12), four during subjective 
day (CT1, CT4, CT8, and CTlO), and four during sub- 
jective night (CT13, CT16, CT19, and CT22). For each 
CT, 12 animals were sacrificed: 6 in darkness and 6 after 
a 1 -hr-long light pulse. 

Experiment 2: Effect of 1-hr light pulses on Fos- 
immunoreactive (Fos-ir) cells in ventrolateral SCN. 
The paradigm used was the same as described in exper- 
iment 1. Three animals were sacrificed at the same eight 
time points (CT2, CT5, CT9, CT11, CT14, CT17, 
CT20, and CT23), 1 in darkness and 2 after a 1-hr-long 
light pulse. Moreover, to make sure that pinealectomy 
(and thus absence of melatonin) did not interfere with 
light-induced Fos expression, 3 intact animals were also 
used at both CT2 and CT5, 1 sacrificed in darkness and 
2 after light exposure. 

In Vitro Autoradiography Procedure and 
Data Analysis 

Animals were sacrificed by decapitation. Brains 
were rapidly removed, frozen in isopentane maintained 
at -3O"C, and stored at - 20°C-- 30°C until sectioning. 
Serial coronal sections (20-pm thick) of region contain- 
ing SCN were cut on a Reichert-Jung cryostat (Leica, 
Lyon-Bron, France), thaw-mounted onto gelatin-coated 
slides, and kept at -30°C until use. Sections were pre- 
incubated at 4°C for 15 min in 100 mM Tris buffer con- 
taining 4 mM CaCl,, pH 7.4, and then incubated in the 
same buffer containing various concentrations of 2-1251- 

Y = AX/B + X, where A = B,,, and B 
= Kd (Graph Pad, Graph Pad Inc., San Diego, CA). 

Immunohistochemistry Procedures 
Animals were deeply anesthesized with pentobar- 

bital(35 mg/kg, i.p.) and perfused through the ascending 
aorta with 50 ml of NaCl (0.9%) solution, followed by 
250 ml of 4% paraforrnaldehyde in phosphate buffer (0.1 
M, pH 7.4 at room temperature). Brains were rapidly 
dissected out, then postfixed for 12 hr in the same fixa- 
tive at 4"C, and 50-pm coronal sections were made on a 
vibratome in phosphate-buffered saline (PBS; 0.1 M, pH 
7.4). Free-floating sections were incubated for 12 hr at 
4°C in Fos polyclonal antibody raised in sheep (Cam- 
bridge Research Biochemicals, Wilmington, DE), di- 
luted at 1/5,000 in PBS 0.1 M containing 0.5% triton- 
XI00 and 0.25% gelatin (PBST). After several rinses in 
PBS, sections were incubated for 1 hr at room tempera- 
ture in a solution containing biotinylated anti-sheep an- 
tiserum made in rabbit, diluted M O O  in PBST. After 
multiple rinses with PBS, sections were incubated for 1 
hr at room temperature in an avidin-biotine-peroxidase 
complex (Vectastain ABC-reagent, Biosys SA, Comp- 
iegne, France) diluted in PBST. The tissue was washed 
repeatedly with PBS and then treated with a chromagene 
solution consisting of 0.025% diaminobenzidine, 0.5% 
nickel ammonium sulfate, and 0.015% hydrogen perox- 
ide in TRIS-HCI buffer (0.05 M, pH 7.4) at room tem- 
perature. The nickel-enhanced diaminobenzidine reac- 
tion produced a black-blue product. 

The number of Fos-ir nuclei was counted manually 
in all ventrolateral subdivisions of SCN, irrespective of 
intensity of staining. 
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TABLE I. 2-'251-Melatonin-Specific Binding in SCN of 
Pinealectomized Rats Kept in Constant Darkness (DD) or 
Subjected to One Hour-Long Light Pulse (DD + 1HL) 
Delivered at Eight Circadian Times (CT) 

SDecific binding (fmol/mg protein) 

Circadian time DD DD + 1HL 

CT2 5.16 f 0.10 4.84 2 0.17 
CT5 4.51 f 0.31 4.31 k 0.14 
CT9 5.56 -C 0.16 5.37 & 0.36 
CTl1 4.85 C 0.39 4.13 2 0.22 
CT14 4.51 t 0.22 5.88 % 0.25* 
CT17 5.40 C 0.26 6.90 _t 0.53* 
CT20 5.45 k 0.24 7.21 k 0.27* 
CT23 4.67 t 0.18 5.39 2 0.14** 

*P < 0.01, when compared to respective control group killed in DD. 
**P < 0.05, when compared to respective control group killed in DD. 

RESULTS 
Experiment 1 

In pinealectomized animals kept in DD, 2-'251-me- 
latonin binding in SCN was significantly increased after 
a 1-hr light pulse when the photic exposure was per- 
formed during subjective night at the four CTs studied 
(Table I). When the light pulse was applied during sub- 
jective day, no difference in specific binding was ob- 
served between light exposed and control animals (Table 
I, Fig. 1). Saturation study performed at CT17 with or 
without a light pulse revealed values of B,, of 8.53 2 
0.79 fmoVmg protein and 6.43 -+ 0.36 fmol/mg protein, 
respectively (P < 0.05), and Kd of 80.4 +- 20.7 and 96.3 
& 20.3 pM, respectively (Fig. 2). 
Experiment 2 

The number of Fos-ir cells in ventrolateral SCN 
was very low in animals killed in DD for each CT (Fig. 
3), fluctuating between 10-40. The Fos-ir was signifi- 
cantly increased by a light pulse given during subjective 
night (CT14, CT17, CT20, and CT23) and early subjec- 
tive day (CT2) (Figs. 3,4). On the other hand, light 
exposure at CT5, CT9, and CT11 did not affect the Fos- 
ir. A similar light effect on Fos-ir level was found in 
intact and pinealectomized animals at CT2 (136 & 15 
and 133 & 7 Fos-ir cells, respectively), as well as at CT5 
(37 +_ 5 and 29 +_ 4 Fos-ir cells, respectively). 

DISCUSSION 
In a previous study, we showed that the density of 

melatonin receptors in rat SCN was regulated daily by a 
mechanism that was dependent on light/dark cycle, and 
that both light/dark and darwlight transitions had a clear- 
cut effect on SCN melatonin receptor density (Gauer et 
al., 1994a). In this study, we show in animals kept in DD 
that the light pulse-induced increase in melatonin recep- 
tor density only occurs during subjective night, and not 
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Fig. 1. Relative 2-'251-melatonin-specific binding measured in 
SCN of pinealectomized rats kept in constant darkness for 3 
days and sacrificed at eight different circadian times (CT) after 
a 1-hr-long light pulse. For each CT, the 100% value corre- 
sponds to the values of specific binding obtained in the control 
animals killed in darkness. *P < 0.01, **P < 0.05, when 
compared with respective control values. 
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Fig. 2. Saturation curves and Scatchard regression plots of 
specific 2-'251-melatonin binding in SCN of rats pinealecto- 
mized for 3 days and subsequently kept in constant darkness. 
Animals were killed at CT17, after receiving (DD + 1HL) or 
not (DD) a 1-hr-long light pulse. Each point is mean 2 SEM 
of 5 animals. 

during subjective day (Fig. 1). Therefore, melatonin re- 
ceptor density responds to light pulses according to a 
receptor light sensitivity phase, only present during sub- 
jective night. The light regulation of melatonin receptors 
depends, then, on a circadian mechanism. 

Similarly, Fos immunoreactivity levels in ventro- 
lateral SCN of pinealectomized rats were increased only 
when light pulses were applied during subjective night 
(CT14, CT17, CT20, and CT23), and not when they 
were administered during subjective day (CT5, CT9, and 
CTl l ) ,  as previously reported in intact animals (Rea, 
1989; Rusak et al., 1990; Sutin and Kilduff, 1992; Ear- 



Fig. 3 .  Endogenous (left column) and light-stimulated (right column) expression of Fos 
immunoreactivity in ventrolateral parts of SCN, in pinealectomized rats sacrificed at CT2 (A, 
B), CT5 (E, F), and CT20 (G, H), and in intact rats sacrificed at CT2 (C, D). Bar, 300 pm. 
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Fig. 4. Increase in number of Fos-immunoreactive (Fos-ir) 
cells (? SEM) in SCN ventrolateral parts of rats pinealecto- 
mized for 3 days, subsequently kept in constant darkness and 
sacrificed at eight different circadian times (CT) after a l-hr- 
long light pulse. *P < 0.01, compared with values obtained at 
CT5, CT9, and CT11. + P  < 0.01, compared with values 
obtained at CT14, CT20, and CT23. ++P < 0.05, compared 
with value obtained at CT17. 

nest and Oeschowka, 1993; Schwartz et al., 1994). In 
early subjective day (CT2), however, a less important 
but clear Fos-ir increase was observed (Figs. 3, 4). This 
effect (light from CTl-CT2) was not a consequence of 
pinealectomy, since we found the same results in intact 
animals, which confirms the results of Schwartz et al. 
(1 994). 

The light sensitivity of melatonin receptor density 
and Fos immunoreactivity restricted to subjective night is 
also shared by a third phenomenon, the shift of locomo- 
tor activity in response to a light pulse (Daan and Pitten- 
drigh, 1976; Summer et al., 1984). Many observations 
suggest that excitatory amino acids are the neurotrans- 
mitters mediating photic effect on the circadian oscilla- 
tor. For example, the light-induced increases in melato- 
nin receptor density (Gauer et al., 1994b), c-fos gene 
expression, and activity phase shifts (Abe et al., 1991, 
1992; Rea et al., 1993a,b), are blocked by excitatory 
amino acid receptor antagonists. These observations 
provide evidence that these different processes are func- 
tionally linked. Anatomically, SCN are heterologous 
structures (Morin, 1994), and different populations of 
neurons are Fos-light-stimulated according to CTs (Rea, 
1992; Chambille et al., 1993). Fos expression has been 
proposed as a useful marker of neural activation (Sagar et 
al., 1988). In SCN, Fos induction may thus serve as a 
general cellular marker for the neural effect of light, 
whatever the photic-activated circadian function is. 
Some Fos-activated neuronal populations could be im- 
plicated in a cascade of events regulating a given circa- 
dian rhythm like melatonin receptor density, while other 
populations could control other rhythms, such as loco- 
motor activity. This idea is supported by our observation 

that during early subjective day Fos was photically elic- 
ited, while the density of melatonin receptors was not 
affected. These Fos-activated cells could then be impli- 
cated in the regulation of other rhythms whose candidate 
could be phase-shift in activity, since a phase advance is 
observed in the rat at CT2 (Summer et al., 1984). This 
concept is also supported by the observations that 1) the 
NMDA receptor antagonist MK 801 totally blocks the 
light-induced increase in melatonin receptor density 
(Gauer et al., 1994b), while it only blocks the light- 
induced c-fos expression in SCN partially (Ebling et al., 
1991; Abe et al., 1992; Rea et al., 1993a), and 2) injec- 
tion of the excitatory amino acid NMDA induces expres- 
sion of Fos in SCN while it does not cause a phase-shift 
of the SCN oscillator (Rea et al. , 1993b). This possibility 
does not, however, rule out that Fos activation of some 
cell populations could result in simultaneous changes in 
several circadian rhythms. 

These results demonstrate the presence of circadian 
variations in the light regulation of melatonin receptors. 
The physiological meaning of such a phenomenon is still 
unknown. However, it could play a major role at dawn 
and/or dusk, considering that the length of light period is 
changing every day throughout the year, and that animals 
are able to adapt daily to these changes in day length. As 
melatonin is known to entrain circadian locomotor activ- 
ity (Redman et al., 1983; Cassone, 1990; Kirsch et al., 
1993). We believe that a study of melatonin receptor 
regulation could play a significant role in the search for 
the endogenous time-keeping mechanism of the circa- 
dian pacemaker in SCN. Changes in melatonin receptor 
density may help to trace events forward along a pace- 
maker input pathway, ultimately terminating at a com- 
ponent of the oscillatory machinery. Regulation of me- 
latonin receptors might also be considered as a target of 
the pacemaker. Identification of the factor(s) responsible 
for this phase-dependent gating mechanism may provide 
an additional opportunity to trace events backward along 
one of the pacemaker output pathways. 
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