# Structure of naphazoline nitrate ${ }^{1}$ 

V. Geetha ${ }^{2}$ and S. S. Rajan ${ }^{2, *}$

Received June 16, 1992; accepted August 29, 1992
2-(1-Naphthylmethyl)-2-imidazoline nitrate, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}, M_{r}=273.29$, orthorhombic, Pbca , a $=12.033(4), b=14.387(4), c=15.913(4) \AA, V=2754.9(4) \AA^{3}, Z=8, D_{m}=1.32$ (3) (flotation), $D_{x}=1.318 \mathrm{Mgm}^{-3},(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=7.45 \mathrm{~cm}^{-1}, F(000)=1152, T=296$ $K$, final $R=0.078, w R=0.058$ for 1397 reflections with $I>2 \sigma(I)$. The naphthalene ring exhibits orientational disorder. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving both the nitrogen atoms of the imidazoline ring serve to form infinite chains of alternating naphazoline cations and nitrate anions.

## Introduction

Naphazoline compounds are sympathomimetic drugs having $\alpha$-agonistic activity and are similar to epinephrine and phenylethyl amines (Bowman and Rand, 1980; Weiner, 1980). The present work describes the X-ray crystal structure of the title compound.

## Experimental

Pale yellow colored crystals from methanol, 0.30 $\times 0.40 \times 0.20 \mathrm{~mm}, D_{m}$ by flotation, Enraf-Nonius CAD-4 graphite monochromatized single-crystal diffractometer, cell dimensions from 25 accurately centered reflections, $30 \leq 2 \theta \leq 60$, w/ $2 \theta$ scan, $\mathrm{Cu} K \alpha$ radiation, three standard reflections monitored for every 100 reflections showed the change in intensity to be less than $3 \%$, with $0 \leq h \leq 13,0 \leq k \leq 16,0 \leq l \leq 17$, 1626 unique reflections, $R_{\mathrm{int}}=0.03,1397$ reflections with $I>2 \sigma(I)$ used in the least squares refinement; $2 \theta_{\text {max }}=120^{\circ}$. Data corrected for Lorentz and polarization effects but no absorption correction. Structure solution was by direct methods. The final Fourier map revealed two orientations of the naphthalene ring. The atoms in the naphthalene ring were given half occupancy. All attempts to refine this occupancy did not improve the $R$ factor. All hydrogen positions except that

[^0]of the hydrogen attached to N1 and also those of the naphthalene rings were obtained from $\Delta F$ map; hydrogens of the naphthalene ring as well as atom HN1 were fixed and not refined. A full matrix least squares refinement was carried out on $F_{o}$, with anisotropic temperature factors for all nonhydrogen atoms except those of the naphthalene ring. The positional as well as thermal parameters of those hydrogen atoms found from the $\Delta F$ map were refined isotropically. The atoms of the naphthalene ring were refined isotropically; final $R$ factor $0.078, w R=0.058, w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.04 F_{o}^{2}\right], S=$ 1.49, the final $\Delta F$ map was featureless, $(\Delta / \sigma)_{\max }=0.14$, final ( $\Delta \rho$ ) excursions are from -0.20 to $+0.34 \mathrm{e}^{\AA} \AA^{-3}$. The high value for the $R$ factor is likely due to the effects of disorder. No correction for secondary extinction was made. All calculations including geometric parameters were performed using the SDP (Frenz, 1978) on VAX $11 / 730$ computing system. Scattering factors were those incorporated in the SDP package.

## Discussion

The final atomic positional parameters of nonhydrogens are given in Table 1 and interatomic distances and angles in Table 2 and Table 3. The conformation of the molecule (program pluto, Motherwell and Clegg, 1978) is given in Fig. 1.

The present compound is an analog of the hydrochloride derivative (Podder et al., 1983). Here, the naphthalene ring has an orientational disorder and the

Table 1. Positional parameters of nonhydrogens and their estimated standard deviations

| Atom | $x$ | $y$ | $z$ | $B\left(\AA^{2}\right)$ | Atom | $x$ | $y$ | $z$ | $B\left(\AA^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N1 | 0.1443(3) | 0.0751(3) | 0.0460(2) | 6.8(1) | C10 | 0.0824(8) | -0.0328(6) | -0.3291(6) | $6.4(2)^{a}$ |
| C1 | $0.0846(4)$ | 0.0264(4) | $0.1135(3)$ | 8.1 (1) | C11 | 0.1177(9) | -0.1256(7) | -0.3240(7) | $7.6(3)^{a}$ |
| C2 | $0.1326(4)$ | -0.0707(4) | $0.1099(3)$ | 7.9(1) | C12 | 0.180(1) | -0.1545(8) | -0.2493(8) | $9.3(3)^{a}$ |
| N2 | 0.2142(3) | -0.0641(3) | 0.0413(2) | 6.5(1) | C13 | $0.2126(8)$ | $-0.0867(7)$ | -0.1927(6) | $6.8(2)^{a}$ |
| C3 | 0.2143 (3) | 0.0188(3) | 0.0094(2) | 5.3(1) | C14 | $0.1803(6)$ | $0.0084(5)$ | -0.1992(5) | $4.5(2)^{a}$ |
| C4 | 0.2862(3) | 0.0499(4) | -0.0632(3) | 6.3(1) | C5' | 0.2348(7) | $0.0093(6)$ | -0.1449(5) | $5.0(2)^{a}$ |
| N3 | 0.0514(3) | 0.2956 (3) | $0.0066(3)$ | 7.8(1) | C6' | $0.2537(9)$ | -0.0797(7) | -0.1692(6) | $7.0(2)^{a}$ |
| O1 | 0.0320 (3) | 0.3754(3) | -0.0171(3) | 10.1(1) | C7' | $0.2056(8)$ | -0.1212(7) | -0.2445(7) | $7.2(2)^{\text {a }}$ |
| O2 | 0.1503 (3) | 0.2731 (3) | 0.0202(3) | 9.3(1) | C8' | $0.1350(9)$ | $-0.0681(7)$ | -0.2911(6) | $7.5(2)^{a}$ |
| O3 | -0.0240(3) | 0.2403(3) | 0.0178(3) | 10.8(1) | C9' | 0.1128(3) | 0.0298(3) | -0.2682(3) | $6.0(1)^{a}$ |
| C5 | $0.2145(7)$ | $0.0767(6)$ | $-0.1401(5)$ | $4.9(2)^{\text {a }}$ | C10' | $0.0412(8)$ | $0.0847(7)$ | -0.3122(6) | 6.6(2) ${ }^{\text {a }}$ |
| C6 | 0.1792(9) | $0.1682(7)$ | $-0.1492(7)$ | $7.8(3)^{\alpha}$ | C11' | 0.0158(9) | $0.1720(8)$ | -0.2911(7) | 8.3(3) ${ }^{\text {a }}$ |
| C7 | 0.1081 (8) | $0.1894(7)$ | $-0.2187(6)$ | $7.2(2)^{a}$ | C12' | 0.0667(9) | $0.2140(7)$ | -0.2194(6) | $7.8(3)^{a}$ |
| C8 | 0.0745(9) | $0.1294(7)$ | $-0.2766(6)$ | $7.7(3)^{a}$ | C13' | $0.1413(7)$ | $0.1602(6)$ | -0.1715(5) | $5.4(2)^{a}$ |
| C9 | $0.1128(3)$ | 0.0298(3) | -0.2682(3) | $6.0(1)^{a}$ | C14' | $0.1633(7)$ | $0.0678(6)$ | -0.1909(5) | $4.8(2)^{a}$ |

${ }^{a}$ Atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3) *\left[a^{* 2} B(1,1)+b^{* 2} B(2,2)+c^{* 2} B(3,3)\right]$.

Table 2. Bond distances of nonhydrogens in angstroms

| Atom 1 | Atom 2 | Distance | Atom 1 | Atom 2 | Distance | Atom 1 | Atom 2 | Distance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N1 | Cl | $1.471(6)^{a}$ | C5 | C6 | 1.391(3) | $\mathrm{C5}^{\prime}$ | C6' | $1.356(2)$ |
| N1 | C3 | $1.306(6)$ | C5 | C1.4 | $1.421(1)$ | $\mathrm{CF}^{\prime}$ | C14' | 1.409(1) |
| C1 | C2 | 1.513 (8) | C6 | C7 | 1.431(4) | C6' | C7' | 1.459(3) |
| C2 | N2 | 1.471 (6) | C7 | C8 | $1.326(4)$ | C7' | C8' | $1.362(4)$ |
| N2 | C3 | 1.296(6) | C9 | C8 | 1.511(1) | C9' | C8' | 1.478(1) |
| C3 | C4 | $1.510(6)$ | C9 | C10 | 1.371(1) | C9 ${ }^{\prime}$ | C10 | 1.362(1) |
| C4 | C5 | $1.546(9)$ | C9 | C14 | $1.400(9)$ | C9' | C14' | 1.477(9) |
| C4 | C5' | 1.554(9) | C10 | C11 | 1.403(3) | C10' | C11 ${ }^{\prime}$ | $1.336(4)$ |
| N3 | 01 | 1.231(6) | C11 | C12 | $1.465(6)$ | C11 | C12' | 1.429(4) |
| N3 | O2 | 1.253(5) | C12 | C13 | $1.385(5)$ | C12' | C13' | 1.409(3) |
| N3 | O 3 | $1.219(6)$ | C13 | C14 | $1.426(2)$ | C13' | C14' | $1.389(1)$ |

${ }^{a}$ Numbers in parentheses are estimated standard deviations in the least significant digits.

Table 3. Bond angles of nonhydrogens in degrees

| Atom 1 | Atom 2 | Atom 3 | Angle | Atom 1 | Atom 2 | Atom 3 | Angle | Atom 1 | Atom 2 | Atom 3 | Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cl | N1 | C3 | $110.2(4)^{a}$ | O 2 | N3 | O3 | 120.8(4) | C5 | C14 | C13 | 122.4(7) |
| N1 | C1 | C 2 | 103.1(4) | C4 | C5 | C6 | 119.3(7) | C9 | C14 | C5 | 122.4(7) |
| Cl | C2 | N2 | 102.9(4) | C4 | C5 | C14 | 120.9(6) | C9 | C14 | C13 | 115.2(7) |
| C2 | N2 | C3 | 110.6(4) | C6 | C5 | C14 | 119.8(8) | C4 | C5' | C6' | 121.7(7) |
| N1. | C3 | N2 | 113.3(4) | C5 | C6 | C7 | 117.7(9) | C4 | C5 ${ }^{\prime}$ | C14' | 117.0(7) |
| N1 | C3 | C4 | 121.8(4) | C6 | C7 | C8 | 125.4(9) | C6' | C5' | C14' | 121.3(8) |
| N2 | C3 | C4 | 124.9(4) | C9 | C8 | C7 | 117.6(8) | C5' | C6' | C7' | 123.6(9) |
| C3 | C4 | C5 | $111.0(4)$ | C8' | C9' | C10' | 122.7(7) | C6' | C7' | C8' | 117.7(9) |
| C3 | C4 | C5' | 107.5(4) | C8' | $\mathrm{C} 9^{\prime}$ | C14' | 118.9(6) | C9' | C8' | C7' | 120.9(8) |
| C8 | C9 | C10 | 118.6(6) | C10' | C9' | C14' | 118.2(6) | C9' | C10' | C11' | 124.1(9) |
| C8 | C9 | C14 | 117.0(6) | C9 | C 10 | C11 | 120.2(8) | C10' | C11' | C12' | 120.1(9) |
| C10 | C9 | C14 | 124.3(6) | C10 | C11 | C12 | 118.1(9) | C11' | C12' | C13' | 118.1(9) |
| O1 | N3 | O2 | 118.3(4) | C11 | C12 | C13 | 118.3(9) | C12' | C13' | C14' | 121.8(8) |
| O1 | N3 | O 3 | 120.8(4) | C12 | C13 | C14 | 123.4(9) | C $9^{\prime}$ | C14' | C5' | $117.5(6)$ |
| C9 ${ }^{\prime}$ | $14^{\prime}$ | C13' | 117.5(7) | C5' | C14' | C13' | 124.9(7) |  |  |  |  |

[^1]

Fig. 1. Conformation of molecule.
angle between the two orientations of the naphthalene ring is $173.2(2)^{\circ}$. A similar kind of disorder of a portion of the molecule has been reported earlier (Weber et al., 1983). The imidazoline ring and the naphthalene rings
are individually almost planar ( $\chi^{2}=3,106$ and 91 , respectively). The angle between the least squares plane of the imidazoline ring and the two orientations of the naphthalene rings are $106.5(1)$ and $105.6(1)^{\circ}$, respectively.

The conformation of the ring systems have been compared to those of the naphazoline hydrochloride compound. The bond lengths and bond angles agree well with those of the hydrochloride compound, except for the $\mathrm{C} 3-\mathrm{C} 4$ bond length (numbering scheme as in Fig. 1). The discrepancy may be a function of the rotational disorder of the naphthyl group in the title compound.

Both the nitrogens of the imidazoline ring are protonated in the cation and form hydrogen bonds with O 2 $(\mathrm{Ni} \cdots \mathrm{O} 2$ and $\mathrm{N} 2 \cdots \mathrm{O} 2$ are 2.879(6) and 2.874(6) $\AA$, respectively). The hydrogen bonds result in the formation of infinite chains of alternating cations and nitrate anions parallel to the cell edge ' $b$ '". It is of interest in this context that among the $\mathrm{N} \cdot \cdots$ O distances in the nitrate anion, $\mathrm{N} 3-\mathrm{O} 2(1.252(5) \AA)$ is appreciably longer than either $\mathrm{N} 3-\mathrm{O} 1$ or $\mathrm{N} 3-\mathrm{O} 3(1.231(6)$ and $1.220(6)$, respectively).

As pointed out by Podder et al. (1983), naphazo-

Table 4. A comparison of important torsion angles

| Illustrations | Torsion Angles ( ${ }^{\circ}$ ) |  |  |
| :---: | :---: | :---: | :---: |
| 1. Expected for Phenethylamines ${ }^{\text {a }}$ | C14-C5-C4-C3 |  | $\begin{gathered} \mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} \\ \pm 180.0 \end{gathered}$ |
| 2. Naphozoline Hydrochloride ${ }^{b}$ | -176.8(6) |  | +85.4(6) |
| 3. Present study | C14-C5-C4-C3 | $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$ | $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2$ |
| One orientation | -86.5(7) | -63.7(5) | 115.8(5) |
|  | C14'-C5'-C4-C3 | C5'-C4-C3-N1 | $\mathrm{C} 5^{\prime}-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2$ |
| Other orientation | 96.1(8) | -103.6(5) | 75.8(5) |

${ }^{a}$ Carlstrom et al. (1973), Hebert (1979), Duax (1978).
${ }^{6}$ Podder et al. (1983).


Fig. 2. Stereo packing diagram of the unit cell viewed down the $a$-axis.
line can be considered in terms of a phenyl-ethylamine skeleton $\left[(\mathrm{C} 5\right.$ to C 14$) /\left(\mathrm{C}^{\prime}\right.$ to $\left.\left.\mathrm{C} 14^{\prime}\right)\right]$ as the phenyl ring and $\left.\left[(\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N}) / \mathrm{C} 5^{\prime}-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N}\right)\right]$ as the side chain. The conformation of a portion of the molecule along with those of other phenethylamines (Carlstrom et al., 1973; Hebert, 1979; Duax, 1978) is tabulated in Table 4. Comparison of the molecular conformation of the present compound with other active phenethylamines has revealed the fact that the present compound neither adopts an extended trans conformation nor is in the folded form observed in naphazoline hydrochloride (Aloka et al., 1983). The naphazoline nitrate takes up an altogether different conformation and has no preferred conformation of sympathomimetic compounds.

Figure 2 shows the stereo packing diagram of the contents of the unit cell down $a$-axis, with the molecule in both the orientations.

## Acknowledgment

One of the authors (V. G.) thanks the CSIR, India, for the fellowship.

## References

Aloka Podder, Mukhopadhyay, J. K., Datta Gupta and Saha, N. N. (1983) Acta Cryst. C39, 495-497.

Bowman, W. C., and Rand, M. J. (eds.) (1980) Textbook of Pharmocology, (Blackwell Scientific Publications, Oxford), p. 11.31.
Carlström, D., Bergin, R., and Falkenberg, G. (1973) Q. Rev. Biophys. 6, 257-310.
Duax, W. L. (1978) Mol. Struc. Diffr. Methods 6, 261-328.
Frenz, B. A. (1978) The Enraf-Nonius CAD-4 SDP-A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, H. Schenk, R. OlthofHazekamp, H. Van Koningsveld, and G. C. Bassi (eds.) (Delft Univ. Press), pp. 64-71.
Hebert, H. (1979) Studies on the Molecular Structure of $\alpha$ - and $\beta$-Adrenergic Agents. Thesis, Karolinska Institute, Stockholm.
Motherwell, W. D. S., and Clegg, W. (1978) pluto. Program for plotting molecular and crystal structures. (Univ. of Cambridge, England).
Weiner, N. (1980) The Pharmocological Basis of Therapeutics (Sixth edition), L. S. Goodman and A. Gilman (eds.) (Macmillan, New York), pp. 144, 168.
Weber, G., Jones, P. G., and Sheldrick, G. M. (1983) Acta Cryst. C39, 389-391.

List of structure factor amplitudes, anisotropic thermal parameters, torsion angles, least squares plane calculation, hydrogen atom positions and bond lengths and bond angles involving hydrogen atoms have been deposited with the British Library, Boston Spa, Wetherby, West Yorkshire, UK as supplementary publication no. 63284 (24 pages).


[^0]:    ${ }^{1}$ DCB Contribution No. 811.
    ${ }^{2}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras-600 025, India.

[^1]:    ${ }^{a}$ Numbers in parentheses are estimated standard deviations in the least significant digits.

