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ABSTRACT: The identification of viscoplastic material parameters is addressed using a new powerful method: the virtual fields method

(VFM). Contrary to classical procedures that are statically determined, the VFM is applied to heterogeneous mechanical fields. Without any

hypotheses of homogeneity required, the exploitation of tests with the VFM is not limited to small levels of strains anymore and it can be

taken advantage of the large amount of information available thanks to full-field measurements. In the case of viscoplastic models, the

characterisation of strain-rate sensitivity with the VFM is attempted in this paper using only one test under high-speed loading conditions,

whereas several tests performed at different constant strain-rates are required for the classical procedures. This article focuses on the

development of the VFM for the characterisation of Johnson–Cook’s (JC) viscoplastic model. To his aim a return-mapping algorithm was

developed according to the JC’s model with an implicit Euler scheme implemented to integrate the constitutive relations. The whole

viscoplastic behaviour of a Titanium alloy (Ti6Al4V) is successfully characterised by the VFM using only two tensile tests on notched flat

specimens, with full-field strain measurements by digital image correlation.
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Introduction
The characterisation of mechanical material behaviour

under high rate loadings remains a challenge, particularly

when the number of material parameters governing the

constitutive equations is significant. This is the case when

considering anisotropic materials and/or strongly nonlin-

ear constitutive laws, for example, in viscoplasticity or

damage theories. The classical procedures of identification

of material parameters require to perform several norma-

lised tests (e.g. tensile tests) to fit the model with experi-

mental data. The exploitation of these tests is usually

statically determined, i.e. it assumes that the mechanical

fields (in particular strain and strain-rate) are homogeneous

over the specimen’s region of interest. Yet, such a

hypothesis is obviously violated as soon as plastic locali-

sation (e.g. necking) occurs in the material [1]. In the case

of many polymers, for example, the early presence of

necking makes the determination of uniaxial true stress-

strain curve impossible from a classical tensile testing [2].

More generally, tests exploitation is anyway limited to

small levels of strain, before localisation. Moreover, mate-

rial parameters are determined with tests in one direction

of loading. Consequently, a large number of tests are

required when complex behaviours are involved. For

example, several tests have to be performed at constant

strain-rate to characterise the strain-rate sensitivity of a

material.

These drawbacks can be avoided by dealing with heter-

ogeneous kinematic fields, with no hypothesis on their

nature anymore (i.e. statically undetermined approach).

The measurement of heterogeneous mechanical fields

provides very rich experimental data and allows to extract

more information from a smaller number of tests. In par-

ticular, the heterogeneity of strain-rate can lead to a suffi-

cient involvement of viscoplastic material parameters in

the specimen response to attempt their identification in a

reduced number of tests.

The development of full-field measurement techniques

now gives easy access to heterogeneous mechanical fields.

These techniques, such as digital image correlation (DIC)

[3–5], moiré [6, 7] and speckle interferometry [8] and grid

methods [9–11], provide a very large amount of experi-

mental data (about 1000–10000 points of measurement). In

addition, full-field techniques allow to focus on specific

areas of measurement (e.g. zones of strain localisation),

which may be used to improve the accuracy of the identi-

fication.

An overview of procedures developed to identify material

parameters from full-field measurements was established

by Avril et al. [12]. The most widespread approach is the

Finite Element Model Updating (FEMU) method. Iterative

finite element (FE) simulations are processed until con-

stitutive parameters leading to the best match between FE

computations and experimental measurements are found.

Generally, FEMU method considers the discrepancy

between known and predicted quantities (e.g. loads for

FEMU-F methods [13]) or displacement fields for FEMU-U

methods [13, 14]. All FEMU methods are sensitive to mesh

discretisation and modelling errors. In particular, boundary

conditions have to be perfectly known and modelled.

Meuwissen et al. [15] are the pioneers in the application of

FEMU method to elastoplastic behaviours. Markiewicz et al.

[16] extended this approach to elasto-viscoplasticity, using

the Cowper-Symonds model [17], and more recently, Kaj-

berg et al. [18] to Perzyna [19] model and Kajberg and

Wikman [20] to Johnson and Cook [21] model.

Note that many FEMU methods (FEMU-F methods in

particular) do not require field measurements. On the
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contrary, other approaches are dedicated to their treat-

ment. For example, Coppieters et al. [22] identified mate-

rial parameters by minimising the discrepancy between the

internal and external works that are computed using full-

field measurements of strains. Some other methods are

presented by Avril et al. [12]: the Equilibrium Gap Method

(EGM) [23] or the Reciprocity Gap Method (RGM) [24], for

example, The RGM needs strain field measurements over

the boundary and the EGM needs strain field measure-

ments over the whole domain of interest. Both RGM and

EGM can be actually considered as particular applications

of an other method of identification: the virtual fields

method (VFM), respectively, when kinematic fields are

known only on the boundary or for some piecewise par-

ticular fields.

The VFM, introduced by Grédiac [25], is dedicated to the

treatment of full-field strain measurements. It is based on

the principle of virtual work (PVW) that expresses the

global equilibrium of a solid of any shape. One of the main

advantages of the VFM compared to FEMU methods is that

it does not require to build a numerical model of the

material test. Provided convenient virtual displacement

fields, the VFM can be carried out knowing only the

resultant of applied loads. In addition, the characterisation

with the VFM of linear constitutive laws is based on the

resolution of a linear system of equations and is conse-

quently no time-consuming, whereas FEMU methods al-

ways require costly iterative computations of FE models. In

the case of linear elasticity, for example, the identification

by the VFM of in-plane [26] and bending [27, 28] rigidities

of anisotropic materials is proven to be accurate and robust.

A drawback is that it may be quite difficult and tedious to

find out as many suitable virtual fields as number of

parameters to be identified when the latter is important.

Yet, improvements proposed by Grédiac et al. [29] allow to

build suitable special virtual fields following a systematic

procedure. In addition, the use of these special virtual fields

is proven to improve the accuracy and the robustness of the

VFM for the characterisation of linear constitutive laws [30,

31]. In particular, the sensitivity of results to noisy data can

be greatly decreased [32]. An other interesting approach

consists in building piecewise virtual fields [33].

For nonlinear constitutive equations (e.g. plasticity, vi-

scoplasticity, damage), there is generally no explicit rela-

tion between stress components and measured strain fields

involving unknown material parameters. Consequently,

their identification with the VFM is based on an iterative

procedure of minimisation of equilibrium gaps to respect

the PVW. In this case, numerical tools are needed to

compute mechanical fields (in particular stress compo-

nents) from measured strain fields to express the virtual

works. Some studies [34–36] have demonstrated that linear

isotropic hardening laws (J2-plasticity) can be characterised

with the VFM, using simple virtual fields. Other studies

tried to improve the method by defining optimised virtual

fields [37] similarly to special virtual fields used in the case

of linear constitutive laws. Optimised virtual fields were

used to characterise a more complex elastoplastic model

taking into account kinematic hardening. Recently, Rossi

and Pierron [38] have extended the formulation of the

method to large displacements and have demonstrated the

ability of the VFM to characterise elastoplastic models of

behaviour using numerically simulated 3-dimensional

fields.

All these applications consider quasi-static loading con-

ditions. Giraudeau and Pierron [39] and Giraudeau et al.

[40] proved that the VFM can be used in the particular

dynamic framework of vibrating plates, as an alternative to

modal analysis, to identify stiffness and damping parame-

ters (pure harmonic bending, linear behaviour). Indeed, in

these cases, the virtual work of acceleration can be simply

computed thanks to the knowledge of the imposed sinu-

soidal excitations. Moulart et al. [41] and Pierron and For-

quin [42] used the VFM to identify the stiffnesses (linear

orthotropic elasticity) of a composite and the Young’s

modulus (unidimensional behaviour) of a concrete mate-

rial, respectively, with dynamic tests taking into account

inertia effects. To the authors’ knowledge, only Avril et al.

[43] have studied the characterisation of a viscoplastic

model of behaviour using the VFM, processing data of a

dynamic test without inertia effects. In this article, the

PVW was rewritten in a rate-dependent form to identify the

hardening parameters and the strain-rate sensitivity expo-

nent of Perzyna’s model. Stress components were com-

puted using an Euler scheme between two instants of strain

field measurement. Experimental results showed a quite

precise identification of the quasi-static initial yield stress.

Nevertheless, high differences between expected and

identified values of hardening parameters and strain-rate

sensitivity exponent were found. Note that these differ-

ences were mainly due to a lack of uniqueness of the

solution (test was not rich enough). Consequently, the

potential of the VFM could not be totally investigated.

The ability of the VFM to characterise the whole visco-

plastic model of Johnson and Cook [21] was demonstrated

by the authors from numerically simulated strain fields

[44]. Mechanical quantities (stresses, cumulated plastic-

strain, strain-rate …) were computed from strain fields by

return-mapping algorithms, according to Johnson–Cook’s

constitutive laws. Tests demonstrated the ability of the

VFM to deal with the strongly nonlinear plastic part (i.e.

rate independent) of the model. Then, FE simulations

(using the explicit FE code Europlexus) in dynamic condi-

tions proved the possibility to characterise a strain-rate

sensitivity with the VFM.

In this article, the experimental identification of the

whole set of parameters of Johnson–Cook’s viscoplastic

model is attempted using the VFM and full-fields strain

measurements, by DIC. To this aim, a return-mapping

algorithm was developed according to the JC’s viscoplastic

model with an implicit Euler scheme implemented to

integrate the constitutive relations. The material tested is a

Titanium alloy Ti6Al4V. Ti6Al4V is the most widespread

Titanium alloy (more than 50% of sales in mass) with about

80% of the production designed for aeronautical applica-

tions (e.g. turbine of reactors). Numerous studies [45–47]

showed that the constitutive laws of the Johnson–Cook

(JC) model [21] are suitable to describe the strongly strain-
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rate-dependent behaviour of Ti6Al4V. A particularity of

JC’s model is to isolate the effects of strain, strain-rate and

temperature on the hardening/softening of the material (cf.

Johnson–Cook’s Viscoplastic Behaviour Model section). It

leads to classical procedures of characterisation of JC’s

model divided into two steps (assuming there is no effect of

temperature): material parameters governing strain hard-

ening and viscoplastic parameters governing strain-rate

sensitivity are successively identified. The VFM, presented

in detail in The Virtual Fields Method section, is applied in

this way to identify JC’s material parameters for Ti6Al4V.

First, notched flat specimens are subjected to quasi-static

tensile tests to characterise the plastic part (i.e. rate-inde-

pendent) of the model (cf. Characterisation of the plastic

part of the model section). As mentioned before, the VFM

(statically undetermined approach) is able to deal with the

strongly heterogeneous mechanical fields that are here

generated on the specimen thanks to the presence of the

notches. The heterogeneity of strain-rate fields provides a

rich information about the strain-rate sensitivity of the

material. Therefore, the characterisation of the viscoplastic

part of JC’s model with the VFM is attempted using a single

dynamic tensile test (cf. Characterisation of the strain-rate

sensitivity of Ti6Al4V section), whereas several statically

determined tests, at constant strain-rate, are required when

using classical procedures. The JC’s model characterised for

Ti6Al4V by the VFM from these only two tests is discussed

in Relevance of the JC’s model characterised with the VFM

section.

Johnson–Cook’s Viscoplastic Behaviour Model
The general framework of viscoplastic theory for metallic

materials assumes the partition of the total strain tensor,

�e, into a reversible (elastic) part, �ee, and an irreversible one.

Here, the latter is considered as a viscoplastic part, �evp, and

�e ¼ �ee þ �evp. The von Mises criterion for plasticity (or J2
criterion) is used. It gives rise to the expression (1) for the

yield surface in stress space, with ry the current yield

stress.

f ¼ J2 �r� �b
� �

� ry (1)

with �r the Cauchy stress tensor and �b the kinematic

hardening variable, or ‘back-stress’. J2 �xð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 devð�xÞ : devð�xÞ

q
, with dev �xð Þ the deviatoric part of tensor

�x. Without kinematic hardening, J2 �rð Þ is the von Mises

equivalent stress.

Elastic stress states are characterised by f < 0. Plastic or

viscoplastic flow occurs as soon as f ¼ 0. Then, the yield

surface evolves following the hardening laws that allows to

compute the current yield stress, ry, and ‘back-stress’, �b.

Numerous empirical and semi-empirical models have

been proposed to describe plastic and viscoplastic material

behaviours [48]. Among them, the Johnson–Cook (JC)

model, proposed in the early 1980s [21], is one of the most

widely used for industrial applications. Indeed, it generally

describes very well the behaviour of metallic materials

submitted to high strains, strain-rates and temperatures

[46, 47, 49], although it is a purely empirical (i.e. phe-

nomenological) model. Moreover, the model is numeri-

cally robust, that makes attractive its implementation

within a FE code, and can be easily calibrated thanks to the

isolation of effects of strain, strain-rate and temperature on

the hardening/softening’s law (2) of the material. Strain

hardening is isotropic and modelled by a power law of

cumulated viscoplastic strain, p, defined by Equation (3),

with parameters r0, the initial yield stress, and K and n, the

isotropic hardening modulus and exponent, respectively.

Viscous effects are taken into account as soon as the

equivalent viscoplastic strain-rate, _evp
eq , becomes higher than

the threshold _e0. Strain-rate sensitivity is then governed by

the viscoplastic parameter, M. In the same way, thermal

softening is modelled as soon as the temperature, T,

becomes higher than a reference temperature, T0. T0,

exponent m and Tm (melting temperature under ambient

pressure) are material parameters. In this study, tests are

performed at ambient and constant temperature. In addi-

tion, the heat generation due to plastic work is negligible

for metallic materials for the strain-rate range (up to

300 s)1, locally) considered in this paper [50]. Conse-

quently, thermal softening is neglected and the expression

(2) of the isotropic hardening law of Johnson–Cook’s

model is limited to the two first parentheses. No kinematic

hardening is taken into account.

ry ¼ r0 þ Kpnð Þ 1þMln
_evp
eq

_e0

 ! !
1� T � T0

Tm � T0

� �m� �
(2)

p ¼
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
�_evp : �_evp

r
dt (3)

As presented in Introduction section, the classical pro-

cedure for characterisation of viscoplastic models requires

to perform several statically determined tests, for instance

uni-axial tensile tests, each of them at constant strain-rate.

Such a procedure was previously carried out to identify the

material parameters of JC’s model for Titanium alloy

Ti6Al4V. Smooth cylindrical specimens (Figure 1) were

Figure 1: Classical procedure for viscoplastic behaviour characterisation: smooth cylindrical specimen geometry (dimensions in mm)
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subjected to uni-axial tensile tests. They were performed on

a hydraulic jack, using a specific experimental device [51,

52]. Loading conditions were quasi-static (displacement

rate of 2 mm min)1, _ep ¼ 4:5 10�3 s�1) and dynamic (dis-

placement rates up to 6 m s)1).

The force time history was measured by a piezoelectric

load cell (Kistler 9071A; Kistler Instrumente AG, Win-

terthur, Switzerland). The time history of the relative

displacement of the grips was measured by a laser trans-

ducer (Keyence LC2450; Keyence France SAS, Courbevoie,

France) under quasi-static loading conditions and by an

optical extensometer (Zimmer 200XH, Romulus, MI, USA)

under dynamic loading conditions. Five tests were per-

formed for each experimental configuration, with a quite

low standard deviation. For example, the difference

between the average ultimate stress and its minimum (or

maximum) was <3%.

The exploitation of data is presented in detail in

Appendix A. The values of JC’s material parameters for the

Ti6Al4V identified using this classical procedure are sum-

marised in Table 1. The model built with these identified

values matched well the mechanical behaviour of the

material up to strain-rates about 500 s)1 and plastic strain

about 5% (Figure 2). Indeed, the average gap between the

model and the experiment was <2% and gaps exceed 5%

for few data only. Nevertheless, it is likely that gaps would

have been more important for higher levels of hardening.

Obviously, the relevance of the results of identification

would have been improved with the ability to exploit tests

at higher strain ranges.

Although effective, this classical procedure of charac-

terisation requires to perform several tests that have to be

strongly normalised to ensure homogeneous strains and

strain-rates. Carrying out these experiments is often chal-

lenging and costly. Moreover, as highlighted in Appen-

dix A, the identification of viscoplastic parameters requires

the user to make arbitrary choices, like the choice of a

particular range for the strain rate threshold. Dealing with

heterogeneous mechanical fields is an interesting alterna-

tive to overcome all these drawbacks. First, experiments are

less constrained as no hypothesis of homogeneity, in

particular for strain-rate fields, is required. In addition, the

Table 1: Identified Johnson–Cook’s parameters of Ti6Al4V – classic
procedure

Material parameter Identified value

Young modulus, E 114 GPa

Poisson coefficient, m 0.342; Boyer et al. [60]

Initial yield stress, r0 973 MPa

Isotropic hardening modulus, K 557.3 MPa

Isotropic hardening exponent, n 0.5632

Equivalent strain-rate threshold, _e0 1.29 s)1

Viscoplastic parameter, M 0.0329
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Figure 2: Johnson–Cook’s (JC) model of behaviour of Ti6Al4V characterised with the classical procedure – (A) quasi-static loading con-
ditions; (B) dynamic loading conditions (markers stand for experimental data, lines for the JC model)
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measurement of heterogeneous mechanical fields allows to

extract an enriched information from a smaller number of

tests. In particular, the characterisation of the strain-rate

sensitivity (in the strain-rate range characteristic of the

heterogeneous strain-rate fields which are generated)

becomes possible using only one tensile test under high-

speed loading conditions. In this paper, the VFM is carried

out for the characterisation of the whole viscoplastic

behaviour of Ti6Al4V, using measurements of heteroge-

neous strain fields by DIC.

The Virtual Fields Method
The PVW (Equation 4) expresses the global equilibrium of a

solid of volume V [53]. The several integrals stand for the

virtual work of acceleration, volume external forces (body

forces), surface external forces and internal forces, respec-

tively. The PVW is verified for any kinematically admissible

virtual displacement field~u�, that is,~u� must be continuous

and differentiable across the whole volume V.Z
V

q~c:~u�dV ¼
Z

V

~f :~u�dV

þ
Z

Sf

~T :~u�dS�
Z

V

�r : �e�dV
(4)

where q is the material density, ~c the acceleration field, ~f

the body forces vector acting on V, ~T the stress vector

acting on Sf. �r is the Cauchy stress tensor; �e� is the virtual

strain tensor derived from the kinematically admissible

virtual displacement, ~u�, such that e�ij ¼ 1
2

@u�
i

@xj
þ @u�

j

@xi

h i
.

For the small masses of the tensile specimens used

(about a few grams), body forces (i.e. here only weight)

can be neglected and the external virtual work, w�ext, only

takes surface forces applied on Sf into account. The

acceleration field is commonly assumed to remain equal

to zero under quasi-static loading conditions, but not

under dynamic conditions. Actually, several kinds of dy-

namic loading conditions can be distinguished. The first

category takes inertia effects into account [40–42–62]; the

second concerns tests which are performed at high speeds

of loading to characterise the strain-rate sensitivity of a

material, generally without inertia effects, as in the pres-

ent case. Indeed, FE computations of the present tests

proved that the virtual work of accelerations stay negli-

gible compared to internal and external virtual works

(ratio of about 103) for these small specimen masses. As a

consequence, the expression (5) of the PVW is greatly

simplified.

Z
Sf

~T :~u�dS|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
w�ext

¼
Z

V

�r : �e�dV|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�w�

int

(5)

In the following, w�int will improperly refer to
R

V �r : �e�dV,

so that the PVW can be simply expressed by w�ext ¼ w�int.

The VFM [25] allows the characterisation of material

models of behaviour thanks to the resolution of the PVW

(Equation 5). Material parameters are introduced into

Equation (5) through the expression of the stress tensor, �r.

Indeed, stresses are linked to measured strains by constit-

utive equations. Knowing the specimen’s geometry, the

applied loads and determining an appropriate virtual dis-

placement field, the only unknowns of Equation (5) are

material parameters to be identified. The PVW (4) theo-

retically enables the VFM to deal with all types of constit-

utive equations, linear or not, and all types of loadings,

provided strain fields are measurable.

When dealing with nonlinear constitutive equations

(plasticity, viscoplasticity, damage …), there is generally no

closed-form solution linking stress and strain tensors and it

is not possible to express directly the material constants

using relation (5). The identification with the VFM there-

fore relies on the minimisation of a cost-function, u, that

expresses the discrepancy between w�int and w�ext (i.e. gap to

equilibrium), as a function of the vector of unknown

material parameters, ~X. For example, u can be defined in a

least-square sense by Equation (6).

u ~X
� 	

¼
w�int

~X
� 	

� w�ext

w�ext

0
@

1
A

2

(6)

The actual stress fields, �r, must be known to express the

internal virtual work, w�int ¼
R

V �r ~X
� 	

: �e�dV. Mechanical

quantities, including stress fields, are computed from full-

field strain measurements by return-mapping algorithms,

according to the constitutive equations of JC’s viscoplastic

model. In practice, time history of strain fields is measured

on a finite number of time steps tk, spread over the time

period [t0;tf]. An implicit Euler scheme is used to integrate

the constitutive relations and all mechanical quantities are

computed at instant tk+1 from the total strain tensor mea-

sured at tk+1, and variables previously computed at instant

tk. All plastic variables being initialised to 0 at t0, it is

advisable to perform the first measurement of strain field in

an elastic state. Moreover, for the majority of available

experimental techniques (e.g. DIC), the strain fields are

actually analysed over the solid surfaces and strains

through the thickness are not always available. In this

paper, algorithms are consequently implemented assuming

a plane stress condition. More details concerning the

implementation of return-mapping algorithms can be

found in the Appendix B. The numerical implementation

was validated by comparisons with FE Analyses, using

several kinds of specimens and loading conditions (explicit

dynamic solver Europlexus) [44].

Strains are actually measured at a discrete set of points i,

uniformly distributed according to a user-defined square

mesh (step size initially equal to d). Each point is located at

the center of a subset of pixels (facets or Zone of Interest,

ZOI), whose size is also defined by the user (surface gener-

ally greater than d2). For the computation of the internal

virtual work, w�int, the volume of the Region of Interest

(ROI), VROI, is divided in several sub-domains of volume Vi,

external surface Si and thickness ei around each point of

measurement i. The plane stress hypothesis allows first to

consider that mechanical fields are homogeneous through

the thickness of each sub-domain Vi. It is also assumed that

26 � 2012 Wiley Publishing Ltd j Strain (2013) 49, 22–45
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they are uniform over each surface Si. Consequently,

mechanical fields are computed by the return-mapping

algorithm at each time step and in each sub-domain Vi

from strains measured at point i. The internal virtual work

is therefore computed using a discrete approximation of

the integral by Equation (7).

w�int
~X; tk

� 	
�
X

i

�ri ~X; tk

� 	
: �e�iei tkð ÞSi tkð Þ (7)

where points i are the points of strain measurement (cen-

ters of ZOI).

A great advantage of the VFM is that it does not require

to model precisely boundary conditions and in particular

the exact repartition of loading on Sf. Indeed, as the

expression (5) of the PVW is valid for any kinematically

admissible virtual field, one can choose a virtual field

colinear to the load resultant. The external virtual work is

therefore expressed directly from the load resultant, F,

which is measured during experiments. In the case of

uniaxial tensile tests (along y-axis here), one can chose the

simple one-dimensional virtual displacement field defined

by relation (8). The expression (9) of w�ext is therefore

greatly simplified, since u�x ¼ 0 at each time step.

u�xðtkÞ ¼ 0

u�yðtkÞ ¼
0 if yðtkÞ � yminðtkÞ
yðtkÞ � yminðtkÞ if yðtkÞ 2 yminðtkÞ; ymaxðtkÞ½ �
ymaxðtkÞ � yminðtkÞ if yðtkÞ � ymaxðtkÞ

8><
>: :8tk











(8)

where ymin(tk) and ymax(tk) are respectively the minimum and

maximum ordinate of the ROI (i.e. zone of measurement of strain

fields) at time step tk.

w�ext tkð Þ ¼
R

Sf

~T tkð Þ:~u�dS ¼ ymax tkð Þ � ymin tkð Þð Þ
Z

Sf

Ty tkð ÞdS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
F tkð Þ

¼ ymax tkð Þ � ymin tkð Þð ÞF tkð Þ
(9)

where Sf is characterised by y ¼ L. L can be higher than

ymax if the initial ROI (i.e. camera image) does not cover the

whole surface of the specimen (Figure 3). Moreover, if the

camera is fixed, some points of measurement, initially

present in the ROI, may move off the camera field due to

the deformation process, so that a reduced ROI, limited by

ordinates ymin and ymax and of volume VROI, has to be

considered (Figure 3). In these cases, strains are unknown

on the volume domain V ) VROI (defined by y =2 [ymin;ymax]).

Yet, the expression of the internal virtual work is rewritten

taking into account each subdomain of V, such that:

w�intð~X; tkÞ ¼
Z

VROI

�rð~X; tkÞ : �e�dV þ
Z

V�VROI

�rð~X; tkÞ : �e�dV (10)

where VROI is the volume associated to the reduced ROI (i.e,

y 2 [ymin;ymax]).

As the expression (8) of the virtual field leads to a null

virtual strain tensor on V ) VROI,
R

V�VROI
�rð~X; tkÞ : �e�dV ¼ 0

and the internal virtual work can be computed from strain

fields measured on the reduced ROI only:

w�intð~X; tkÞ ¼
Z

VROI

�rð~XÞ : �e�dV (11)

Moreover, with the virtual field defined by Equation (8),

the only component of the virtual strain tensor which is

different from zero within the reduced ROI is e�yy ¼ 1,

whatever the values of the actual strain components. Fi-

nally, the expression of w�int is given at each time step, tk, by

relation (12).

w�intð~X; tkÞ ¼
X

i

ri
yyð~X; tkÞeiðtkÞSiðtkÞ (12)

with i the points of measurement within the ROI.

In practice, the expression (13) of the cost-function to be

minimised takes into account several time steps of strain

measurement, tk.

uð~XÞ¼
X

k

P
i r

i
yyð~X; tkÞeiðtkÞSiðtkÞ�FðtkÞ½ymaxðtkÞ�yminðtkÞ�

FðtkÞ½ymaxðtkÞ�yminðtkÞ�

 !2

(13)

The identification of unknown parameters ~X with the

VFM uses an iterative procedure of minimisation of the

cost-function u (Equation 13). In this paper, the algorithm

of Simplex (Nelder-Mead) [54] is used. Its main advantage is

that it does not require gradient computation. Neverthe-

less, the Simplex algorithm can converge to local minima

of the non-convex cost-function. A genetic algorithm

CMAES [55, 56] is therefore used at the same time to

maximise the possibility of finding the global minimum of

u (Equation 13).

The iterative procedure of the VFM for the characterisa-

tion of nonlinear constitutive equations is summed up in

Figure 4. It is applied in the next section to characterise the

viscoplastic behaviour of alloy Ti6Al4V.

Experimental Identification of the JC Model’s
Parameters Using the VFM
The VFM is used to identify the parameters of the JC’s

viscoplastic model from experimental full-field strain

measurements using DIC. The method is applied to the

case of a Titanium alloy (Ti6Al4V).
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Figure 3: Camera image and reduced region of interest
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Flat notched specimens (Figure 5) are taken from the

same block of bulk material that has been used to manu-

facture the cylindrical specimens for the classical procedure

of identification (Johnson–Cook’s Viscoplastic Behaviour

Model section and Appendix A). The notches’ radius varies

from 0.4 to 1.2 mm (Table 2). Specimens are subjected to

tensile tests (~y axis). Note that with the VFM (statically

undetermined approach), there is no need to perform tests

at constant strain-rate anymore, contrary to classical

identification procedures (cf. Johnson–Cook’s Viscoplastic

Behaviour Model section and Appendix A). The initial

thickness is assumed to be homogeneous all over the ROI

and equal to 1.21 mm. The material is assumed to be

homogeneous and elastically and plastically isotropic.

First, a tensile test is performed under quasi-static load-

ing conditions to identify parameters governing the plastic

part (i.e. strain-rate independent) of the model. Notches

naturally generate heterogeneous strain-rate fields on the

specimen, with a potentially large range of values. This

provides therefore a rich information about the strain-rate

sensitivity. In a second step, the ability of the VFM to deal

with such heterogeneous mechanical fields is employed to

attempt the characterisation of the strain-rate sensitivity of

Ti6Al4V using only one tensile test under high-speed

loading conditions.

Characterisation of the plastic part of the model
The first tensile test is performed under quasi-static loading

conditions with an imposed velocity of 5 mm min)1.

Conventionally, this low velocity is assumed to ensure that

the equivalent viscoplastic strain-rate remains lower than

the threshold, _e0, so that no viscous overstress appears in

the material, according to JC’s model. It was checked in the

present case, even in the vicinity of the notches. In this

case, the JC’s isotropic hardening law is given by Equa-

tion (14) and is entirely characterised by the identification

of the three parameters r0, K and n.

ry ¼ r0 þ Kpn (14)

Displacement/strain fields are measured using digital

image stereo-correlation. This technique allows a three-

dimensional representation of the surface of measurement

from images of two cameras. Wu et al. [57] showed that the

use of stereo-correlation on the front and rear faces of a

thin tensile specimen simultaneously enables to recon-

struct the thickness variations. In this work, stereo-corre-

lation is used on one face of the specimens only. A plane

stress state is assumed and we consider that the behaviour

is identical on the opposite face. One should note that out-

of-plane rigid body motions cannot be measured with one

stereo-correlation system only. The assumptions give

access to the evolution of the ROI’s thickness in addition to

in-plane strains.

Measurements
Displacement/strain fields    Resultant of loading

wint
*(Xi) wext

*

X0

Xi+1

Return-mapping algorithm
Computation of

mechanical fields

Expression of the
cost-function

Optimization
Xi global minimum?

Initial parameters,

No Yes
Xid = Xi

Figure 4: Iterative procedure of the virtual fields method for the characterisation of nonlinear constitutive laws

4.5 B

Figure 5: Notched specimen for tensile tests (all dimensions in mm, th: 1.21 mm)

Table 2: Notches’ geometry of plate specimens

Test name Radius of notches, R (mm) Width of notches, B (mm)

R4 0.4 1.62

R8 0.8 2.08

R12 1.2 2.54
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The Region of Interest (ROI) is about 12 mm high and is

centered on the plane of notches. This surface is painted in

white with sprays of black paint drawing a random pattern.

The ROI is divided in several subpixel zones (called facets or

ZOI) characterised by their own pattern and a unique sig-

nature in grey levels. The software Aramis (Gom; GOM

GmbH, Braunschweig, Germany) is used to determine the

evolution of each ZOI, thanks to the recognition of its

particular pattern and the comparison (i.e. correlation)

with the initial undeformed state. It gives access to the

deformation gradient, �F, used to compute the strain tensor,

at the center of each ZOI, according to relation (15).

eij ¼
1

2
ðDij þDjiÞ (15)

with Dij ¼ Fij ) dij, where dij is the Kronecker’s symbol.

The ZOI size is a decisive factor in the accuracy of

strain measurements by DIC [58, 59]. Indeed, using a

small size of facets decreases edge effects thanks to a

more precise subdivision of the ROI; however, this size

must stay high enough to ensure that each facet can be

characterised by a unique random pattern. On the con-

trary, using large facets decreases noise of measurements

in low strain-range areas but does not allow to describe

precisely high gradients of strain, as the measured strain

is averaged over the facet. In the present case, the best

compromise is obtained for a facet size of 15 · 15 pixels

(150 · 150 lm2) with a step size, d, of 9 pixels (90 lm) in

the two in-plane directions. The selection is based on

strain measurements performed on a normalised

unnothched specimen. First, it appears that the size of

facets has no significant influence on the measurement

of axial strain, eyy (Figure 6B), and that only a size of

10 · 10 (d ¼ 7 pixels) leads to different values of exx

(Figure 6A). In addition, this size of facets leads to high

levels of noise when measuring exy, whereas a size of

40 · 40 (d ¼ 28 pixels) leads to a too important

smoothing of measurements of exy (Figure 6C). Sizes of

20 · 20 pixels (d ¼ 14 pixels) and 15 · 15 (d ¼ 9 pixels)

give rise to similar measurements of all strain compo-

nents. Finally, the smaller size is selected because it leads

to a better spatial discretisation of the ROI. Note that in

Figure 6 data are extrapolated at the center of the un-

notched specimen to ensure that strains are compared at

the same location. In addition, analyses of rigid body

motions are used to roughly evaluate uncertainties linked

to facet size. Theoretically, a rigid body evolves without

deformation and measured ‘strains’ can be considered as

noise. The mean value of each measured ‘strain’ com-

ponent is closed to 0. The standard deviation is about

10)4 with a ZOI of 15 · 15 pixels but reaches 10)3 for a

ZOI size of 10 · 10 pixels. Note that these values are not

raw data but those given by Aramis software that may

perform a smoothing (this point was not investigated

here). They may therefore be lower than conventional

standard deviations encountered using raw data of DIC.

Images of the deformed surface are recorded every 0.1 s

until the failure of the specimen (165 time steps). Strain

fields are measured over 8002 points. The force time history

is measured with a piezoelectric load cell (Kistler) simulta-

neously with image recordings. Two tests are performed for

each notch radius (Table 2). The scattering of force mea-

surement is about 3, 4 and 6% for R12, R8 and R4,

respectively.

As mentioned before, stereo-correlation can give access

to the thickness at the points of measurements, ei(tk), at

each instant tk of image recording, assuming that there is

no out-of-plane rigid body displacement. However, the

VFM is developed so that it requires a minimum of

assumptions and can be performed using simple DIC, that

is, with only one camera (no stereo-correlation). So, the

through-thickness strain, ezz, is also computed among other

mechanical quantities by the return-mapping algorithm, in

accordance with the plane stress hypothesis. For an elastic

behaviour, one has ee
zz ¼ � m

1�m ee
xx þ ee

yy

� 	
and assuming an

isochoric plastic deformation, evp
zz ¼ � evp

xx þ evp
yy

� �
. Finally,

the hypothesis of strain partition gives the expression (16)

for ezz. This allows to compute the thicknesses at each point
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Figure 6: Influence of size of facets on measured strains – (A) exx; (B)
eyy; (C) exy
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of measurement, following ei tkð Þ � e0 1 þ ei
zz tkð Þ

� �
(e0 is the

initial thickness equal to 1.21 mm).

ezz ¼ �
m

1� m
ðee

xx þ ee
yyÞ � ðevp

xx þ evp
yyÞ (16)

Values of the thickness, e, computed this way or directly

extracted from full-field measurements are very close to

each other, as well as corresponding values of the through

thickness strain, ezz. For example, the average gap between

values of ezz computed from ‘measured’ thicknesses or by

the return-mapping algorithm following plane stress

hypothesis (16) is of 3.8 10)4. This gap corresponds to a

relative deviation of 2.8% with regard to the average value

of ezz over the ROI ()1.37 10)2) at 14 s of loading (Figure 7).

These results validate the experimental protocol for strain

measurement, including plane stress hypothesis. Note that

the thickness is decreased of about 17% in the vicinity of

notches of R12 specimen (through thickness necking), at

14 s of loading (Figure 7A).

Force and strains time history (Figures 8 and 9, respec-

tively) measured during quasi-static loading of a specimen

R12 are used to identify plastic parameters (r0, K and n) of

JC’s model (Equation 14) with the VFM. Figure 9(A) and (B)

give respectively an example of in-plane strains measured at

14 s of loading (imposed displacement along axis~y of about

1.16 mm) and their time history for a point located at the

vicinity of the notch (area of strain localisation). The one-

dimensional virtual displacement field (8) is used to express

the cost-function, u (13), to be minimised. Surfaces Si are

computed thanks to initial coordinates and measured dis-

placements of points i. The expression (13) of u uses the

strain maps number 1–140 (0.1–14 s) which correspond to a

sufficient development of strain hardening in the material to

enable its characterisation. At this stage of loading, the

cumulated plastic strain is higher than 0.2 in the vicinity of

the notches and is about 0.07 at the center of the ROI. The

slight decrease of F (Figure 8) observed from step number 140

can be the sign of a significant development of necking and/

or damage in the material, which would violate the plane-

stress hypothesis or make the use of JC’s model not appro-

priate anymore. It explains why steps after number 140 are

not taken into account to express u. In addition, there may

be a significant loss of data during loading (Figure 10),

mainly because of edge points that move off the camera’s

field. Consequently, the ROI is reduced to about 4 mm

height, for which loss of data is negligible.

The initial values of parameters used in the optimisation

process (Figure 4) are respectively equal to 500 MPa for r0

and K and 1 for n. The cost-function u ~X
� 	

(Equation 13) is

minimised by the Simplex and CMAES algorithms. Both

algorithms converge properly, with final values of u ~X
� 	

very close to each other (Table 3). Moreover, both algo-

rithms find the same value for the initial yield stress and

hardening moduli and exponents differ only by 0.7%.

Obviously, Simplex and CMAES algorithms lead to similar

identified behaviours. From now on, the values of plastic

parameters identified with the VFM are considered to be

those found by Simplex algorithm, as the corresponding

value of u ~X
� 	

is slightly lower than for the CMAES algo-

rithm.

It is worth noting that the identified value of 899 MPa

for the initial yield stress, r0, is consistent with values

found in the literature for Ti6Al4V [46, 60]. Nevertheless, it

is lower than the value identified with the classical proce-

dure (973 MPa, Table 1). This gap can be due to some

heterogeneities in the cold-forged block of Ti6Al4V used

both to manufacture the specimens for the classical pro-

cedure (Johnson–Cook’s Viscoplastic Behaviour Model

section and Appendix A) and for the VFM. A means to

verify the relevance of the identified plastic parameters, ~Xid

(Table 3 – Simplex) is to compare the computed and mea-

sured forces. The force can be computed at all the levels of

ordinate (with ~y the tensile axis), except at the upper

boundary of the initial ROI (12 mm), because of the

important loss of data due to points located initially at the

(A)

(B)

Figure 7: Thicknesses and corresponding through-thickness strains
measured or computed at 14 s of quasi-static loading – (A) thick-
nesses; (B) ezz

Figure 8: Applied load during the quasi-static tensile test
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top of the image and moving off the camera during the

elongation of the notched specimen. To avoid the sub-

jective selection of one or more levels of ordinate among

the large amount of data, the computed force, <Fr>, is

actually defined by the relation (17) as the average force

acting over the ROI. Note that it is consistent with the use

of integrals in the expression of the cost-function (global

expression). In the relation (17), stresses are obviously

calculated with the return-mapping algorithm considering

parameters ~Xid.

< FrðtkÞ >¼
P

i ri
yyð~Xid; tkÞe0ð1þ ei

zzðtkÞÞSiðtkÞ
h i

ymaxðtkÞ � yminðtkÞ
8tk (17)

with i the points of measurement inside the ROI.

Figure 11(A) allows to compare the values of the load

resultant, <Fr>, computed using Equation (17), to the

measured one, F, for specimen R12 (used in the process of

identification), for both 12 and 4 mm-high ROIs. <Fr> is

also computed for specimens R8 and R4 (Figures 11B,C,

respectively). In all cases, the temporal evolutions of the

computed forces with identified plastic parameters are

consistent with the measurements of F. It can be noted

that values of <Fr> computed by Equation (17) are slightly

higher than F in the case of the ROI of 4 mm of specimen

R4. It is mainly due to a more important strain concen-

(A)

(B)

Figure 9: In-plane strains measured during quasi-static tensile loading – (A) spatial distributions at 14 s; (B) time histories – vicinity of the
notch (location pointed by arrows)

Figure 10: Loss of data during quasi-static tensile test

Table 3: Characterisation of plastic part of Johnson–Cook’s model with the virtual fields method

Identified parameters

Algorithm r0 (MPa) K (MPa) n

Final value of u
(Initial value: 1.9726)

Number of

evaluations

Simplex 899 524 0.5935 0.2853344 744

CMAES 899 520 0.5893 0.2853345 2695
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tration at the vicinity of notches, sharper for this speci-

men, that leads to higher average values of stresses on the

ROI of 4 mm, whereas they are of the same magnitude

than for other specimens for the ROI of 12 mm. It explains

why computed values of <Fr> by Equation (17) are higher

than F on the ROI of 4 mm whereas they are very closed to

each other for the ROI of 12 mm.

These results demonstrate that the plastic part, i.e. strain-

rate independent, of JC’s model, can be characterised

experimentally with the VFM. The next step is to apply the

VFM to full-field strain measurements under higher speed

loading conditions to characterise the strain-rate sensitivity

of Titanium alloy Ti6Al4V.

Characterisation of the strain-rate sensitivity of Ti6Al4V
Under the higher velocity of 0.2 m s)1, the strain-rate

dependent part of the JC’s isotropic hardening law (18)

models the development of viscous effects in the material.

The characterisation of the strain-rate sensitivity requires the

identification with the VFM of theviscoplastic parameters, M

and _e0.

ry ¼ ðr0 þ KpnÞ 1þMln
_evp
eq

_e0

 ! !
(18)

It is worth noting that in the vast majority of procedures

of characterisation of JC’s viscoplastic model [46, 49] the

value of the viscoplastic threshold, _e0, is arbitrarily fixed

(generally at 1 s)1) and the strain-rate sensitivity is char-

acterised with the identification of parameter M only. This

approach is relevant because the phenomenological JC’s

model [21] does not aim to model the plastic-viscoplastic

transition but is dedicated to the description of the mate-

rial behaviour under high strain-rates, thus allowing to

relativize the physical sense attributed to the viscoplastic

threshold. Indeed, under high strain-rates, viscous effects

are developed with certainty in the material and strain-rate

sensitivity can actually be described by the only parameter

M. In this study, it was chosen to identify both viscoplastic

(A)

(B)

(C)

Figure 11: Computations of forces with identified values of material parameters – quasi-static test – (A) test R12; (B) test R8; (C) test R4
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parameter, M, and strain-rate threshold, _e0, with the VFM.

As briefly highlighted in Appendix A, it raises the problem

of the uniqueness of the couple of parameters. Neverthe-

less, the aim is to demonstrate that a viscoplastic behaviour

can be entirely characterised by the VFM, without needing

any arbitrary choice by the user. Note that it remains pos-

sible to fix the value of the threshold in the process of the

VFM to identify M only (cf. Relevance of the JC’s model

characterised with the VFM section).

Specimen R4 (Figure 5 and Table 2) is subjected to tensile

loading at the imposed velocity of 0.2 m s)1 using a

hydraulic jack (Figure 12). Displacement/in-plane strain

fields are measured by DIC (camera Photron RS2000), with

a frequency of acquisition of 10 kHz. The ROI height is

about 7 mm (Figure 13). Its thickness is assumed to be

homogeneous before loading and e0 ¼ 1.21 mm. The force

time history is measured by a piezoelectric load cell at the

higher frequency of 1 MHz. In the post-treatment, only

values measured simultaneously with image recording are

taken into account. Again, the size of facets is a decisive

factor. Note that the actual surface covered by a facet is

greater in the present dynamic loading conditions than in

the previous quasi-static conditions, for the same number

of pixels (210 · 210 lm2 compared to 150·150 lm2 for a

facet of 15 · 15 pixels). It is due to a lower resolution of the

camera because of the higher frame rate. Moreover,

unsatisfying high levels of noise are encountered with a

size of facets of 15 · 15 pixels for this dynamic loading.

The size of 20 · 20 pixels (280 · 280 lm2) that gives rise to

the best compromise is therefore selected (d ¼ 12 pixels).

64 maps of strains of 1106 points of measurement are re-

corded until the failure of the specimen (i.e. total imposed

displacement of 1.28 mm). It is worth noting that there is

no loss of data during loading. In fact, the image is initially

higher than the measurement area and no point moves off

the camera’s field during the dynamic test.

Because of the larger dimensions of the ZOI and the

lower density of points of measurements than in quasi-

static conditions (d ¼ 168 lm in dynamic conditions,

compared to 90 lm in quasi-static conditions), the ROI is

roughly approximated by its sub-division into ZOI. This

point is illustrated by Figure 14 that allows to compare the

spatial distribution of points of measurement for the

specimen R4 in quasi-static and in dynamic loading con-

ditions (facets were not drawn to keep a readable figure).

An important consequence is that a part of the surface is

‘missing’ on the lateral edges as the current spatial

parameters lead to a bad estimation of the total surface of

the ROI, S ¼
P

iSi, where Si is the surface associated with

the point of measurement i. Quantitatively, the value of

SDynam, computed at the initial step (i.e. undeformed) of

dynamic loading, is about 34.50 mm2. In comparison, the

value of SQS, computed at the initial step of quasi-static

loading (size of facets of 150 · 150 lm2), for the same

height of ROI, is about 37.95 mm2. This latter is close to

the actual surface of ROI evaluated to about 39 mm2. This

underestimation of SDynam directly affects the computation

of w�int by Equation (12). Obviously, it introduces an

important bias in the expression (13) of the cost-function,

as the problem is stated as if the applied force was virtually

Optic
Extensometer

Zimmer

Sensor of
Displacement

Keyence

Specimen

Load cell
Kistler

Figure 12: Set-up for dynamic tensile test

Figure 13: Region of interest of specimen R4

4 mm

y

Figure 14: Spatial distribution of points of measurement under
quasi-static and dynamic loading conditions – specimen R4
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concentrated in a reduced surface. A solution to limit the

effect of loss of value of ROI’s total surface is to introduce a

surface corrective factor that leads to the modified expres-

sion (19) of the internal virtual work.

w�Corr
int ¼

X
i

ri
yy

~X; tk

� 	
ei tkð ÞSi tkð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

w�
int

~X;tkð Þ

SQS

SDynam
(19)

It can be seen from Figure 15 that measured values of the

load resultant, F, are affected by the natural frequency of

the set-up, as well as strains (Figure 16A with ~y the tensile

axis). Levels of strains can be very different depending on

the location on the specimen. Figure 16 gives another

example of the heterogeneity of strain fields. Thanks to the

presence of notches, strain-rate fields are also strongly

heterogeneous. This allows to characterise the strain-rate

sensitivity of the Ti6Al4V alloy with the VFM from this

single dynamic test. Note that strain-rate of about 300 s)1

can be reached locally, even for the quite low tensile

velocity of 0.2 m s)1 (Figure 17, at the end of dynamic

loading). It is worth noting that the strain-rate is computed

at each point of measurement by the return-mapping

algorithm as the ratio of the equivalent strain’s increment

(equal to 3
2 Dp) by the time step. The use of several levels of

loading to build the cost-function also allows to expand the

range of considered strain-rate and to follow the potential

transition from plastic to viscoplastic behaviour at all

points of measurement.

The cost-function, u, is expressed by Equation (13) con-

sidering the corrected expression (19) of the internal virtual

work. Data from every 1106 points included in the ROI and

all of the 64 time steps are taken into account. Stresses are

computed by the return-mapping algorithm with the val-

ues of plastic parameters, r0, K and n, previously identified

Figure 15: Applied load during the dynamic tensile test

(A)

(B)

Figure 16: In-plane strains measured during dynamic tensile loading – (A) time histories (locations pointed by arrows); (B) spatial distri-
butions at 6 ms
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by the VFM (see Characterisation of the plastic part of the

model section, Table 3). Results of minimisation of u are

listed in Table 4(A). The results are quite close to each other

for both algorithms of optimisation. Identified values of

material parameters, ~Xid, are 0.0470 and 0.1733 s)1 for M

and _e0, respectively.

Again, these values of viscoplastic parameters can be

validated by comparing measured values of the load

resultant, F, to computed ones. In this dynamic case, the

number of points of measurement is lower than in quasi-

static conditions and it is easy to compute the load that is

applied on each row of ordinate y, according to expression

(20), all the more because there is no loss of data.

Fr tk; yð Þ ¼
X

i

ri
yy

~Xid; tk

� 	
ei tkð ÞDxi tkð Þ 8tk (20)

where points i are the points of measurement of ordinate y.

Dxi is the width (in the ~x direction) of the surface Si sur-

rounding point i.

Stresses are computed by the return-mapping algorithm

for identified values of material parameters, ~Xid. Figure 18

Table 4: Identification of viscoplastic parameters with the virtual fields method – (A) results of optimisation; (B) relative gaps between
computed and measured force

(A)

Algorithm

Identified parameters

Final value of u
(Initial value : 0.5968)

Number of

evaluationsM _e0 (s)1)

Simplex 0.0448 0.1524 0.1323 358

CMAES 0.0470 0.1733 0.1316 910

(B) Values of s %

Top boundary (ymax) Notches Intermediate

Average on

all values of y

8.67 14.12 8.13 3.20

(A) (B)

(C) (D)

Figure 18: Computations of forces with identified values of material parameters – dynamic test – (A) upper boundary of the region of
interest (ymax); (B) vicinity of the notch; (C) intermediate ordinate; (D) average for all values of y

Figure 17: Strain-rate field at the end of dynamic loading

� 2012 Wiley Publishing Ltd j Strain (2013) 49, 22–45 35
doi: 10.1111/str.12010

D. Notta-Cuvier et al. : Identification of JC Viscoplastic Model Parameters Using the VFM



shows that computed values of Fr, for several values of y, as

well as the average value of Fr for all ordinates, Fmoy
r , are

close to measured values, F. Table 4(B) shows the computed

average gaps, s, between F and Fr throughout dynamic

loading, following relation (21). In particular, relative gap

between Fmoy
r and F is only about 3.2%. As expected, dis-

crepancies are higher at the ordinate of the notches.

Indeed, this area of strain localisation is logically the most

affected by the problem of spatial resolution which can

lead to a bad evaluation of high gradients of strain.

s ¼mean
k

abs
Fr tk; yð Þ � F tkð Þ

F tkð Þ

� �� �
(21)

Note that the viscoplastic parameters can also be iden-

tified without any surface corrective factor. In this case, the

identified values of the viscoplastic parameters are different

from ~Xid and are now highly dependent on the algorithm

used (Table 5a). Moreover, the final values of the cost-

function are more than twice as high as when using the

corrective factor. It may reveal that the simple use of the

surface corrective factor immediately leads to a more pro-

nounced global minimum of u and to an improvement of

the robustness of the identification. In addition, the rela-

tive gap, s, is higher whatever the ordinate considered to

compute Fr and is now about 5% for Fmoy
r (Table 5b).

These results demonstrate the ability of the VFM to

characterise the viscoplastic part of JC’s model of behav-

iour, using only one tensile test under high-speed loading

conditions. An other interesting property of the VFM is

that it does not require any smoothing of the measured

force time history, even if it presents important oscillations

(as frequently observed in dynamic loading conditions,

Figure 15). One can note that tests of identification (not

described here) using the VFM with smoothed load’s time

histories lead to less satisfying results. In fact, the integrals

in the expression (13) of the cost-function act somewhat as

filters but treating the internal and external virtual works

simultaneously, thus limiting the alteration of data. Last,

the use of a surface corrective factor, when a rough subdi-

vision of the ROI leads to a bad estimation of its total

surface, allows to improve the accuracy of the identifica-

tion. The relevance of the whole JC’s model characterised

by the VFM to describe the behaviour of alloy Ti6Al4V is

discussed in the next section.

Discussion

Relevance of the JC’s model characterised with the VFM
Table 6 summarised the identified values of JC’s parameters

for Ti6Al4V with the VFM and with the classical procedure

of statically determined tests (cf. Johnson–Cook’s Visco-

plastic Behaviour Model section and Appendix A). The aim

is not to discredit one of the two identified sets of material

parameters as processes (specimens, kinds of measured data

…) are too different. Then, as underlined before, specimens

are extracted from a block of Ti6Al4V which may be het-

erogeneous, that can explain some differences between the

two identified behaviours. The two identified values of the

initial yield stress, r0, are quite different. Finding out a

lower value of the initial yield stress when using DIC is

consistent with possible problems of spatial resolution (bad

estimation of high strain gradients) raised by this method

of measurement. Nevertheless it does not explain entirely

this important gap. Note that the value of 899 MPa, iden-

tified with the VFM, is closer to common values encoun-

tered in the literature (e.g. 896 MPa for Meyer and Kleponis

[46]). Last, identified values of hardening parameters are

very close to each other for the two characterised models.

Table 5: Identification of viscoplastic parameters without the surface corrective factor – (A) results of optimisation; (B) relative gaps
between computed and measured force

(A)

Algorithm

Identified parameters

Final value of u
(Initial value: 0.5148)

Number of

evaluationsM _e0 (s)1)

Simplex 0.0832 0.1078 0.2952 2002

CMAES 0.0656 0.0157 0.2789 1997

(B) Values of s (%)

Top boundary (ymax) Notches Intermediate Average on all values of y

11.93 17.85 9.30 5.01

Table 6: Identified values of Johnson–Cook’s parameters for
Ti6Al4V

Virtual

fields

method

Classical procedure

(statically

determined tests)

Initial yield stress, r0 (MPa) 899 973

Isotropic hardening modulus, K (MPa) 524 557.3

Isotropic hardening exponent, n 0.5935 0.5632

Viscoplastic strain-rate

threshold, _e0 (s)1)

0.1733 1.29

Viscoplastic parameter, M 0.0470 0.0329
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As exposed in sections Johnson–Cook’s viscoplastic

behaviour model and Characterisation of the strain-rate

sensitivity of Ti6Al4V, common values of the viscoplastic

threshold, _e0, are about 1 s)1 in the literature [46, 49]. It is

worth reminding that it was the reason why the value of

1.29 s)1 was selected during the exploitation of statically

determined tests (cf. Appendix A) although a lower value of

5.37 10)2 s)1 led to a better coefficient of determination. As

underlined before, this arbitrary choice of the value of 1 s)1

for the viscoplastic threshold is relevant when the aim is to

characterise the material behaviour under high strain-rates,

because viscous effects are developed with certainty in the

material and the strain-rate sensitivity can be described by

the only parameter M (Equation 18). Obviously, the VFM

can be applied following this approach. In this way a value

of 0.0747 is identified for parameter M when _e0 is fixed to

1 s)1 (same procedure as that described in Characterisation

of the strain-rate sensitivity of Ti6Al4V section, using the

surface corrective factor; final value of u, expressed by

Equation (13), of 0.1379 for both Simplex and CMAES).

Thanks to coupled effects of viscoplastic parameters in the

hardening law (18) at high strain-rates, this higher value of

M offsets the higher value of _e0, so that computed values of

ryy, for example, and Fmoy
r (by Equation 20) are very close

to each other for both values of viscoplastic threshold and

associated parameter M (Figure 19).

Again, these observations underline the lack of unique-

ness of the couple of viscoplastic parameters, M and _e0,

which characterise the strain-rate sensitivity of a material

according to the phenomenological model of JC. More-

over, the weight of the viscous part in the hardening law

(18) is generally less important than that of the strain-

hardening, except at very high strain-rates. As a conse-

quence, a variation of the values of viscoplastic parameters

does not affect significantly the global material behaviour

and their identification becomes therefore a challenge dif-

ficult to face. To illustrate this fact, Figure 20 shows the

values of the cost-function computed using Equation (13)

for a large range of values of viscoplastic parameters, using

the 64 maps of strain measurements of the dynamic load-

ing (Characterisation of the strain-rate sensitivity of

Ti6Al4V section) and the identified values of plastic

parameters (Table 3). It clearly shows that the low weight

of viscoplastic parameters causes significant plateaus of the

VFM’s cost-function. The results of identification are

therefore obviously very sensitive to all the biases that can

affect the computation of the cost-function. Note that it

can be verified on Figure 20 that the identified couple of

viscoplastic parameters (Table 4a) really corresponds to a

minimum of the cost-function.

Actually, this discussion raises the limits of the model-

ling of a material strain-rate sensitivity by the phenome-

nological JC’s model. It underlines that the identification

of viscoplastic parameters may be very challenging, what-

ever the method of identification used. Nevertheless, the

VFM enables to find the value of the viscoplastic parameter

M which is the most appropriate to describe the material

dynamic behaviour, whatever the imposed value of visco-

plastic threshold. In addition, it was demonstrated that the

VFM allows the identification of the two viscoplastic

parameters simultaneously, so that no subjective choice of

the user is required. Indeed, simultaneously identified

values of M and _e0 (Table 6) were proven to allow a good(A)

(B)

Figure 19: Influence of fixed value of _e0 on mechanical fields
computed during dynamic loading – (A) ryy (vicinity of the notch);
(B) Fmoy

r
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cost-function
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description of the strain-rate sensitivity of Ti6Al4V. Yet,

there is no possibility to judge the physical sense of a value

of 0.1733 s)1 for _e0. Again, it is worth reminded that be-

cause of the phenomenological character of the JC’s model

the analysis of the physical sense of _e0 is not necessarily

relevant. Anyway, a means to give it a physical sense might

be to perform several statically determined tensile tests at

gradually increased strain-rate to locate approximately the

beginning of the development of viscous effects on the

strain-stress response.

Influence of DIC’s spatial resolution on the

characterisation with the VFM
As already mentioned in the previous sections, the choice

of the spatial parameters of the DIC (in particular step size,

d, and size of ZOI) can affect the accuracy of strain field

measurements as well as the computation of the internal

virtual work (e.g. because of a bad subdivision of the ROI).

It can therefore obviously influence the results of identifi-

cation with the VFM.

To quantify the influence of DIC’s spatial parameters, the

images recorded during the quasi-static tensile test of the

specimen R12 (see Characterisation of the plastic part of

the model section) are processed again using the software

Aramis with different values of size of ZOI and of d to ex-

tract the strain fields. Sizes of ZOI of 20 pixels, with d equals

to 10 and 14 pixels, 30 pixels (d ¼ 10 pixels) and 40 pixels

(d ¼ 10 and 28 pixels), arbitrarily chosen, are tested

(Table 7). Figure 21 shows the axial strain, eyy, computed

for each couple of spatial parameters at 14 s of loading

(imposed displacement of 1.17 mm) on 4 mm-high ROIs.

In the legend, and in all the following, the first number in

pixels stands for the size of the ZOIs, the second stands for

the value of d (step size, i.e. gap between points of mea-

surement). Obviously, high values of d lead to a roughly

divided ROI and to an important underestimation of its

total surface (Table 7). Then, as expected, large sizes of ZOI

lead to an underestimation of strain in the areas of locali-

sation because of an excessive smoothing (averaging) of

high strain gradients.

The VFM is processed using these new strain fields to

characterise the rate-independent part of JC’s model. The

conditions of identification are identical to those previ-

ously used (cf. Characterisation of the plastic part of the

model section). In particular, the ROI is high of 4 mm and

the cost-function, u, is expressed by Equation (13) using

the 140 first maps of strain, without any correction of

surface. Table 8(A) allows to compare the results of iden-

tification for all new sets of DIC’s spatial parameters to the

previous ones obtained for spatial parameters of

15 · 9 pixels. Note that identified parameters are always

identical whatever the algorithm of optimisation used. The

identified values of the initial yield stress, r0, are quite close

to each other for ZOI of 15 and 20 pixels but are strongly

overestimated for facets of 30 and 40 pixels. The reason is

that higher identified values of r0 allow to offset the lower

levels of strains measured by DIC with large sizes of facets.

Hardening parameters K and n are affected similarly. Each

set of identified parameters is used by the return-mapping

algorithm to compute stress fields and the average force

acting on the ROI, <Fr>, by Equation (17) (Figure 22A).

Average relative gaps between <Fr> and the measured force,

F, are computed following the relation (22) and are listed in

Table 8(B).

< s >¼mean
k

abs
< Fr > tkð Þ � F tkð Þ

F tkð Þ

� �� �
(22)

The largest size of ZOIs logically leads to the highest

average gap between measured and computed forces.

Figure 21: Influence of the spatial parameters of digital image
correlation on computed axial strains (14 s of quasi-static loading
of specimen R12)

Table 7: Spatial parameters of digital image correlation – quasi-
static loading of specimen R12

Size of

ZOIs (pixels) d (pixels)

Number

of points

of measurement

Initial surface

of the ROI

(mm2)

15 9 2414 20.7194

20 10 1947 20.5505

20 14 1018 20.5523

30 10 1890 19.933

40 10 1832 19.2818

40 28 251 18.3979

ZOI, zone of interest; ROI, region of interest.
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Obviously, the higher the density of points of measure-

ment, the greater the accuracy of identification for a same

size of ZOIs.

Figure 22(B) shows that the gaps between F and <Fr> are

concentrated in the first stages of loading, before about

9.5 s. It corresponds to strain maps where the plastic flow

has not begun for the vast majority of points. In this case,

the underestimation of strains due to unsuitable DIC

parameters directly leads to underestimated stresses, because

of linear elastic laws and fixed elastic parameters and

therefore to underestimated computed forces. Then, during

the plastic phase, the process of the VFM aims to minimise

the discrepancy between the internal and external virtual

works by adjusting the values of identified plastic param-

eters. As a consequence, the underestimation of strains is

offset by the overestimation of plastic parameters (Table 8

a) and the gaps between F and <Fr> strongly decrease.

Indeed, the average gaps <s> (22) computed for the last

stages only (i.e. k varying from 95 to 140) are <0.75% for all

sets of DIC’s spatial parameters. These results prove again

that the VFM is able to find the values of material param-

eters that are the most consistent with experimental data.

However, if these data are biased (e.g. underestimation of

strain), the results of identification with the VFM will

inevitably be biased too, as with any other method.

Conclusion
This article investigates the identification of the whole set

of parameters of Johnson–Cook’s viscoplastic model using

the VFM. Strain fields are measured by DIC on flat notched

specimens subjected to tensile loadings. The VFM allows

the whole characterisation of JC’s viscoplastic model by

performing only two tests, by taking advantage of its ability

to deal with heterogeneous mechanical fields. First, a test

performed under quasi-static loading conditions allows the

characterisation of the plastic (i.e. rate-independent) part

of the model; then, dynamic loading conditions allow the

characterisation with the VFM of the material strain-rate

sensitivity with only one dynamic test. In comparison,

costly classical procedures of identification need to perform

several tests, at constant strain-rate.

The results demonstrate the ability of the VFM to cha-

racterise strongly nonlinear constitutive laws as the iden-

tification of plastic parameters is precise and robust.

Moreover, the VFM is able to identify the value of the

(A)

(B)

Figure 22: Influence of digital image correlation’s spatial parame-
ters on computed forces for quasi-static loading of specimen R12 –
(A) force time histories; (B) relative gaps between F and <Fr>

Table 8: Influence of spatial parameters on the identification with the virtual fields method – quasi-static loading of specimen R12 – (A)
results of identification; (B) average relative gaps between measured and computed forces

(A)

Spatial parameters

of DIC (pixels)

Identified parameters

Final value

of u
Number of

evaluationsr0 (MPa) K (MPa) n

15 · 9 899 524 0.5935 0.2853 744

20 · 10 894 439 0.5055 0.3189 479

20 · 14 895 480 0.5301 0.3563 708

30 · 10 922 578 0.6274 0.4890 522

40 · 10 956 714 0.7420 0.7302 518

40 · 28 1013 935 0.8843 1.373 564

(B)

Spatial parameters of DIC (pixels) 15 · 9 20 · 10 20 · 14 30 · 10 40 · 10 40 · 28

<s> (%) 5.23 5.54 5.81 6.84 8.34 11.63

DIC, digital image correlation.
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viscoplastic parameter, M, that best describes the strain-rate

sensitivity of a material, for any given value of the visco-

plastic threshold, as frequently done in classical procedures

of characterisation. But above all, the method is able to

identify the couple of viscoplastic parameters that best

describe the strain-rate sensitivity, without needing any

subjective analysis of the user. In addition, the method can

be used to predict the behaviour of a material when low

and high strain-rates develop simultaneously in the speci-

men tested. It is worth noting that the ability of the VFM to

address heterogeneous strain and strain-rate fields makes it

possible to handle high local values of strain-rate, with no

need to perform tests at high displacement rates using

hydraulic jack or split Hopkinson devices.

Further developments of the VFM can be expected in the

near future. The most important improvements concern the

computation of the internal virtual work. Errors of compu-

tation of mechanical fields by the return-mapping algorithm

are proven to be limited. On the contrary, the process of the

VFM (as all methods that handle full-fields measurements) is

logically strongly affected by improper field measurements

by DIC. In particular, the issue of spatial resolution is a key

point. For example, a too low density of points of measure-

ment can affect the value of the ROI’s surface and conse-

quently that of the internal virtual work. Nevertheless,

results are proven to be easily improved by using a corrective

factor for the loss of total surface. Trickier is the issue of

biased values of measured strain fields, because of large size

of facets, for example, that is why, as when processing any

other method of identification, the user must ensure the

highest quality of measurement it is possible to achieve.

Recently, tests of characterisation of damage behaviour

models using the VFM with numerically simulated strain

fields have lead to satisfying results. A short-term perspec-

tive is therefore to identify damage parameters and also

failure criteria using the VFM with experimental strain

fields’ measurements, using DIC techniques. Last, a possi-

ble improvement of the VFM could concern the develop-

ment of advanced virtual fields to limit the sensitivity of

results to noisy data.
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31. Grédiac, M., Toussaint, E. and Pierron, F. (2003) Special virtual

fields for the direct determination of material parameters with

the virtual fields method. 3–Application to the bending rigidi-

ties of anisotropic plates. Int. J. Solids Struct. 40, 2401–2419.
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APPENDIX A: CLASSICAL PROCEDURE OF

CHARACTERISATION OF THE JC’S MODEL

This appendix describes how the mechanical quantities,

measured as described in Johnson–Cook’s Viscoplastic

Behaviour Model, for example, are analysed in the classical

procedure of characterisation of the JC’s viscoplastic model

of behaviour.

First, true stress, r, and strain, e, are analysed from

measured nominal stress, rn, and strain, en, using the fol-

lowing relations:

e ¼ ln 1þ enð Þ and r ¼ rn 1þ enð Þ
with rn ¼ F/S0 obtained from force time histories and ini-

tial cross section of the specimen; en ¼ DL/L0 is the uniaxial

relative elongation. The Young modulus, E, is given by the

slope of the linear part of the true stress versus true strain

diagram. In our case, no strain-rate effect was observed and

a value of 114 GPa was identified for E. Note that the

Poisson coefficient, m, was not measured but a bibliographic

value of 0.342 [60] was considered. Elastic strain, ee, is

computed following Hooke’s law for an isotropic one-

dimensional behaviour, i.e. ee ¼ r
E. Plastic strain, ep, is

obtained assuming strain partition, i.e. ep ¼ e ) ee. Raw

experimental true stress versus plastic strain diagrams are

then plotted at several strain-rates (Figure 23). In our case,

values of _ep were assumed to be the average of the deriva-

tive of total strain time history measured during each

dynamic test. Values of 5, 41, 265 and 469 s)1 were

obtained for displacement rates of 0.1, 1, 6 and 10 m s)1,

respectively. It is interesting to note that the jack could not

maintain a constant strain-rate at the displacement rate of

1 m s)1 (mean value of _ep equals to 41 s)1). This explains

the oscillations of the corresponding stress versus plastic

strain diagram (Figure 23) and gives an illustration of the

difficulty to perform tests at constant strain-rate, particu-

larly under dynamic loading conditions. Finally, one

should note that the maximum plastic strain was about 5%

before necking (i.e. dr/de ¼ 0).

The parameters of JC’s model are identified in two steps.

First, results obtained at low strain-rate (i.e. displacement

rate of 2 mm min)1 here) are analysed to characterise the

rate-independent part of the hardening law, governed by

parameters r0, K and n. Conventionally, the initial yield

stress, r0, is the true stress reached for ep ¼ 0.2%. This value

was closed to 973 MPa. Isotropic hardening parameters, K

and n, are those that lead to the best correlation between

the quasi-static experimental results, until necking appears,

and the model, according to the logarithmic expression

(23) of the rate-independent part of isotropic hardening

law. This way, the linear regression equation y ¼
0.5632x + 6.3231 gave the values of 557.3 MPa and 0.5632

for K and n, respectively, with the coefficient of determi-

nation, R2 equals to 0.9874 (Figure 24). Note that the

coefficient of determination is actually the square of the

correlation coefficient. Obviously, the closer the value of R2

is to one, the better the linear regression fits the data.

lnðr� r0Þ ¼ ln K þ n ln ep (23)

In the second step, results at higher strain-rates are used

to identify the viscoplastic parameters _e0 and M. The iso-

tropic hardening law in viscoplasticity, Equation (2), is

rewritten in the following form:
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r ep; _epð Þ
r0 þ K epð Þn

� 1

� �
¼ M ln _epð Þ � ln _e0ð Þð Þ

In our case, results of dynamic loadings were plotted for

the four levels of estimated strain-rate. It is worth noting

that gaps between data and the model were more impor-

tant than in quasi-static conditions (Figure 25A). In addi-

tion to a more important dispersion of data, these gaps also

came from possible variations of the strain-rate during tests

(whereas it was assumed to stay constant), as already

pointed out for the test at estimated strain-rate of 41 s)1.

An additional challenge to identify the strain rate sensi-

tivity following the JC’s model is the lack of uniqueness of

the couple of viscoplastic parameters (this point is dis-

cussed more deeply in the main parts of this article). It

explains why it is common to set the viscoplastic threshold

to an arbitrarily fixed value (generally 1 s)1) and to identify

parameter M only, when performing classical procedures of

identification [46, 49]. Otherwise, it is possible to look for

both viscoplastic parameters simultaneously but perform-

ing the linear regression to identify parameters M and _e0 is

not easy (Figure 25B). In our case, values of 0.0151 and

1.16 10)2 s)1 were found out for M and _e0, respectively,

with a quite poor coefficient of determination, R2 ¼
0.4431, when the linear regression was built taking into

account all dynamic results. A better value of R2 ¼ 0.7447

was obtained when considering data at _ep equal to 5, 265

and 469 s)1, with an identified value of 5.37 10)2 s)1 for _e0

and 0.0209 for M. Finally, a linear regression using results

obtained for the three highest strain-rates gave values of

1.29 s)1 and 0.0329 for _e0 and M, respectively (R2 ¼
0.4943). An objective criterion would have been to select

parameters’ values associated to the higher coefficient of

determination. Nevertheless, a viscoplastic threshold of

5.37 10)2 s)1 was judged too low compared to commonly

encountered values (close or equal to 1 s)1) and was

rejected. Note that such a low threshold value would have

raised the issue of the modelling of viscous effects during

tests (performed under loading conditions commonly

considered as quasi-static, i.e. rate independent. Finally,

values of 1.29 s)1 and 0.0329 for _e0 and M, respectively,

were selected as the best compromise.

The values of JC’s material parameters for the Ti6Al4V

identified using this usual procedure are summarised in

Table 1 Johnson–Cook’s Viscoplastic Behaviour Model

section.

APPENDIX B: RETURN-MAPPING ALGORITHM

A return-mapping algorithm is implemented to compute

mechanical quantities from measured strain fields, follow-

ing the constitutive equations of the Johnson–Cook’s model

of behaviour (cf. Johnson–Cook’s Viscoplastic Behaviour

Model). Its scheme is an adaptation of work of Simo and

Hughes’s for J2-plasticity [61]. Mechanical quantities at time

step k + 1 are computed from measured total strains at in-

stant tk+1 and computed mechanical quantities at previous

time step k, using an implicit Euler scheme for temporal

integration. An elastic state is assumed at t0 to initialise the

algorithm. With an implicit scheme (unconditionally sta-

ble), the time step, and consequently the experimental

frame rate of strain measurement, are unconstrained.

Moreoever, it was demonstrated that the use of an implicit

scheme improves the stability of computations.

The total strain tensor, �e, is divided into an elastic

(reversible) part, �ee, and a viscoplastic part, �evp, such that

�e ¼ �ee þ �evp. In the current work, no kinematic hardening is

taken into account and the temperature softening is

neglected. It leads to the expressions (24) and (25) for the

JC’s isotropic hardening law and for the yield surface, f,

respectively. Last, a plane stress state is assumed. One can

note that the plane stress hypothesis is required because of

surface measurements of strain fields, although the VFM

can deal with three-dimensional fields.

ry ¼ r0 þ Kpnð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
rp

y

1þM ln
_evp
eq

_e0

 ! !
(24)

f ¼ J2 �rð Þ � ry � 0 (25)

with notations of Johnson–Cook’s Viscoplastic Behaviour

Model. It is reminded that J2 �rð Þ is actually the von Mises

equivalent stress.

In the hardening law (24), the rate-independent part, rp
y ,

is approximated by a piecewise linear function of cumu-

lated plastic strain, p, for each interval [pi;pi+1[, so that:

rp
y pð Þ ¼ rp

y pið Þ þ K0 p� pið Þ 8p 2 pi; piþ1½ ½ (26)

rp
y pið Þ is the actual values of the rate-independent part of
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the yield stress computed at p ¼ pi, that is,

rp
y pið Þ ¼ r0 þ Kpn

i ; 8i. K¢ is the slope of the piecewise linear

law, that is, K0 ¼ rp
y piþ1ð Þ� rp

y pið Þ
piþ1 � pi

¼ K
pn

iþ1
� pn

i

piþ1 � pi
. In practice, p0 ¼ 0

and pi+1 ¼ pi + 10)4 "i. To simplify the notations, variables

a and r0¢ are respectively defined by a ¼ p ) pi and

r00 ¼ rp
y pið Þ.

In the framework of associated (visco-)plasticity, an

expression of the plastic multiplier, c, is:

@�evp

@t
¼ _c

@f

@�r
(27)

It comes from the expression (25) of f that @�evp

@t ¼ _c
ffiffi
3
2

q
�S

J2 �rð Þ,

with �S the deviatoric part of �r. The time derivative operator

is expressed in its usual discretised form, i.e. @x
@t




kþ1
¼ Dx

Dt

(@�x
@t




kþ1
¼ D�x

Dt , respectively) with x (�x) any scalar or tensor,

respectively, and Dx ¼ xk+1 ) xk (Dxij ¼ xij,k+1 ) xij,k) its

increment between instants tk+1 and tk (Dt ¼ tk+1 ) tk). The

discretisation of the expression (27) therefore leads to the

expressions (28) and (29) for the increments of viscoplastic

strain and of cumulated viscoplastic strain, respectively.

D�evp ¼
ffiffiffi
3

2

r
Dc

�Skþ1

J2 �rkþ1ð Þ (28)

Dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
D�evp : D�evp

r
¼ Dc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Skþ1 : �Skþ1

p
J2 �rkþ1ð Þ ¼

ffiffiffi
2

3

r
Dc (29)

The scheme of the algorithm is divided in two steps.

First, a purely elastic evolution is assumed between incre-

ments k and k + 1, corresponding to instants tk and tk + 1 of

strain measurement, respectively. The general expression

of the Hooke’s linear elastic laws for an isotropic material

(30) is used to define the elastic trial step, see Equa-

tion (31).

�r ¼ 2l�ee þ ktr eeð Þ�I (30)

with l and k the Lamé coefficients. tr stands for the trace

operator and �I is the 3 · 3 identity matrix.

�ee;trial ¼ �ee
k þ D�e ¼ �ekþ1 � �evp

k

�evp;trial ¼ �evp
k and ptrial ¼ pk

�rtrial ¼ 2l �ekþ1 � �evp
k

� �
þ k tr �ekþ1ð Þ � tr �evp

k

� �|fflfflffl{zfflfflffl}
¼0

2
64

3
75

_evp;trial
eq ¼

J2 �rtrial
� �

� J2 �rkð Þ
3lDt

if _evp;trial
eq > _e0

f trial ¼ J2 �rtrial
� �

� r00;k þ K0kak

� 	
1þM ln

_etrial
eq

_e0

 ! !

else

f trial ¼ J2 �rtrial
� �

� r00;k þ K0kak

� 	



































(31)

If f trial < 0, mechanical quantities at increment k + 1 are

updated considering an elastic evolution, i.e. in particular

�rkþ1 ¼ �rtrial, �evp
kþ1 ¼ �evp

k and pk+1 ¼ pk. Otherwise, a plastic

correction is needed. In the current implementation, it is

based on a loop computation of the plastic multiplier, c
(27). First, the actual yield surface at increment k + 1 is

expressed using approximation (26):

fkþ1¼J2 �rkþ1ð Þ� r00;kþ1þK0kþ1akþ1

� 	
1þMln

_evp
eq;kþ1

_e0

 ! !
¼0 (32)

with ak+1 ¼ pk+1 ) pi. Since pk+1 is unknown, the value of pk

is used to find out pi, i.e. pk 2 [pi;pi+1[. Consequently,

K0kþ1¼K0k¼
pn

iþ1
�pn

i

piþ1�pi
(both noted K¢), r00;kþ1¼r00;k¼r0þKpn

i

(both noted r¢0) and Dp ¼ Da. Its expression is obtained by

combining the expressions of ftrial (31) and fk+1 (32):

Dp¼akþ1�ak

¼J2 �rkþ1ð Þ�r00 1þAkþ1ð Þ
K0 1þAkþ1ð Þ �

J2 �rtrial
� �

�f trial�r00 1þAkð Þ
K0 1þAkð Þ

¼
J2 �rkþ1ð Þ 1þAkð Þ�J2 �rtrial

� �
1þAkþ1ð Þþf trial 1þAkþ1ð Þ

K0 1þAkð Þ 1þAkþ1ð Þ (33)

with Ak¼M ln
_evp

eq;k

_e0

� �
and Akþ1¼M ln

_evp

eq;kþ1

_e0

� �
.

From the definition (31) of �rtrial it comes immediately that

�rtrial ¼ �rkþ1 þ 2lD�evp and therefore �Strial ¼ �Skþ1 þ 2lD�evp,

since tr D�evpð Þ ¼ 0 (hypothesis of plastic incompressibility).

Then, using the relation (28), �Strial ¼ 1þð 2l
ffiffi
3
2

q
Dc

J2 �rkþ1ð ÞÞ�Skþ1.

Finally, J2 �rtrial
� �

¼ J2 �rkþ1ð Þþ 2l
ffiffi
3
2

q
Dc. Combining this

relation with relations (33) and (29) gives the expression (34)

for the plastic multiplier. One can already note that
�Strial

J2 �rtrialð Þ ¼
�Skþ 1

J2 �rkþ1ð Þ.

Dc ¼ J2 �rkþ1ð Þ Ak � Akþ1ð Þ þ f trial 1þ Akþ1ð Þffiffi
2
3

q
K0 1þ Akð Þ þ 2l

h i
1þ Akþ1ð Þ

(34)

The value of Dc is computed using a loop (cf. Table 9),

initialised with Ak + 1 ¼ Ak and J2 �rkþ1ð Þ ¼ J2 �rtrial
� �

. Ak ¼ 0

if _evp
eq;n � _e0. The final value of Dc is reached after N ¼ 50

iterations (arbitray value, in practice, about 20 iterations

are actually needed to ensure convergence). Mechanical

quantities are then updated using relations (35). Finally,

the expression of the yield surface is updated by computing

new values of K¢ and r¢0. The admissibility of stress states as

well as the respect of the plane-stress state are verified. The

Table 9 gives the complete scheme of the algorithm.

D�evp ¼
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Table 9: Return-mapping algorithm for viscoplastic model of Johnson–Cook
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