Stereocontrolled Synthesis of the $\mathbf{C}^{21}-\mathbf{C}^{38}$ Fragment of the Unnatural Enantiomer of the Antibiotic Nystatin \mathbf{A}_{1}

Thilo Berkenbusch ${ }^{[a]}$ and Reinhard Brückner** ${ }^{[b]}$

Abstract

The $\mathrm{C}^{21}-\mathrm{C}^{38}$ fragment all-trans-41 of the unnatural enantiomer $\mathbf{1}$ of nystatin A_{1} was prepared starting from the N-propionyl oxazolidinone 9 . Aldol adduct ent-8 (ee $>96 \%$) derived in two steps was hydroborated with (thexyl) BH_{2}. Oxidative work-up and treatment with acid furnished δ-lactone 4. It contains the complete stereotetrade of the target molecule. The α, β-unsaturated ester 28 was reached after another four steps. It should be a precursor for the polyene moieties of a variety of polyol,polyene macrolides. Illustrating that, the α, β-unsaturated aldehyde 29 obtained from 28 and DIBAL was extended by 10 C atoms in four steps yielding the $\mathrm{C}^{21}-\mathrm{C}^{38}$ segment 41. The latter set of transformations included the regio- and stereoselective Claisen rearrangement $\mathbf{3 2} \rightarrow \mathbf{3 5}$.

Abstract

Keywords: aldol reaction • Horner-Wadsworth-Emmons reaction • polyol,polyene macrolides • Claisen rearrangement - stereoselective synthesis

Introduction

Nystatin A_{1} and amphotericin B are drugs of choice for the treatment of life-threatening fungal infections. ${ }^{[1]}$ They are typical representatives of more than 200 polyol,polyene macrolides discovered so far. ${ }^{[2]}$ Nystatin A_{1} became the first member of this important class of antibiotics when it was isolated from Streptomyces noursei in 1950. ${ }^{[3]}$ Amphotericin B, a secondary metabolite from Streptomyces nodosus, was discovered shortly later. ${ }^{[4]}$ Its X-ray crystal structure having been reported in 1970, ${ }^{[5]}$ it stayed the only polyol,polyene macrolide throughout two decades for which the complete 3D structure was known (its mirror image, see 5, Scheme 1). The stereostructure of nystatin A_{1} was assigned more recently by controlled degradation and partial syntheses (its mirror image, see 1, Scheme 1). ${ }^{[6,7]}$ Either of these antibiotics is a macrolactone and comprises the following substructures: a hydrophilic polyol moiety ($\mathrm{C}^{1}-\mathrm{C}^{12}$), a pyranoside ring $\left(\mathrm{C}^{13}-\mathrm{C}^{19}\right)$, a lipophilic polyene moiety $\left(\mathrm{C}^{20}-\mathrm{C}^{33}\right)$, and a small polypropionate section $\left(\mathrm{C}^{34}-\mathrm{C}^{38}\right)$. The first and third substructure are different in nystatin A_{1} versus ampho-

[^0]tericin B—albeit only slightly-while substructures 2 and 4 are identical.

Several total ${ }^{[8,9]}$ and partial ${ }^{[10]}$ syntheses of amphotericin B or its aglycon ("amphoteronolide B") have been completed to date. Of the synthetic efforts directed towards nystatin $\mathrm{A}_{1},{ }^{[7 \mathrm{~b}, \mathrm{c}, 11]}$ the most advanced is Solladié's. ${ }^{[11 d]}: \mathrm{He}$ and his co-workers obtained the polyol portion $\left(\mathrm{C}^{1}-\mathrm{C}^{13}\right)$ with the natural configuration. We worked in this field, too, synthesizing a $\mathrm{C}^{14}-\mathrm{C}^{20}$ building block ${ }^{[10 \mathrm{~g}]}$ and a $\mathrm{C}^{33}-\mathrm{C}^{38}$ fragment, ${ }^{[10 \mathrm{cc}]}$ both with the natural configuration. In the meantime we modified our goals-and since then have strived for analogues of the mentioned antibiotics. These, hopefully, will help understanding whether and how much stereochemistry matters for the biological activity of such polyol,polyene antibiotics. Promising analogues ought to be, among others, the unnatural enantiomers $\mathbf{1}$ and $\mathbf{5}$ of nystatin A_{1} and amphotericin B, respectively (Scheme 1). We traced them back retrosynthetically to an α, β-unsaturated ester 3. This is a $\mathrm{C}^{31}-\mathrm{C}^{38}$ building block both for $\mathbf{1}$ and $\mathbf{5}$. It was elaborated to a type-2 $\mathrm{C}^{21}-\mathrm{C}^{38}$ building block (only) for $\mathbf{1}$. Ester $\mathbf{3}$ was prepared from δ-lactone $\mathbf{4}$, which exhibited already all stereocenters.

Results and Discussion

The boron-mediated addition ${ }^{[12]}$ of Evans' norephedrinebased oxazolidinone $6^{[13,14]}$ to (E)-tiglinaldehyde ${ }^{[15]}$ delivered the known ${ }^{[16]}$ syn-aldol product 7 with the C^{34} and C^{35} configurations of natural nystatin A_{1} and amphotericin B (Scheme 2; $88 \% ; d s>98 \%$). The C^{34} and C^{35} configurations

 2

Scheme 1. Unnatural enantiomers $\mathbf{1}$ of nystatin A_{1} and $\mathbf{5}$ of amphotericin B and retrosynthetic analysis of the boxed sections of these species.
of unnatural nystatin A_{1} and amphotericin B were established analogously-in aldol adduct $\mathbf{1 0}$ previously not descri-bed-from the same aldehyde and the valinol-derived oxazolidinone 9 (96%; ds >98:2). ${ }^{[17,18]}$ The chiral auxiliaries were removed by methanolysis according to Seebach et al. ${ }^{[19]}$: Treatment of $\mathbf{7}$ and $\mathbf{1 0}$ with NaOMe and purification by flash chromatography on silica gel $^{[20]}$ provided methyl esters $\mathbf{8}^{[21]}(75 \%)$ and ent- $\mathbf{8}(86 \%)$, respectively, both with $>96 \%$ ee (along with $90-95 \%$ recovered chiral auxiliary). Compound $\mathbf{8}^{[21]}$ had the undesired absolute configuration but was needed for assessing the enantiopurity of the enantiomer ent $\mathbf{- 8}$ with the desired configuration. Hydroxyoxazolidinone $\mathbf{1 0}$ and the identically configured β-hydroxyester ent-8 were protected ${ }^{[22]}$ as tert-butyldimethylsilyl ethers $\mathbf{1 1}$ (94% yield) and $\mathbf{1 2}$ (99\% yield), respectively.
Having completed a set of four differently substituted, albeit identically configured allyl alcohols (ent-8, 10) or allyl silyl ethers (11, 12), we proceeded testing whether hydroboration/oxidation would lead in just one more step to the δ lactone 4 (Scheme 3). The latter exhibits the complete stereotetrade of our target molecules 2 and $\mathbf{3}$. This plan called for anti-Markovnikov and syn-selective hydroborations with respect to the relative orientation of the OH groups in the dihydroxycarboxylate precursor $\mathbf{1 4}$ of lactone 4 . Literature precedent ${ }^{[23]}$ made such stereocontrol likely. $9-$ BBN or $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ turned out to fail as hydroborating agents: Substrates ent-8, 10, 11, and $\mathbf{1 2}$ were essentially inert towards 9BBN while they reacted with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ readily, yet not only

Scheme 2. a) NEt_{3} (1.2 equiv), $n \mathrm{Bu}_{2} \mathrm{BOTf}$ (1.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, $\rightarrow-78^{\circ} \mathrm{C}$; (E)-2-methyl-2-butenal (1.15 equiv), $\rightarrow 0^{\circ} \mathrm{C}$ within $1 \mathrm{~h} ; 0^{\circ} \mathrm{C}$, 1 h ; phosphate buffer (pH 7), $\mathrm{MeOH}, 35 \% \mathrm{H}_{2} \mathrm{O}_{2}, 1 \mathrm{~h} ; 88 \%(d s>98: 2)$. b) NaOMe (1.6 equiv), $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 8 \mathrm{~min} ; 75 \%$. c) Same as a); 96% ($d s>98: 2$). d) $t \mathrm{BuMe} \mathrm{e}_{2} \mathrm{SiOTf}$ (1.5 equiv), 2,6-lutidine (2.2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h} ; 94 \%$. e) Same as b); 86%. f) Same as d); 99%.
with their $\mathrm{C}=\mathrm{C}$ but also with their $\mathrm{C}=\mathrm{O}$ bonds. Besides that, the tert-butyldimethylsilyl ethers $\mathbf{1 1}$ and $\mathbf{1 2}$ lost their silyl groups depending on the detailed conditions of the oxidative work-up: $35 \% \mathrm{H}_{2} \mathrm{O}_{2} / 10 \% \mathrm{NaOH}$ led to partial deprotection, whereas sodium perborate ${ }^{[24]}$ affected neither the silyl groups nor, surprisingly, the B^{-}C bond. Screening other hydroborating agents, the combination of (thexyl) $\mathrm{BH}_{2}{ }^{[25]}$ with the unprotected ester ent-8 proved to work nicely when $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ combined with "Sharpless-solution" ${ }^{[26]}$ [NaOH $(9 \mathrm{M})$ and NaCl] was employed as an oxidizing mixture $(\rightarrow$ 13; Scheme 3). This apparently provided carboxylate 14. It was never isolated but treated with concentrated HCl so that it lactonized spontaneously. After purification by flash chromatography on silica gel ${ }^{[20]}$ we isolated δ-lactone 4 in 60% yield as a single diastereomer. ${ }^{[27]}$ Its stereostructure was established by X-ray crystallography.

From this point onward we continued our synthesis on two routes differing by the protecting group which was about to be installed (Scheme 3). The first route proceeded via the $t \mathrm{BuMe}_{2} \mathrm{Si}$-containing lactol $\mathbf{1 7}$, the second via the MOM-containing lactol 18. These compounds were obtained from lactone 4 in two steps: 1) Protection of the free hydroxy group with tert-butyldimethylsilyl triflate ${ }^{[22]}$ in the presence of 2,6 -lutidine delivered lactone $\mathbf{1 5} .^{[28]}$ The yield did not exceed 72% because we could not prevent that $\mathbf{1 5}$ underwent about 25% elimination of $t \mathrm{BuMe}_{2} \mathrm{SiOH}(\rightarrow \mathrm{ca}$. $25 \% \alpha, \beta$-unsaturated lactone). The ensuing reduction $\mathbf{1 5} \rightarrow$ $17^{[29]}$ with DIBAL in toluene at $-78^{\circ} \mathrm{C}$ was accomplished in 100% yield. 2) Using chloromethyl methyl ether and Hünig's base ${ }^{[30]}$ for protecting lactone $\mathbf{4}$ and DIBAL in toluene at low temperature for the subsequent reduction, the MOM-protected lactol $\mathbf{1 8}$ of the second route resulted in

15

17

16

18

Scheme 3. a) (Thexyl) BH_{2} (2.0 equiv), addition of ent- $\mathbf{8}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, \rightarrow$ RT, $16 \mathrm{~h} ; \rightarrow 0^{\circ} \mathrm{C}, \mathrm{NaOH}$ ($9 \mathrm{~m}, 8.4$ equiv), $35 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (9.2 equiv), NaCl (1.0 equiv), $2 \mathrm{~h}, \rightarrow \mathrm{RT}, 2 \mathrm{~h}$; conc. HCl until $\mathrm{pH} \leq 1 ; 60 \%(d s>98: 2$). b) $t \mathrm{BuMe}_{2} \mathrm{SiOTf}$ (2.6 equiv), 2,6-lutidine (1.5 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 12 \mathrm{~h}$; 72%. c) MOMCl (8.2 equiv), $\mathrm{NEtiPr} \mathrm{P}_{2}$ (8.7 equiv), $n \mathrm{Bu}_{4} \mathrm{NI}(1.1 \mathrm{~mol} \%)$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 1.5 h ; 99%. d) DIBAL (2.2 equiv), toluene, $-78^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; 99%. e) Same as d); 99%.
98% yield over both steps. ${ }^{[31]}$ ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectroscopy revealed the siloxy-containing lactol $\mathbf{1 7}$ to be a $60: 40$ mixture of anomers and the MOM-containing lactol 18 a 79:21 mixture. There was no indication of the presence of the respective open-chain hydroxyaldehyde isomers 19 and 20 (see Table 1).
Nonetheless, the latter species were the ones to be scavenged in the next step by a Wittig olefination effecting a C_{2} elongation by furnishing the α, β-unsaturated ethyl esters 21 and 22, respectively (Table 1). While trans-selectivities were satisfactory ($>92: 8$) from the beginning and regardless which ylide or solvent we employed, our yields stayed low for an extended period of time. Starting with standard conditions, ${ }^{[32]}$ that is, combining substrate $\mathbf{1 7}$ and ylide 25 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, DMF or benzene at room tempera-

Table 1. Wittig reactions between lactols $\mathbf{1 7}$ and $\mathbf{1 8}$ and ylides $\mathbf{2 5}$ or $\mathbf{2}$.

[a] That is, recovered starting material. [b] 74:26 mixture of diastereomers, which was separated by flash chromatography. ${ }^{[20]}$ [c] Very small amounts of the compound in question were detected by TLC but neither isolated nor subjected to an exact yield determination.

Above $105^{\circ} \mathrm{C}$ we isolated preponderantly the dienoic ester $\mathbf{2 4}(53 \%)$ rather than 22 (entry 10). The $\mathrm{C}^{\alpha}=\mathrm{C}^{\beta}$ bond of $\mathbf{2 4}$ was exclusively trans-configured ($J_{\alpha, \beta}=15.6 \mathrm{~Hz}$), while the $\mathrm{C}^{\prime}=\mathrm{C}^{\delta}$ bond belonged to an isomeric mixture (89:11). The best we managed doing in the tightrope act of achieving good conversions of lactol $\mathbf{1 8}$ and avoiding the formation of 24 was maintaining the temperature between 90 and $95^{\circ} \mathrm{C}$ and working up the reaction mixture as soon as TLC indicated the formation of dienoate 24. In that manner the desired Wittig product 23 was obtained as a pure trans-isomer in up to 55% isolated yield or in up to 70% yield based on recovered lactol 18 (entries 7 and 9 , respectively).
α, β-Unsaturated esters 21 (TBDMS-protected) and 22 (MOM-protected) were protected as regioisomeric TBDMS- and MOM-containing esters 28 (84% yield) and $30\left(85 \%\right.$ yield) following standard procedures ${ }^{[22,30]}$ (Scheme 4). Both 28 and $\mathbf{3 0}$ are equivalents of the $\mathrm{C}^{31}-\mathrm{C}^{38}$ fragment 3 of our retrosynthetic analysis of ent-nystatin A_{1} (1) and ent-amphotericin B (5; Scheme 1). Thus, their preparation meant reaching an important subgoal. Due to the better accessibility of $\mathbf{2 8}$ (59% overall yield from lactone 4) compared to $\mathbf{3 0}$ (19% overall yield) we continued our synthesis with the former compound.
For further elaboration of the carbon framework, we adjusted the oxidation state of ester $\mathbf{2 8}$ by DIBAL reduction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ and by oxidizing the resulting crude allylic alcohol with $\mathrm{MnO}_{2}{ }^{[38]}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This provided 89% of the α, β-unsaturated aldehyde 29 (trans:cis $>98: 2$). This compound furnished the divinyl carbinol 31 (93% yield; $d s$ $\approx 50: 50$) by the addition of vinylmagnesium bromide. ${ }^{[39]} \mathrm{A}$ one-pot vinyl ether exchange/Claisen rearrangement proto$\operatorname{col}^{[40]}$ was applied next. It meant refluxing a solution of compound $\mathbf{3 1}$ and a stoichiometric amount of $\mathrm{Hg}(\mathrm{OAc})_{2}$ in tertbutyl vinyl ether (70 equiv). This gave rise to the short-lived vinyl ether 32 ($1: 1$ diastereomeric mixture) and caused the latter to undergo a Claisen rearrangement. Of the two allylic $\mathrm{C}=\mathrm{C}$ bonds, the rearrangement involved primarily the one sterically least hindered. Regiocontrol was 82:18 at least, as evidenced by the following findings $:{ }^{[41]}$ First, purification by flash chromatography on silica gel ${ }^{[20]}$ gave an unanalyzed mixture of the regioisomeric Claisen products (95% yield). Therefrom, we obtained 78% of the pure rearrangement product $\mathbf{3 5}$ by another passage through flash silica gel; the trans,trans-configuration of segment $\mathrm{C}^{30}=\mathrm{C}^{31}-\mathrm{C}^{32}=\mathrm{C}^{34}$ of $\mathbf{3 5}$ follows from the magnitude of its olefinic couplings: $J_{30,31}=$ $J_{32,33}=14.5 \mathrm{~Hz}$. The yield of any regioisomer(s) of $\mathbf{3 5}$ was thereby limited to $95 \%-78 \%=17 \%$. Aldehyde 35 was then C_{2}-homologated in 79% yield ($\rightarrow \alpha, \beta$-unsaturated aldehyde 34) by a Wittig reaction ${ }^{[32]}$ with $\mathrm{PH}_{3} \mathrm{P}=\mathrm{CH}-\mathrm{CO}_{2} \mathrm{Me}$ ($\mathbf{3 5} \rightarrow \mathbf{3 3}$; trans:cis $>98: 2$), by a reduction, and an oxidation.
The final steps of our synthesis of the $\mathrm{C}^{21}-\mathrm{C}^{38}$ fragment of ent-nystatin $\mathrm{A}_{1}(\mathbf{1})$ were realized with Horner-WadsworthEmmons (HWE) reactions (Scheme 5). ${ }^{[42]}$ Initially, we combined our most advanced intermediate, namely the $\mathrm{C}^{25}-\mathrm{C}^{38}$ aldehyde 34, with the lithio derivative obtained from phosphonate 36 (trans:cis $>90: 10$) and LDA. Surprisingly, this afforded a $24: 76$ mixture (52% yield, separable) in which the expected trienoic ester 40 was the minor constituent and

Scheme 4. a) $t \mathrm{BuMe}_{2} \mathrm{SiOTf}$ (2.0 equiv), 2,6-lutidine (3.6 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 15 \mathrm{~h} ; 84 \%$. b) MOMCl (8.3 equiv), $\mathrm{NEtiPr} \mathrm{Pr}_{2}$ (10 equiv), $n \mathrm{Bu}_{4} \mathrm{NI}$ ($14 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 18 h ; 85%. c) (i) DIBAL (3.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $78^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (ii) MnO_{2} (22 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, $4 \mathrm{~h} ; 89 \%$. d) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-$ MgBr (2.3 equiv), THF, $-78^{\circ} \mathrm{C}, 70 \mathrm{~min} ; 93 \%(d s \approx 50: 50)$. e) $\mathrm{Hg}(\mathrm{OAc})_{2}$ (1.1 equiv), tert-butyl vinyl ether (70 equiv), reflux, $9 \mathrm{~h} ; 78 \%$. f) $\mathrm{Ph}_{3} \mathrm{P}=$ $\mathrm{CH}-\mathrm{CO}_{2} \mathrm{Me}$ (3.1 equiv), toluene, RT, 16 h ; 89% (trans:cis $>$ 98:2). g) i) DIBAL (2.6 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$; ii) MnO_{2} (20 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 14 \mathrm{~h} ; 89 \%$.
the cyclohexadiene-containing isomer 39 dominated. ${ }^{[43]}$ This outcome suggests that lithio- $\mathbf{3 6}$ attacked the α, β-unsaturated aldehyde 34 preferentially in a conjugate addition and involved $\mathrm{C}-\gamma$ rather than $\mathrm{C}-\alpha$ of the phosphonate. The surmised intermediate $\mathbf{3 8}$ displays an aldehyde enolate as well as an ester-substituted alkene phosphonate. Proton transfer from the latter upon the former would lead to a more stable intermediate, equipped with an aldehyde moiety and a metalophosphonate. These functionalities ought to lead to product 39 by an intramolecular HWE reaction.

The C-3 elongation of $\mathrm{C}^{25}-\mathrm{C}^{38}$ aldehyde 34 by HWE reagent 36 having failed, we moved the site of our retrosynthetic disconnection "westward" (Scheme 5). This called for a C-5 elongation of $\mathrm{C}^{27}-\mathrm{C}^{38}$ aldehyde $\mathbf{3 5}$ by phosphonate $\mathbf{3 7}$ (accessible from 4-bromocrotonate ${ }^{[44]}$). Treating this reagent (trans, trans:cis ${ }^{\mathrm{H} C \mathrm{CC}=\mathrm{C}}$, trans ${ }^{\mathrm{C}=\mathrm{CCO}_{2} \mathrm{Me}} 90: 10$) first with LDA and then with aldehyde 35, we obtained an inseparable 66:34 mixture of the all-trans-configured unsaturated ester 40 and
its $c i s^{26,27}$-isomer (74% yield). Isomerization in an NMR tube with $8 \mathrm{~mol} \%$ of iodine in CDCl_{3} increased the all-trans-content to 93:7. ${ }^{[45]}$ Without purification we proceeded to aldehyde all-trans-41 in 78% overall yield by sequential oxidation and reduction. This compound stands for the $\mathrm{C}^{21}-$ C^{38} fragment 2 of ent-nystatin A_{1} (1). Because of its carbonyl group, it is properly set up for appending a $\mathrm{C}^{\mathrm{x}}-\mathrm{C}^{20}$ synthon en route to the full structure of ent-nystatin A_{1}.
The connectivities and stereostructures of all-trans- and cis $^{26,27}-\mathbf{4 0}$ as well as all-trans-41 were established by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy (Table 2). The $\mathrm{C}^{22}=\mathrm{C}^{23}$ and $\mathrm{C}^{24}=\mathrm{C}^{25}$ bonds were clearly trans-configured because of the sizes of the $J_{22,23}(15.2-15.3 \mathrm{~Hz})$ and $J_{24,25}(14.7-14.8 \mathrm{~Hz})$. Likewise, in compounds all-trans- $\mathbf{4 0}$ and all-trans- $\mathbf{4 1}$ we found $J_{26,27}=15.1 \mathrm{~Hz}$. This contrasts with $J_{26,27}=10.8 \mathrm{~Hz}$ in the isomer cis $^{26,27}-\mathbf{4 0}$, to which we therefore attributed one cis-configured $\mathrm{C}=\mathrm{C}$ bond.

Conclusion

A stereoselective and straightforward synthesis of compound all-trans- $\mathbf{4 1}$ has been developed. It was obtained from the N-propionyl oxazolidinone 9 in 9.8% yield over 12 steps. A key intermediate was the α, β-unsaturated ester 28. It might be used for the construction of other polyol,polyene macrolides like, for example, ent-amphotericin B (5). Efforts to elaborate all-trans-41 into unnatural nystatin A_{1} (1) are currently underway in our laboratory.

Experimental Section

General methods: Reactions with light-sensitive compounds were performed in brown glassware or in ordinary glassware wrapped in aluminum foil. Products were purified by flash chromatography ${ }^{[20]}$ on Merck silica gel 60 (eluent given in parentheses). Yields refer to analytically pure samples. Isomer ratios were derived from suitable ${ }^{1} \mathrm{H}$ NMR integrals. ${ }^{1} \mathrm{H}\left[\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})\right.$ as internal standard in $\left.\mathrm{CDCl}_{3}\right]$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left[\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})\right.$ as internal standard in $\left.\mathrm{CDCl}_{3}\right]$: Bruker AM 400 or DRX 500; integrals in accord with assignments; coupling constants in Hz . The assignments of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR resonances refer to the IUPAC nomenclature; primed numbers belong to the side chain. Combustion analy-

34

35

c $\square \begin{aligned} & \text { 40: } \mathrm{R}=\mathrm{OMe} \\ & \text { 41: } \mathrm{R}=\mathrm{H}\end{aligned}$

Scheme 5. a) 36 (1.9 equiv), LDA (2.3 equiv), THF, $-60^{\circ} \mathrm{C}, 25 \mathrm{~min}$; addition of 34, $\rightarrow-30^{\circ} \mathrm{C}, 2 \mathrm{~h} ; 52 \%$ ($21 \% \mathbf{3 9}, 20 \%$ of a $93: 7$ mixture of 39 and $\mathbf{4 0}$, and $11 \% \mathbf{4 0}$). b) 37 (1.9 equiv), LDA (1.8 equiv), THF, $-60^{\circ} \mathrm{C}$, $30 \mathrm{~min}, \rightarrow 0^{\circ} \mathrm{C}$ during $15 \mathrm{~min}, \rightarrow-60^{\circ} \mathrm{C}$; addition of $\mathbf{3 5}, \rightarrow-60^{\circ} \mathrm{C}, 1 \mathrm{~h}$; $74 \%\left(\operatorname{trans}{ }^{26,27}:\right.$ cis $\left.^{26,27}=66: 34\right)$. c) i) $\mathrm{I}_{2}(8.0 \mathrm{~mol} \%), \mathrm{CDCl}_{3}, \mathrm{RT}, 9 \mathrm{~min}(\rightarrow$ trans ${ }^{26,27}:$ cis $^{26,27}=93: 7$); ii) DIBAL (2.7 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow-60^{\circ} \mathrm{C}$, 1 h ; iii) MnO_{2} (39 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{RT}, 1 \mathrm{~h} ; 78 \%$.

Table 2. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR data in CDCl_{3} of the conjugated triene segments of esters $\mathbf{4 0}$ and aldehyde $\mathbf{4 1}$; chemical shifts in ppm, coupling constants in Hz.

[a] Sample of a 93:7 mixture of all-trans-40 and cis $^{26,27}-\mathbf{4 0}$. [b] Sample of a 66:34 mixture of all-trans-40 and cis ${ }^{26,27}-\mathbf{4 0}$. [c] Superimposed.
ses: H. Bähr and E. Hickl, Institut für Organische Chemie und Biochemie, Universität Freiburg. MS: Dr. J. Wörth, Institut für Organische Chemie und Biochemie, Universität Freiburg. IR spectra: Perkin-Elmer PARAGON 1000. Optical rotations measured with a Perkin-Elmer polarimeter 341 at 589 nm and calculated according to the Drude equation $\left\{[\alpha]_{\hat{v}}^{\vartheta}=\left(\alpha_{\text {expt1 }} \times 100\right) /(c \times d)\right\}$; rotational values are the average of five measurements of α in given solution of the respective sample. Melting points: Dr. Tottoli apparatus (Fa. Büchi), uncorrected.
(3S,4R,5S,6R)-Tetrahydro-4-hydroxy-3,5,6-trimethyl-2-pyranone (4): At $-10^{\circ} \mathrm{C}$ a solution of 2,3-dimethyl-2-butene $(1.24 \mathrm{~mL}, 879 \mathrm{mg}, 10.5 \mathrm{mmol}$, 2.0 equiv) in THF (6 mL) was added dropwise to a solution of $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ ($10 \mathrm{~m}, 1.05 \mathrm{~mL}, 10.5 \mathrm{mmol}, 2.0$ equiv) in THF (2 mL). The addition was completed after 25 min , and the mixture was warmed to $0^{\circ} \mathrm{C}$. After stirring for 2 h at this temperature, the reaction mixture was treated dropwise with a solution of methyl ester ent-8 ($921 \mathrm{mg}, 5.35 \mathrm{mmol}$) in THF $(7 \mathrm{~mL})$ within 30 min . The mixture was allowed to reach room temperature and stirred for 16 h . The reaction was terminated at $0^{\circ} \mathrm{C}$ by careful addition of an aqueous solution [5 mL of a solution prepared from $\mathrm{NaOH}(30 \mathrm{~g}), \mathrm{NaCl}(5 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(90 \mathrm{~mL})$: ca. 45 and 5.1 mmol , respectively, ca. 8.4 and 1.0 equiv, respectively] and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ in water, $5.0 \mathrm{~mL}, 1.7 \mathrm{~g}, 49 \mathrm{mmol}, 9.2$ equiv). Stirring was continued for 2 h at $0^{\circ} \mathrm{C}$ and then for another 2 h at room temperature The organic phase was separated and the aqueous phase extracted with $t \mathrm{BuOMe}(4 \times 70 \mathrm{~mL})$. The combined organic phases were washed with water (100 mL) and brine $(100 \mathrm{~mL})$. The combined aqueous phases were treated with aqueous conc. HCl (until the pH value was <1) and with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (to destroy the excess of $\mathrm{H}_{2} \mathrm{O}_{2}$; peroxide test!). After a second extraction with $t \mathrm{BuOMe}(5 \times 150 \mathrm{~mL})$ the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo to afford an oily residue which was submitted to flash chromatography (cyclohexane/EtOAc 1:1) to afford δ-lactone $\mathbf{4}(504 \mathrm{mg}, 60 \%)$ as a pure diastereomer and a colorless solid. M.p. $116-117^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+23.1\left(c=0.87\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR [500 MHz ; contains contaminant-peak (s) at $\delta=1.25$]: $\delta=1.06$ (d, J_{5} $\mathrm{Me}, 5=6.9,5-\mathrm{Me})^{*}, 1.32\left(\mathrm{~d}, J_{3-\mathrm{Me}, 3}=7.5,3-\mathrm{Me}\right)^{*}, 1.37\left(\mathrm{~d}, J_{6-\mathrm{Me}, 6}=6.3,6-\right.$ $\mathrm{Me})^{*}, 1.84\left(\mathrm{dqd}, J_{5,6}=10.1, J_{5,5-\mathrm{Me}}=6.8, J_{5,4}=3.4,5-\mathrm{H}\right), 2.06$ (brs, OH), $2.68\left(\mathrm{qd}, J_{3,3 \mathrm{Me}}=7.4, J_{3,4}=4.0,3-\mathrm{H}\right), 3.73\left(\mathrm{dd}, J_{4,3}=J_{4,5}=3.6,4-\mathrm{H}\right), 4.47$ (dq, $J_{6.5}=9.9, J_{6,6-\mathrm{Me}}=6.4,6-\mathrm{H}$); * assigned by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz ; peak of contaminant at $\delta=29.68$): $\delta=12.55$ $\left(5-\mathrm{CH}_{3}\right)^{*}, 15.82\left(3-\mathrm{CH}_{3}\right)^{*}, 19.54\left(6-\mathrm{CH}_{3}\right)^{*}, 37.22(\mathrm{C}-5)^{* *}, 43.44(\mathrm{C}-3)^{* *}$, 73.32 (C-4)***, 76.64 (C-6)***, 174.11 (C-2); *,**,*** distinguishable by a C,H-correlation spectrum; IR $\left(\mathrm{CDCl}_{3}\right): \tilde{v}=3460,2980,2940,2855$, $1730,1600,1460,1385,1360,1240,1205,1100,1045,975,930,920$, $910 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}$ (158.2): C 60.74, H 8.92; found: C 60.51, H 9.06.
(4R,5S)-3-[(2R,3R,4E)-3-Hydroxy-2,4-dimethyl-4-hexenoyl]-4-methyl-5-phenyl-1,3-oxazolidin-2-one (7): Dibutylboron triflate (4.4 mL of a 1.0 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.4 \mathrm{mmol}$, 1.1 equiv) was added dropwise at $0^{\circ} \mathrm{C}$ within 12 min to a solution of oxazolidinone $6(930 \mathrm{mg}, 3.99 \mathrm{mmol})$ and triethylamine ($0.67 \mathrm{~mL}, 49 \mathrm{mg}, 4.8 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}$). After stirring for 1 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$, and a solution of (E)-2-methylbutenal ($425 \mu \mathrm{~L}, 307 \mathrm{mg}, 4.39 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added dropwise during 25 min . The reaction mixture was allowed to reach $0^{\circ} \mathrm{C}$ over 1 h , stirred for 1 h at this temperature and treated with phosphate buffer ($\mathrm{pH} 7,4 \mathrm{~mL}$) and $\mathrm{MeOH}(12 \mathrm{~mL})$. Then a mixture of aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 4 \mathrm{~mL})$ and $\mathrm{MeOH}(8 \mathrm{~mL})$ was added dropwise taking care that the reaction temperature was kept below $4^{\circ} \mathrm{C}$. After stirring for 1 h at $0^{\circ} \mathrm{C}$, water (40 mL) was added, and the mixture was extracted with $t \mathrm{BuOMe}(5 \times 60 \mathrm{~mL})$. The combined organic phases were washed with semisaturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine (40 mL) and dried with MgSO_{4}. The solvent was evaporated in vacuo to afford an oily residue which was submitted to flash chromatography (cyclohexane/EtOAc 3:1) to afford a diastereomeric mixture ($33 \mathrm{mg}, 2.6 \%$) and the title compound $7\left(1.117 \mathrm{~g}, 88 \%\right.$, ref. $\left.{ }^{[16]} 70 \%\right)$ as a pure diastereomer and a colorless solid. M.p. $87^{\circ} \mathrm{C}$, ref. ${ }^{[16]} 86-87^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}=+33.4$ ($c=1.22$ in CDCl_{3}), ref. ${ }^{[16]} 35.5\left(c=1.70\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}):$ $\delta=0.90\left(\mathrm{~d}, J_{4-\mathrm{Me}, 4}=6.6,4-\mathrm{Me}\right)^{*}, 1.17\left(\mathrm{~d}, J_{2^{\prime}-\mathrm{Me}, 2^{2}}=7.0,2^{\prime}-\mathrm{Me}\right), 1.64$ (m, $4^{\prime}-$ $\mathrm{Me}), 1.66\left(\mathrm{dm}, J_{6^{\prime}, 5^{\prime}}=6.8,6^{\prime}-\mathrm{H}_{3}\right), 2.74\left(\mathrm{~d}, J_{\mathrm{OH}, 3^{\prime}}=2.8, \mathrm{OH}\right), 3.99(\mathrm{qd}$, $\left.J_{2^{\prime}, 2^{\prime}-\mathrm{Me}}=7.0, J_{2^{\prime}, 3^{\prime}}=3.8,2^{\prime}-\mathrm{H}\right), 4.37\left(\mathrm{brs}, 3^{\prime}-\mathrm{H}\right), 4.77\left(\mathrm{qd}, J_{4,4-\mathrm{Me}}=J_{4,5}=6.8\right.$, $4-\mathrm{H}), 5.63\left(\mathrm{qdq}, J_{5^{\prime}, 6^{\prime}}=6.7,{ }^{4} J_{5^{\prime}, 3^{\prime}} \approx^{4} J_{5^{\prime} \cdot 4^{\prime}-\mathrm{Me}} \approx 1.3,5^{\prime}-\mathrm{H}\right), 5.67\left(\mathrm{~d}, J_{5.4}=7.3\right.$, $5-\mathrm{H}), 7.30-7.33$ and $7.36-7.45(2 \times \mathrm{m}, 5 \mathrm{Ar}-\mathrm{H})$; * distinguished from $2^{\prime}-\mathrm{Me}$ through the presence of a cross-peak with the $4-\mathrm{H}$ resonance ($\delta=4.77$) in
an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): $\delta=10.43$ ($2^{\prime}-$ $\left.\mathrm{CH}_{3}\right)^{*}, 13.03$ and $13.07\left(4^{\prime}-\mathrm{CH}_{3}, \mathrm{C}-6\right)^{*}, 14.31\left(4-\mathrm{CH}_{3}\right)^{*}, 40.66\left(\mathrm{C}-2^{\prime}\right), 54.92$ (C-4), $75.53\left(\mathrm{C}-3^{\prime}\right)^{* *}, 78.94(\mathrm{C}-5)^{* *}, 120.50\left(\mathrm{C}-5^{\prime}\right)^{* * *}, 125.59$ and 128.73 (each 2 -fold intensity, 2 ortho and 2 meta C), 128.81, 133.12 and 134.29 (ipso C, para C, C-4'), 152.59 (C-1'), 176.85 (C-2); *,** distinguishable by a C,H-correlation spectrum; *** assigned by a C,H-correlation spectrum; IR (film): $\tilde{v}=3605,3530,2985,2925,2865,1780,1690,1455,1365,1345$, 1235, 1195, 1150, 1120, 1090, 1070, 1030, 990, $960 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$ (317.4): C 68.12, H 7.30, N 4.41; found: C 67.99, H 7.34, N 4.24 .
(2S,3S,4E)-3-Hydroxy-2,4-dimethyl-4-hexenoic acid methyl ester (ent-8): $\mathrm{Na}(554 \mathrm{mg}, 24.1 \mathrm{mmol}$, 1.4 equiv) was dissolved in $\mathrm{MeOH}(85 \mathrm{~mL})$, and the mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of the oxazolidinone $\mathbf{1 0}$ $(4.633 \mathrm{~g}, 17.20 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was then added in one portion. The mixture was stirred for 10 min and then poured into phosphate buffer ($\mathrm{pH} 7,110 \mathrm{~mL}$). The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times$ 200 mL), and the combined organic extracts were dried with MgSO_{4} and evaporated in vacuo. The residue was submitted to flash chromatography (cyclohexane/EtOAc 4:1) to afford methyl ester ent-8 ($2.536 \mathrm{~g}, 86 \%$) as a colorless liquid. The chiral auxiliary could be recovered by flushing the column with EtOAc. $[\alpha]_{\mathrm{D}}^{25}=-13.8 \quad\left(c=0.84\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta=1.14\left(\mathrm{~d}, J_{2-\mathrm{Me}, 2}=7.1,2-\mathrm{Me}\right), 1.59(\mathrm{~m}$, presumably interpretable as dq, $\left.{ }^{4} J_{4-\mathrm{Me} .5} \approx{ }^{5} J_{4-\mathrm{Me}, 6} \approx 1.0,4-\mathrm{Me}\right), 1.62\left(\mathrm{dm}, J_{6.5}=6.8,6-\mathrm{H}_{3}\right), 2.30$ (brs, OH), 2.69 (qd, $\left.J_{2,2-\mathrm{Me}}=7.1, J_{2,3}=5.5,2-\mathrm{H}\right), 3.68(\mathrm{~s}, \mathrm{OMe}), 4.26(\mathrm{brd}$, $\left.J_{3,2}=5.4,3-\mathrm{H}\right), 5.55$ (qdq, $\left.J_{5.6}=6.7,{ }^{4} J_{5,3} \approx{ }^{4} J_{5,4 \mathrm{Me}} \approx 1.3,5-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}): \delta=11.28\left(2-\mathrm{CH}_{3}\right)^{*}, 12.24\left(4-\mathrm{CH}_{3}\right)^{*}, 12.98(\mathrm{C}-6)^{*}, 42.97(\mathrm{C}-$ 2), $51.70\left(\mathrm{OCH}_{3}\right), 76.97(\mathrm{C}-3), 121.15(\mathrm{C}-5), 134.66(\mathrm{C}-4), 176.06(\mathrm{C}-1)$; * distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=2935$, 2895, 2860, 1780, 1650, 1500, 1470, 1400, 1255, 1215, 1160, 1090, 1060, $970,915,840,780 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3}$ (172.1): C 62.77, H 9.36; found: C 62.48, H 9.66.
(2R,3R,4E)-3-Hydroxy-2,4-dimethyl-4-hexenoic acid methyl ester (8): Na ($59 \mathrm{mg}, 2.6 \mathrm{mmol}, 1.6$ equiv) was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$, and the mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of the oxazolidinone $7(513 \mathrm{mg}$, 1.62 mmol) in $\mathrm{MeOH}(4.5 \mathrm{~mL})$ was then added in one portion. The mixture was stirred for 8 min and then poured into phosphate buffer (pH 7 , $20 \mathrm{~mL})$. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$, and the combined organic extracts were dried with MgSO_{4} and evaporated in vacuo. The residue was submitted to flash chromatography (cyclohexane/ EtOAc 4:1) to afford methyl ester $\mathbf{8}(208 \mathrm{mg}, 75 \%)$ as a colorless liquid. The chiral auxiliary could be recovered by flushing the column with EtOAc. $[\alpha]_{\mathrm{D}}^{25}=+13.3\left(c=0.47\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR},{ }^{13} \mathrm{C}$ NMR and IR data were identical with those of ent-8.
(4S)-3-[(2S,3S,4E)-3-Hydroxy-2,4-dimethyl-4-hexenoyl]-4-isopropyl-1,3-oxazolidin-2-one (10): Dibutylboron triflate (50 mL of a 1.0 m solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \mathrm{mmol}$, 1.1 equiv) was added dropwise at $-3^{\circ} \mathrm{C}$ within 35 min to a solution of oxazolidinone $9(8.149 \mathrm{~g}, 45.45 \mathrm{mmol})$ and triethylamine ($7.6 \mathrm{~mL}, 5.5 \mathrm{~g}, 55 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$. After stirring for 1 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$, and a solution of (E)-2-methylbutenal ($4.8 \mathrm{~mL}, 4.2 \mathrm{~g}, 50 \mathrm{mmol}, 1.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise during 85 min . The reaction mixture was allowed to reach $0^{\circ} \mathrm{C}$ over 1 h , stirred for 1 h at this temperature and treated with phosphate buffer ($\mathrm{pH} 7,45 \mathrm{~mL}$) and $\mathrm{MeOH}(150 \mathrm{~mL})$. Then a mixture of aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 50 \mathrm{~mL})$ and $\mathrm{MeOH}(60 \mathrm{~mL})$ was added dropwise taking care that the reaction temperature was kept below $4^{\circ} \mathrm{C}$. After stirring for 1 h at $0^{\circ} \mathrm{C}$, water $(300 \mathrm{~mL})$ was added, and the mixture was extracted with $t \mathrm{BuOMe}(4 \times 400 \mathrm{~mL})$. The combined organic phases were washed with semisaturated aqueous $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$ and brine $(250 \mathrm{~mL})$ and dried with MgSO_{4}. The solvent was evaporated in vacuo to afford an oily residue (15 g) which was submitted to flash chromatography (cyclohexane/ EtOAc 4:1) to afford the title compound $\mathbf{1 0}(11.756 \mathrm{~g}, 96 \%)$ as a pure diastereomer and a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=+59.7 \quad\left(c=1.45\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.89\left(\mathrm{~d}, J_{1^{\prime}-\mathrm{Me}(1), 1^{\prime}}=6.9,1^{\prime}-\mathrm{Me}^{1}\right), 0.92\left(\mathrm{~d}, J_{1^{\prime}-\mathrm{Me}(2), 1^{\prime}}=\right.$ 7.1, $1^{\prime}-\mathrm{Me}^{2}$), $1.18\left(\mathrm{~d}, J_{2^{\prime \prime}-\mathrm{Me} \cdot 2^{\prime \prime}}=7.1,2^{\prime \prime}-\mathrm{Me}\right)^{*}, 1.60\left(\mathrm{~m}, 4^{\prime \prime}-\mathrm{Me}\right), 1.64$ (dm, $\left.J_{6^{\prime \prime}, 5^{\prime \prime}}=6.8,6^{\prime \prime}-\mathrm{H}_{3}\right), 2.38\left(\mathrm{qqd}, J_{1^{\prime}, 1^{\prime}-\mathrm{Me}(1)}=J_{1^{\prime}, 1^{\prime}-\mathrm{Me}(2)}=7.0, J_{1^{\prime}, 4}=4.0,1^{\prime}-\mathrm{H}\right), 2.88$ (brs, OH), 3.98 ($\mathrm{qd}, J_{2^{\prime \prime}, 2^{\prime \prime}-\mathrm{Me}}=7.0, J_{2^{\prime \prime}, 3^{\prime \prime}}=3.7,2^{\prime \prime}-\mathrm{H}$), AB signal ($\delta_{\mathrm{A}}=4.22$, $\delta_{\mathrm{B}}=4.28, J_{\mathrm{AB}}=8.9$, in addition split by $\left.J_{\mathrm{A}, 4}=3.0, J_{\mathrm{B}, 4}=8.7,5-\mathrm{H}_{2}\right), 4.32-$ $4.35\left(\mathrm{~m}, 3^{\prime \prime}-\mathrm{H}\right), 4.46\left(\mathrm{ddd}, J_{4,5-\mathrm{H}(\mathrm{B})}=8.3, J_{4,1^{\prime}}=4.0, J_{4,5-\mathrm{H}(\mathrm{A})}=3.0,4-\mathrm{H}\right), 5.62$ (qdq, $J_{5^{\prime \prime}, 6^{\prime \prime}}=6.8,{ }^{4} J_{5^{\prime \prime}, 3^{\prime \prime}} \approx^{4} J_{5^{\prime \prime}, 4^{\prime \prime}-\mathrm{Me}} \approx 1.4,5^{\prime \prime}-\mathrm{H}$); * distinguished from 1^{\prime} $\mathrm{Me}^{1} / 1^{\prime}-\mathrm{Me}^{2}$ through the presence of a cross-peak with the $2^{\prime \prime}-\mathrm{H}$ resonance ($\delta=3.98$) in an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): $\delta=$
$10.97\left(2^{\prime \prime}-\mathrm{CH}_{3}\right)^{*}, 13.02$ and $13.15\left(4^{\prime \prime}-\mathrm{CH}_{3}, \mathrm{C}-6^{\prime \prime}\right)^{*}, 14.68\left(1^{\prime}-\mathrm{CH}_{3}{ }^{1}\right)^{*}, 17.89$ $\left(1^{\prime}-\mathrm{CH}_{3}{ }^{2}\right)^{*}, 28.37\left(\mathrm{C}-1^{\prime}\right), 40.39\left(\mathrm{C}-2^{\prime \prime}\right), 58.37(\mathrm{C}-4)^{* *}, 63.34(\mathrm{C}-5)^{* *}, 75.10$ $\left(\mathrm{C}-3^{\prime \prime}\right)^{* *}, 120.52\left(\mathrm{C}-5^{\prime \prime}\right)^{* * *}, 134.07$ (C-4"), 153.49 and 177.46 (C-1", C-2); *,** distinguishable by a C,H-correlation spectrum; *** assigned by a C,H-correlation spectrum; IR (film): $\tilde{v}=3605,3530,2970,2935,2880$, $1780,1690,1460,1380,1300,1205,1120,990,930,885,760 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$: $269.1627 \pm 5 \mathrm{mDa}\left[\mathrm{M}^{+}\right]$confirmed by HRMS (EI, 70 eV); elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4}$ (269.3): C 62.43, H 8.61, N 5.20; found: C 62.07, H 8.64, N 5.15.
(4S)-3-[(2S,3S,4E)-3-(tert-Butyldimethylsiloxy)-2,4-dimethyl-4-hexenoyl]-4-isopropyl-1,3-oxazolidin-2-one (11): At $0^{\circ} \mathrm{C}$ tert-butyldimethylsilyl triflate ($0.84 \mathrm{~mL}, 0.97 \mathrm{~g}, 3.7 \mathrm{mmol}, 1.5$ equiv) was added to a solution of alcohol 10 ($653 \mathrm{mg}, 2.43 \mathrm{mmol}$) and 2,6-lutidine ($0.62 \mathrm{~mL}, 0.57 \mathrm{~g}, 5.3 \mathrm{mmol}$, 2.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. After stirring at this temperature for 1.5 h , the mixture was hydrolyzed with phosphate buffer ($\mathrm{pH} 7,80 \mathrm{~mL}$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo to afford an oily residue which was submitted to flash chromatography (cyclohexane/EtOAc 8:1) to afford the title compound $\mathbf{1 1}$ ($876 \mathrm{mg}, 94 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=+48.7\left(c=0.62\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=-0.05$ and $0.02\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.87\left(\mathrm{~d}, J_{1^{\prime}-\mathrm{Me}(1), 1^{\prime}}=\right.$ $\left.6.9,1^{\prime}-\mathrm{Me}^{1}\right), 0.88\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 0.90\left(\mathrm{~d}, J_{1^{\prime}-\mathrm{Me}(2), \mathrm{I}^{\prime}}=7.1,1^{\prime}-\mathrm{Me}^{2}\right), 1.20\left(\mathrm{~d}, J_{2^{\prime \prime}}\right.$. Me, $\left.2^{\prime \prime}=7.0,2^{\prime \prime}-\mathrm{Me}\right), 1.54-1.58\left(\mathrm{~m}, 4^{\prime \prime}-\mathrm{Me}, 6^{\prime \prime}-\mathrm{H}_{3}\right), 2.36\left(\mathrm{qqd}, J_{1^{\prime}, 1^{\prime}-\mathrm{Me}(1)}=J_{1^{\prime}, 1^{\prime}-}\right.$ $\left.\mathrm{Me}(2)=7.0, J_{1^{\prime}, 4}=3.9,1^{\prime}-\mathrm{H}\right), 4.08\left(\mathrm{dq}, J_{2^{\prime \prime}, 3^{\prime \prime}}=7.8, J_{2^{\prime \prime}, 2^{\prime \prime}-\mathrm{Me}}=6.8,2^{\prime \prime}-\mathrm{H}\right)$, $4.14-$ $4.20\left(\mathrm{~m}, 5-\mathrm{H}_{2}\right), 4.21\left(\mathrm{brd}, J_{3^{\prime \prime}, 2^{\prime \prime}}=7.8,3^{\prime \prime}-\mathrm{H}\right), 4.31\left(\mathrm{ddd}, J_{4.5-\mathrm{H}(1)}=7.4, J_{4.5}\right.$ $\left.{ }_{\mathrm{H}(2)}=J_{4,1^{\prime}}=3.6,4-\mathrm{H}\right), 5.39\left(\mathrm{q} \mathrm{m}, J_{5^{\prime \prime}, 6^{\prime \prime}} \approx 6,5^{\prime \prime}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}):$ $\delta=-5.28$ and $-4.77\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 11.26$ and $13.00\left(4^{\prime \prime}-\mathrm{CH}_{3}, \mathrm{C}-6^{\prime \prime}\right)^{*}, 13.93$ $\left(2^{\prime \prime}-\mathrm{CH}_{3}\right)^{*}, 14.72\left(1^{\prime}-\mathrm{CH}_{3}{ }^{1}\right)^{*}, 17.98\left(1^{\prime}-\mathrm{CH}_{3}{ }^{2}\right)^{*}, 18.17\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.79[3-$ fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], 28.49 (C-1'), 42.42 (C-2"), 58.79 (C-4)**, 63.20 $(\mathrm{C}-5)^{* *}, 79.07\left(\mathrm{C}-3^{\prime \prime}\right)^{* *}, 121.54\left(\mathrm{C}-5^{\prime \prime}\right)^{* * *}, 136.37\left(\mathrm{C}-4^{\prime \prime}\right)^{* * *}, 153.65$ and 175.23 (C-1", C-2); *,**,*** distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=3385,2960,2935,2875,2855,1775,1700,1465,1385$, 1305, 1250, 1220, 1205, 1120, 1100, 1070, 1030, 990, 875, 835, 775, $700 \mathrm{~cm}^{-1} ; m / z: 326.1876 \pm 5 \mathrm{mDa}\left[M^{+}-t \mathrm{Bu}\right]$ confirmed by HRMS (EI, 70 eV); elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}$ (383.6): C 62.62, H 9.72 , N 3.65 ; found: C 62.93, H 10.16, N 3.43.
(2S,3S,4E)-3-(tert-Butyldimethylsiloxy)-2,4-dimethyl-4-hexenoic acid methyl ester (12): At $0^{\circ} \mathrm{C}$ tert-butyldimethylsilyl triflate ($340 \mu \mathrm{~L}, 391 \mathrm{mg}$, $1.48 \mathrm{mmol}, 1.6$ equiv) was added to a solution of hydroxy ester ent-8 $(160 \mathrm{mg}, \quad 0.930 \mathrm{mmol})$ and 2,6 -lutidine $(0.25 \mathrm{~mL}, 0.23 \mathrm{~g}, 2.1 \mathrm{mmol}$, 2.3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$. After stirring at this temperature for 50 min , the mixture was allowed to reach romm temp. and after further 20 min stirring hydrolyzed with phosphate buffer ($\mathrm{pH} 7,20 \mathrm{~mL}$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo to afford an oily residue which was submitted to flash chromatography (cyclohexane/EtOAc 20:1) to afford the title compound $\mathbf{1 2}$ ($264 \mathrm{mg}, 99 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=-2.9\left(c=1.25\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz ; contains small impurity signals which might be caused by $t \mathrm{BuMe} \mathrm{SiOH}_{2} \mathrm{SiOH}: \delta=-0.04$ and $0.02\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.87\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right)$, $1.14\left(\mathrm{~d}, J_{2-\mathrm{Me}, 2}=6.9,2-\mathrm{Me}\right), 1.54-1.58\left(\mathrm{~m}, 4-\mathrm{Me}, 6-\mathrm{H}_{3}\right), 2.63\left(\mathrm{qd}, J_{2,2-\mathrm{Me}}=\right.$ $\left.J_{2.3}=7.0,2-\mathrm{H}\right), 3.59(\mathrm{~s}, \mathrm{OMe}), 4.10\left(\mathrm{brd}, J_{3,2}=7.7,3-\mathrm{H}\right), 5.55\left(\mathrm{q} \mathrm{m}, J_{5.6} \approx\right.$ $6.6,5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz ; contains small impurity signals which might be caused by $\left.t \mathrm{BuMe}{ }_{2} \mathrm{SiOH}\right): \delta=-5.27$ and $-4.68\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 11.11$ and 12.93 (2-fold intensity, 2 resonances of 3-fold total intensity for 3 C atoms: $\left.2-\mathrm{CH}_{3}, 4-\mathrm{CH}_{3}, \mathrm{C}-6\right), 18.16\left[\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.77\right.$ [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $45.31(\mathrm{C}-2), 51.28\left(\mathrm{OCH}_{3}\right), 79.97(\mathrm{C}-3), 121.38(\mathrm{C}-5), 136.25$ (C-4), 175.20 (C-1); IR (film): $\tilde{v}=2955,2930,2885,2860,1740,1460$, $1435,1390,1360,1345,1255,1195,1165,1125,1090,1060,1030,1005$, $880,835,775 \mathrm{~cm}^{-1} ; m / z: 229.1260 \pm 5 \mathrm{mDa}\left[M^{+}-t \mathrm{Bu}\right]$ confirmed by HRMS (EI, 70 eV); elemental analysis calcd (\%) for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$ (286.5): C 62.89, H 10.55; found: C 62.39, H 9.62.
(3S,4R,5R,6R)-4-(tert-Butyldimethylsiloxy)-tetrahydro-3,5,6-trimethyl-2pyranone (15): At $0^{\circ} \mathrm{C}$ tert-butyldimethylsilyl triflate $(0.30 \mathrm{~mL}, 0.35 \mathrm{mg}$, $1.3 \mathrm{mmol}, 2.6$ equiv) was added to a solution of β-hydroxy- δ-lactone 4 $(78.0 \mathrm{mg}, \quad 0.493 \mathrm{mmol})$ and 2,6-lutidine $(86 \mu \mathrm{~L}, 79 \mathrm{mg}, \quad 0.73 \mathrm{mmol}$, 1.5 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. After stirring at this temperature for 12 h , the reaction mixture was hydrolyzed with phosphate buffer (pH 7 , $40 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo at $0^{\circ} \mathrm{C}$ to afford an oily residue which was submitted
to flash chromatography (cyclohexane/EtOAc 15:1 \rightarrow fraction 44, 12:1 \rightarrow fraction 65, 10:1 \rightarrow fraction 80) to afford the title compound $\mathbf{1 5}$ ($96.8 \mathrm{mg}, 72 \%$) as colorless needles. M.p. $82^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}=+0.7(c=0.41 \mathrm{in}$ CDCl_{3}), ref. ${ }^{[10 \mathrm{n}]}-0.8^{\circ}$ (enantiomer, $c=1.0$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta=0.06$ and $0.08\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.89\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 0.99\left(\mathrm{~d}, J_{5}\right.$. ме. $5=6.8,5-\mathrm{Me})^{*}, 1.27\left(\mathrm{~d}, J_{3-\mathrm{Me}, 3}=7.5,3-\mathrm{Me}\right)^{*}, 1.35\left(\mathrm{~d}, J_{6-\mathrm{Me}, 6}=6.5,6-\right.$ $\mathrm{Me})^{*}, 1.81\left(\mathrm{dqd}, J_{5,6}=9.9, J_{5,5-\mathrm{Me}}=6.8, J_{5,4}=2.3,5-\mathrm{H}\right), 2.64\left(\mathrm{qd}, J_{3,3-\mathrm{Me}}=\right.$ $\left.7.6, J_{3.4}=2.7,3-\mathrm{H}\right), 3.64\left(\mathrm{dd}, J_{4.3}=J_{4.5}=2.5,4-\mathrm{H}\right), 4.47\left(\mathrm{dq}, J_{6.5}=9.9, J_{6.6-\mathrm{Me}}\right.$ $=6.4,6-\mathrm{H}) ; *$ signal assigned by comparison with the analogous resonances and coupling constants of $\mathbf{4} ;{ }^{13} \mathrm{C}$ NMR (125.7 MHz ; peak of contaminant at $\delta=15.77$): $\delta=-4.83$ and $-4.50\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 13.92\left(5-\mathrm{CH}_{3}\right)^{*}$, $16.54\left(3-\mathrm{CH}_{3}\right)^{*}, 17.97\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.85\left(6-\mathrm{CH}_{3}\right)^{*}, 25.71$ [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $36.09(\mathrm{C}-5)^{*}, 44.13(\mathrm{C}-3)^{*}, 74.47$ (C-4)*, 77.32 (C-6)*, 174.20 (C-2); * signals assigned by comparison with the analogous resonances of 4; IR $\left(\mathrm{CDCl}_{3}\right): \tilde{v}=2955,2935,2885,2860,1720,1465,1385,1360,1255$, 1240, 1130, 1100, 1060, 1035, 860, $840 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ (272.5): C 61.72, H 10.36; found: C 61.76, H 10.45.
(3S,4R,5S,6R)-Tetrahydro-4-(methoxymethoxy)-3,5,6-trimethyl-2-pyra none (16): At $0^{\circ} \mathrm{C}$ (chloromethyl) methyl ether $(2.4 \mathrm{~mL}, 2.5 \mathrm{~g}, 32 \mathrm{mmol}$, 5.8 equiv) was added dropwise to a solution of β-hydroxy- δ-lactone 4 ($868 \mathrm{mg}, 5.49 \mathrm{mmol}$) and diisopropylethylamine $(5.7 \mathrm{~mL}, 4.3 \mathrm{~g}, 33 \mathrm{mmol}$, 6.1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The reaction mixture was treated with tetrabutylammonium iodide ($22.6 \mathrm{mg}, 0.0612 \mathrm{mmol}, 1.1 \mathrm{~mol} \%$) and allowed to reach RT. After stirring at this temperature for 17.5 h , (chloromethyl) methyl ether ($1.0 \mathrm{~mL}, 1.1 \mathrm{~g}, 13 \mathrm{mmol}, 2.4$ equiv) and diisopropylethylamine ($2.4 \mathrm{~mL}, 1.8 \mathrm{~g}, 14 \mathrm{mmol}, 2.6$ equiv) were added (once again) and the reaction was terminated after stirring for another 5 h by addition of aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. Stirring was continued for 1 h to destroy the excess of (chloromethyl) methyl ether. Then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo to afford an oily residue which was submitted to flash chromatography (cyclohexane/EtOAc 5:2) to afford the title compound $\mathbf{1 6}(1.102 \mathrm{~g}, 99 \%)$ as a colorless liquid. $[\alpha]_{\mathrm{D}}^{25}=+7.2\left(c=1.16\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $[500 \mathrm{MHz}$; small peak of contaminant (s) at $\delta=1.25]$]: $\delta=1.06\left(\mathrm{~d}, J_{5-\mathrm{Me}, 5}=6.9,5-\mathrm{Me}\right)^{*}, 1.31$ $\left(\mathrm{d}, J_{3-\mathrm{Me}, 3}=7.6,3-\mathrm{Me}\right)^{*}, 1.36\left(\mathrm{~d}, J_{6-\mathrm{Me}, 6}=6.5,6-\mathrm{Me}\right)^{*}, 1.90\left(\mathrm{dqd}, J_{5,6}=9.7\right.$, $\left.J_{5,5-\mathrm{Me}}=6.9, J_{5,4}=2.8,5-\mathrm{H}\right), 2.85\left(\mathrm{qd}, J_{3,3-\mathrm{Me}}=7.6, J_{3,4}=3.0,3-\mathrm{H}\right), 3.39$ $(\mathrm{OMe}), 3.58\left(\mathrm{dd}, J_{4,3}=J_{4,5}=2.9,4-\mathrm{H}\right), 4.46\left(\mathrm{dq}, J_{6,5}=9.9, J_{6,6-\mathrm{Me}}=6.4,6-\mathrm{H}\right)$, AB signal $\left(\delta_{\mathrm{A}}=4.64, \delta_{\mathrm{B}}=4.72, J_{\mathrm{AB}}=7.1,-\mathrm{OCH}_{2} \mathrm{OMe}\right) ; *$ signal assigned by comparison with the analogous resonances and coupling constants of 4; ${ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}): \delta=13.36\left(5-\mathrm{CH}_{3}\right)^{*}, 16.56\left(3-\mathrm{CH}_{3}\right)^{*}, 19.96$ (6$\left.\mathrm{CH}_{3}\right)^{*}, 35.38(\mathrm{C}-5)^{* *}, 40.78(\mathrm{C}-3)^{* *}, 55.88\left(\mathrm{OCH}_{3}\right), 76.74(\mathrm{C}-6)^{* * *}, 79.09$ $(\mathrm{C}-4)^{* * *}, 95.93\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 173.88(\mathrm{C}-2) ;{ }^{*},{ }^{* *},{ }^{* * *}$ distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=2980,2940,2890,2825,1735$, $1460,1385,1355,1300,1235,1150,1095,1040,980,965,930 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$ (202.2): C 59.39, H 8.97; found: C 59.15, H 8.69.
(3S,4R,5R,6R)-4-(tert-Butyldimethylsiloxy)-3,4,5,6-tetrahydro-3,5,6-tri-methyl-2(1H)-pyranol as an 85:15 mixture of unassigned α - and β anomer (17): At $-78^{\circ} \mathrm{C}$ DIBAL (2.1 m in toluene, $1.7 \mathrm{~mL}, 3.6 \mathrm{mmol}$, 2.2 equiv) was added dropwise to a solution of δ-lactone $\mathbf{1 5}(441.9 \mathrm{mg}$, $1.622 \mathrm{mmol})$ in toluene (12 mL). After stirring for 2.5 h , the reaction mixture was poured into aqueous saturated sodium potassium tartrate $(30 \mathrm{~mL})$ and stirred at RT for 1 h . The aqueous phase was extracted with $t \mathrm{BuOMe}(3 \times 20 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo to afford lactol $\mathbf{1 7}$ ($441.1 \mathrm{mg}, 99 \%$) as a colorless oil, which could be used for the next reaction without further purification. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$; peak of contaminant at $\delta=0.92$): major isomer: $\delta=0.10$ and $0.14\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.87(\mathrm{~d}$, $\left.J_{5-\mathrm{Me} .5}=6.9,5-\mathrm{Me}\right)^{*}, 0.94\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.02\left(\mathrm{~d}, J_{3-\mathrm{Me}, 3}=7.3,3-\mathrm{Me}\right)^{*}, 1.21(\mathrm{~d}$, $\left.J_{6-\mathrm{Me}, 6}=6.3,6-\mathrm{Me}\right)^{*}, 1.67\left(\mathrm{dqd}, J_{5,6}=10.1, J_{5,5-\mathrm{Me}}=7.0, J_{5,4}=2.6,5-\mathrm{H}\right) * *$, 2.03 (qdd, $\left.J_{3,3-\mathrm{Me}}=7.3, J_{3.4}=2.8, J_{3,2}=1.0,3-\mathrm{H}\right)^{* *}, 3.71\left(\mathrm{dd}, J_{4,5}=4.2, * * *\right.$ $\left.J_{4,3}=2.4, * * * 4-\mathrm{H}\right), * * * * 3.96\left(\mathrm{dq}, J_{6,5}=10.5, J_{6,6-\mathrm{Me}}=6.2,6-\mathrm{H}\right), * * * * 4.85$ brd, $\left.J_{2, \mathrm{OH}}=10.7,2-\mathrm{H}\right)^{* * * * *} \quad 5.47\left(\mathrm{~d}, \quad J_{\mathrm{OH}, 2}=10.7, \quad \mathrm{OH}\right)^{* * * * *}$; *,**,**** distinguishable by an H,H-correlation spectrum; *** interchangeable; ${ }^{* * * * *}$ distinguishable by a H/D-exchange experiment with $\mathrm{D}_{2} \mathrm{O}$; minor isomer: $\delta=0.04$ and $0.07\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.80\left(\mathrm{~d}, J_{5-\mathrm{Me}, 5}=6.9\right.$, $5-\mathrm{Me})^{*}, 0.90\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 0.95\left(\mathrm{~d}, J_{3-\mathrm{Me}, 3}=7.1,3-\mathrm{Me}\right)^{*}, 1.18\left(\mathrm{~d}, J_{6-\mathrm{Me}, 6}=6.3\right.$, $6-\mathrm{Me})^{*}, 1.55(\mathrm{~m}, 5-\mathrm{H})^{* *}, 1.88-1.94(\mathrm{~m}, 3-\mathrm{H}) * *, 2.65$ (brs, OH), 3.63 (dd, $\left.J_{4,5}=J_{4,3}=2.8,4-\mathrm{H}\right)$,*** $3.67\left(\mathrm{dq}, J_{6,5}=10.2, J_{6,6-\mathrm{Me}}=6.3,6-\mathrm{H}\right),{ }^{* * *} 5.19(\mathrm{~m}$, 2-H) ; *,**,*** distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR
(125.7 MHz): major isomer: $\delta=-4.91$ and $-4.56\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 14.66$ (5$\left.\mathrm{CH}_{3}\right)^{*}, 15.02\left(3-\mathrm{CH}_{3}\right)^{*}, 17.98\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.28\left(6-\mathrm{CH}_{3}\right)^{*}, 25.83$ [3-fold intensity, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 36.12(\mathrm{C}-5)^{* *}, 39.87(\mathrm{C}-3)^{* *}, 64.49(\mathrm{C}-6)^{* * *}, 76.50$ (C-4)***, 96.81 (C-2) ; *,**,*** distinguishable by a C,H-correlation spectrum; minor isomer: $\delta=-4.94$ and $-4.51\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 8.88\left(5-\mathrm{CH}_{3}\right)^{*}, 13.83$ $\left(3-\mathrm{CH}_{3}\right)^{*}, 19.39\left(6-\mathrm{CH}_{3}\right)^{*}, 36.47(\mathrm{C}-5)^{* *}, 41.46(\mathrm{C}-3)^{* *}, 72.13(\mathrm{C}-6)^{* * *}$, 76.57 (C-4)***, 93.60 (C-2) ; *,**,*** interchangeable; IR (film): $\tilde{v}=3690$, 3605, 3465, 2955, 2935, 2870, 1775, 1715, 1605, 1460, 1385, 1260, 1110, 1030, 930, 845, 760, 710, $650 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$ (274.5): C 61.26, H 11.02; found: C 61.45, H 11.12.
(3S,4R,5S,6R)-Tetrahydro-4-(methoxymethoxy)-3,5,6-trimethyl-2-pyranol as a $79: 21$ mixture of unassigned $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$-anomer (18): At $-78^{\circ} \mathrm{C}$ DIBAL (1.5 m in toluene, $0.90 \mathrm{~mL}, 1.4 \mathrm{mmol}, 2.2$ equiv) was added dropwise to a solution of δ-lactone $\mathbf{1 6}(126.8 \mathrm{mg}, 0.6277 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$. After stirring for 2.5 h , the reaction mixture was poured into aqueous saturated Rochelle's salt (20 mL) and stirred at RT for 1 h . The aqueous phase was extracted with $t \mathrm{BuOMe}(3 \times 20 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo to afford lactol $\mathbf{1 8}(127.2 \mathrm{mg}, 99 \%)$ as a colorless oil, which could be used for the next reaction without further purification. ${ }^{1} \mathrm{H}$ NMR (500 MHz): major isomer: $\delta=0.93$ (d, $\left.J_{5-\mathrm{Me}, 5}=6.8,5-\mathrm{Me}\right)^{*}, 1.05\left(\mathrm{~d}, J_{3-\mathrm{Me}, 3}\right.$ $=7.4,3-\mathrm{Me})^{*}, 1.22\left(\mathrm{~d}, J_{6-\mathrm{Me}, 6}=6.3,6-\mathrm{Me}\right)^{*}, 1.73\left(\mathrm{dqd}, J_{5.6}=10.2, J_{5.5-\mathrm{Me}}=\right.$ $\left.6.9, J_{5,4}=3.1,5-\mathrm{H}\right)^{* *}, 2.17\left(\mathrm{qdd}, J_{3,3-\mathrm{Me}}=7.3, J_{3,4}=2.8, J_{3,2}=1.1,3-\mathrm{H}\right){ }^{* *}$, 3.43 (OMe), 3.61 (dd, $\left.J_{4,5}=4.1, J_{4,3}=2.7,4-H\right), 3.93\left(\mathrm{dq}, J_{6,5}=10.5\right.$, $\left.J_{6,6-\mathrm{Me}}=6.2,6-\mathrm{H}\right)$, AB signal $\left(\delta_{\mathrm{A}}=4.63, \delta_{\mathrm{B}}=4.78, J_{\mathrm{AB}}=6.9, \mathrm{OCH}_{2} \mathrm{OMe}\right)$, $4.87\left(\mathrm{~d}, J_{2, \mathrm{OH}}=10.5,2-\mathrm{H}\right), 5.10\left(\mathrm{~d}, J_{\mathrm{OH}, 2}=10.5, \mathrm{OH}\right)^{* * *}$; ${ }^{*}$,** distinguishable by an H,H-correlation spectrum; *** distinguishable by a H/D-exchange experiment with $\mathrm{D}_{2} \mathrm{O}$; minor isomer: $\delta=0.89$ (d, $J_{5-\mathrm{Me}, 5}=6.9$, 5 $\mathrm{Me})^{*}, 0.98$ (d, $\left.J_{3-\mathrm{Me} .3}=7.1,3-\mathrm{Me}\right)^{*}, 1.20\left(\mathrm{~d}, J_{6-\mathrm{Me} .6} \approx 7,6-\mathrm{Me}\right)^{*}, 1.64$ (dqd, $\left.J_{5,6}=10.1, J_{5,5-\mathrm{Me}}=6.9, J_{5,4}=3.2,5-\mathrm{H}\right)^{* *}, 2.13\left(\mathrm{qdd}, J_{3,3-\mathrm{Me}}=7.1, J_{3,2}=J_{3,4}=\right.$ $2.8,3-\mathrm{H})^{* *}, 2.75$ (brs, OH)***, 3.39 (OMe), $3.54\left(\mathrm{dd}, J_{4.3}=J_{4.5}=2.8,4-\mathrm{H}\right)$, $3.65\left(\mathrm{dq}, J_{6,5}=10.2, J_{6,6-\mathrm{Me}}=6.3,6-\mathrm{H}\right)$, AB signal $\left(\delta_{\mathrm{A}}=4.60, \delta_{\mathrm{B}}=4.74\right.$, $\left.J_{\mathrm{AB}}=6.9, \mathrm{OCH}_{2} \mathrm{OMe}\right), 5.15(\mathrm{~m}, 2-\mathrm{H})^{* * * *} ; *, * *$ distinguishable by an H,H-correlation spectrum; *** exchangable with $\mathrm{D}_{2} \mathrm{O}$; **** resonates in a H/D-exchange experiment with $\mathrm{D}_{2} \mathrm{O}$ at $\delta=5.14$ (d, $\left.J_{2,3}=2.4,2-\mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): major isomer: $\delta=14.12\left(5-\mathrm{CH}_{3}\right)^{*}$, 15.10 (3$\left.\mathrm{CH}_{3}\right)^{*}, 19.32\left(6-\mathrm{CH}_{3}\right)^{*}, 35.29(\mathrm{C}-5)^{* *}, 37.29(\mathrm{C}-3)^{* *}, 56.28\left(\mathrm{OCH}_{3}\right), 65.05$ $(\mathrm{C}-6)^{* * *}, 81.29(\mathrm{C}-4)^{* * *}, \quad 96.51$ and $96.63\left(\mathrm{C}-2, \quad \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$; *,**,*** distinguishable by a C,H-correlation spectrum; minor isomer: $\delta=8.92\left(3-\mathrm{CH}_{3}\right)^{*}, 13.34\left(5-\mathrm{CH}_{3}\right)^{*}, 19.48\left(6-\mathrm{CH}_{3}\right)^{*}, 35.65(\mathrm{C}-5)^{* *}, 37.92$ $(\mathrm{C}-3)^{* *}, 55.75\left(\mathrm{OCH}_{3}\right), 72.63(\mathrm{C}-6)^{* * *}, 81.70(\mathrm{C}-4)^{* * *}, 93.84(\mathrm{C}-2)^{* * * *}$, $95.96\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)^{* * * * *}$ ***,**,***,**** distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=3425,2970,2935,2905,1715,1650,1455$, $1380,1330,1280,1215,1155,1100,1040,990,955,920,895 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}$ (204.3): C 58.80, H 9.87; found: C 58.76, H 9.62.
(2E,4R,5S,6R,7R)-5-(tert-Butyldimethylsiloxy)-7-hydroxy-4,6-dimethyl-2octenoic acid ethyl ester (21): A solution of tributyl(ethoxycarbonylmethyl)phosphonium bromide ($\mathbf{2 6}, 389 \mathrm{mg}, 1.05 \mathrm{mmol}$, 2.3 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ was washed with aqueous $\mathrm{NaOH}(1 \mathrm{~m}, 2 \times 10 \mathrm{~mL})$, dried with MgSO_{4} and diluted with toluene (4 mL). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was successively evaporated in vacuo. This solution was then transferred via cannula to a solution of lactol $\mathbf{1 7}(126 \mathrm{mg}, 0.459 \mathrm{mmol})$ and benzoic acid (11 mg , $0.090 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in toluene (8 mL), which was stirred at $95^{\circ} \mathrm{C}$. After stirring at this temperature for 3 h , the reaction mixture was cooled to RT and purified by flash chromatography (3.0 cm , cyclohexane/EtOAc $5: 1)$ to afford the α, β-unsaturated ethyl ester $21(48.9 \mathrm{mg}, 31 \%)$ as a colorless liquid. $[\alpha]_{\mathrm{D}}^{25}=+9.9\left(c=0.44\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$; slightly contaminated by a diastereomer): $\delta=0.08$ and $0.11\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85$ $\left(\mathrm{d}, J_{6-\mathrm{Me}, 6}=7.1,6-\mathrm{Me}\right)^{*}, 0.92\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.08\left(\mathrm{~d}, J_{4-\mathrm{Me}, 4}=6.8,4-\mathrm{Me}\right)^{*}, 1.14$ $\left(\mathrm{d}, J_{8,7}=6.1,8-\mathrm{H}_{3}\right)^{*}, 1.29\left(\mathrm{t}, J_{2^{\prime}, 1^{\prime}}=7.2,2^{\prime}-\mathrm{H}_{3}\right), 1.67\left(\mathrm{dqd}, J_{6,7}=8.2, J_{6,6-\mathrm{Me}}=\right.$ $\left.7.0, J_{6,5}=5.7,6-\mathrm{H}\right), 2.57$ (qddd, $\left.J_{4,4-\mathrm{Me}}=J_{4,3}=J_{4.5}=6.6,{ }^{4} J_{4,2}=1.3,4-\mathrm{H}\right), 2.79$ (brs, OH), $3.63\left(\mathrm{dd}, J_{5,6}=5.7, J_{5,4}=4.7,5-\mathrm{H}\right), 3.73\left(\mathrm{dq}, J_{7,6}=8.2, J_{7.8}=6.2\right.$, $7-\mathrm{H}), 4.16-4.23\left(\mathrm{~m}, 1^{\prime}-\mathrm{H}_{2}\right), 5.82\left(\mathrm{dd}, J_{\text {trans }}=15.8,{ }^{4} J_{2.4}=1.3,2-\mathrm{H}\right), 6.97(\mathrm{dd}$, $\left.J_{\text {trans }}=15.8, J_{3,4}=7.9,3-\mathrm{H}\right)$; * distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): $\delta=-4.20$ and $-3.97\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 14.26, 14.42 and $14.70\left(4-\mathrm{CH}_{3}, 6-\mathrm{CH}_{3}, \mathrm{C}-2^{\prime}\right), 18.23\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 20.67(\mathrm{C}-8)^{*}$, 26.03 [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $41.89(\mathrm{C}-4)^{* *}, 44.62(\mathrm{C}-6)^{* *}, 60.23(\mathrm{C}-$ $\left.1^{\prime}\right)^{* * *}, 69.53$ (C-7)***, 79.70 (C-5) ***, 121.11 (C-2), 152.21 (C-3), 166.58 (C-1); *,**,*** distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=3455,2960,2930,2900,2860,1725,1650,1465,1370,1330,1255,1185$,

1150, 1080, 1040, $835,775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$ (344.6): C 62.74, H 10.53; found: C 63.02, H 10.66.
(2E,4R,5S,6R,7R)-7-Hydroxy-5-(methoxymethoxy)-4,6-dimethyl-2-octenoic acid ethyl ester (22): A solution of tributyl(ethoxycarbonylmethyl)phosphonium bromide ($\mathbf{2 6}, 5.99 \mathrm{~g}, 16.2 \mathrm{mmol}, 6.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ was washed with aqueous $\mathrm{NaOH}(1 \mathrm{~m}, 2 \times 30 \mathrm{~mL})$, dried with MgSO_{4} and diluted with toluene $(10 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was successively evaporated in vacuo. This solution was then transferred via cannula to a solution of lactol $\mathbf{1 8}(552 \mathrm{mg}, 2.70 \mathrm{mmol})$ and benzoic acid (132 mg , $1.08 \mathrm{mmol}, 40 \mathrm{~mol} \%$) in toluene (20 mL), which was stirred at $92^{\circ} \mathrm{C}$. After stirring at this temperature for 2.5 h , the reaction mixture was cooled to RT and purified by flash chromatography (5.0 cm , cyclohexane/ EtOAc 4:1 \rightarrow fraction 35, 3:1 \rightarrow fraction $60,2: 1 \rightarrow$ fraction 120) to afford unconsumed lactol $\mathbf{1 8}$ ($259.3 \mathrm{mg}, 47 \%$) and α, β-unsaturated ethyl ester $22(274.1 \mathrm{mg}, 37 \%$; 70% based on recovered starting material) as a colorless liquid. $[\alpha]_{\mathrm{D}}^{25}=+28.9\left(c=0.94\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$: $\delta=0.88\left(\mathrm{~d}, J_{6-\mathrm{Me}, 6}=7.1,6-\mathrm{Me}\right)^{*}, 1.11\left(\mathrm{~d}, J_{4-\mathrm{Me}, 4}=6.8,4-\mathrm{Me}\right)^{*}, 1.17\left(\mathrm{~d}, J_{8,7}=\right.$ $\left.6.3,8-\mathrm{H}_{3}\right)^{*}, 1.29\left(\mathrm{t}, J_{2^{\prime}, 1}=7.1,2^{\prime}-\mathrm{H}_{3}\right), 1.77\left(\mathrm{qdd}, J_{6,6-\mathrm{Me}}=J_{6,5}=J_{6,7}=7.1,6-\right.$ H), 2.64 (qddd, $J_{4,4 \mathrm{Me}}=J_{4,3}=7.0, J_{4,5}=4.1,{ }^{4} J_{4,2}=1.5,4-\mathrm{H}$), 2.78 (brs, OH), $3.40(\mathrm{~s}, \mathrm{OMe}), 3.50\left(\mathrm{dd}, J_{5.6}=7.2, J_{5,4}=4.2,5-\mathrm{H}\right), 3.84\left(\mathrm{brdq}, J_{7.6}=J_{7,8}=\right.$ $6.5,7-\mathrm{H}), 4.19\left(\mathrm{q}, J_{1^{\prime} 2^{\prime}}=7.1,1^{\prime}-\mathrm{H}_{2}\right)$, AB signal $\left(\delta_{\mathrm{A}}=4.62, \delta_{\mathrm{B}}=4.64, J_{\mathrm{AB}}=\right.$ $\left.6.8, \mathrm{OCH}_{2} \mathrm{OMe}\right), 5.85\left(\mathrm{dd}, J_{\text {trans }}=15.8,{ }^{4} J_{2,4}=1.4,2-\mathrm{H}\right), 7.01\left(\mathrm{dd}, J_{\text {trans }}=\right.$ 15.8, $\left.J_{3.4}=7.4,3-\mathrm{H}\right)$; * distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR [125.7 MHz ; peaks of contaminant(s) at $\delta=29.26$ and 53.80]: $\delta=13.53\left(4-\mathrm{CH}_{3}\right)^{*}, 13.86\left(6-\mathrm{CH}_{3}\right)^{*}, 14.24\left(\mathrm{C}-2^{\prime}\right)^{*}, 20.30(\mathrm{C}-8)^{*}, 39.70(\mathrm{C}-$ $4)^{* *}, 43.18(\mathrm{C}-6)^{* *}, 56.34\left(\mathrm{OCH}_{3}\right)^{* * *}, 60.29\left(\mathrm{C}-1^{\prime}\right)^{* * *}, 69.63(\mathrm{C}-7)^{* * * *}$, 85.61 (C-5) ${ }^{* * * *}, 97.92\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 120.97(\mathrm{C}-2), 151.94$ (C-3), 166.58 (C-1) ; *,**, ${ }^{* * *, * * * * ~ d i s t i n g u i s h a b l e ~ b y ~ a ~ C, H-c o r r e l a t i o n ~ s p e c t r u m ; ~ I R ~}$ film): $\tilde{v}=3450,2975,2935,1715,1650,1455,1370,1300,1265,1185$, 1150, 1095, 1035, $960,920 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{5}$ (274.4): C 61.29, H 9.55; found: C 61.01, H 9.79.
[(3R,4R,5R,6R)-4-(tert-Butyldimethylsiloxy)-tetrahydro-3,5,6-trimethyl-pyran-2-yl]acetic acid ethyl ester (23) as a 74:26 mixture of two unassigned C-2' diastereomers, which could be separated by flash chromatography: A refluxing solution of lactol $\mathbf{1 7}$ ($151 \mathrm{mg}, 0.551 \mathrm{mmol}$) and (ethoxycarbonylmethylen)triphenylphosphorane $\quad(\mathbf{2 5}, \quad 1.35 \mathrm{~g}, \quad 3.88 \mathrm{mmol}$, .0 equiv) in toluene (15 mL) was stirred for 24 h . After cooling to RT, the solvent was evaporated in vacuo to a volume of ca. 2 mL , and the resdue was submitted to flash chromatography (cyclohexane/EtOAc 5:1) to afford a contaminated diastereomeric mixture of $\mathbf{2 3}(121 \mathrm{mg})$ and the α, β-unsaturated ethyl ester 21 ($32.1 \mathrm{mg}, 17 \%$) as a colorless liquid. The mixture was resubmitted to flash chromatography (cyclohexane/EtOAc 12:1) to afford the pure major diastereomer of $\mathbf{2 3}(58.1 \mathrm{mg}, 31 \%)$ and he pure minor diastereomer of $\mathbf{2 3}(20.2 \mathrm{mg}, 11 \%)$ as a colorless liquid (each)
Major diastereomer: $[\alpha]_{\mathrm{D}}^{25}=+15.1 \quad\left(c=0.74\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta=0.04\left(\mathrm{~s}, \mathrm{SiMe}_{2}\right), 0.79\left(\mathrm{~d}, J_{5^{\prime}-\mathrm{Me}, 5^{\prime}}=6.9,5^{\prime}-\mathrm{Me}\right)^{*}, 0.917(\mathrm{~s}$, SiCMe_{3}), superimposed by $0.923\left(\mathrm{~d}, J_{3^{\prime}-\mathrm{Me}^{3}}=6.9,3^{\prime}-\mathrm{Me}\right) *, 1.11$ (d, J_{6} мe, $\left.6^{\prime}=6.3,6^{\prime}-\mathrm{CH}_{3}\right)^{*}, 1.25\left(\mathrm{t}, J_{2^{\prime \prime}, 1^{\prime \prime}}=7.2,2^{\prime \prime}-\mathrm{H}_{3}\right), 1.51\left(\mathrm{dqd}, J_{5^{\prime}, 6}=9.8, J_{5^{\prime}, 5}\right.$ $\mathrm{Me}=7.0, J_{5^{\prime}, 4}=2.6,5^{\prime}-\mathrm{H}$)**, 1.65 (qdd, $J_{3^{\prime}, 3^{\prime}-\mathrm{Me}}=7.1, J_{3^{\prime}, 2^{\prime}}=J_{3^{\prime}, 4}=2.7,3^{\prime}-$ $\mathrm{H})^{* *}, \mathrm{AB}$ signal $\left(\delta_{\mathrm{A}}=2.30, \delta_{\mathrm{B}}=2.54, J_{\mathrm{AB}}=14.6\right.$, in addition split by $\left.J_{\mathrm{A}, 2^{\prime}}=6.6, J_{\mathrm{B}, 2^{2}}=7.8,2-\mathrm{H}_{2}\right), 3.55\left(\mathrm{dd}, J_{4^{\prime}, 3^{\prime}}=J_{4,5} 5^{\prime}=2.9,4^{\prime}-\mathrm{H}\right){ }^{* * *}$, partly supermposed by $3.57\left(\mathrm{dq}, J_{6^{\prime}, 5^{\prime}}=10.1, J_{6,6-\mathrm{Me}}=6.2,6^{\prime}-\mathrm{H}\right)^{* * *}$, extreme AB signal $\delta_{\mathrm{A}}=4.10, \delta_{\mathrm{B}}=4.16, J_{\mathrm{AB}}=10.8$, in addition split by $J_{\mathrm{A}, 2^{\prime \prime}}=J_{\mathrm{B}, 2^{\prime \prime}}=7.1,1^{\prime \prime}-$ $\left.\mathrm{H}_{2}\right), 4.36\left(\mathrm{ddd}, J_{2^{\prime}, 2-\mathrm{H}(\mathrm{B})}=7.8, J_{2^{\prime}, 2-\mathrm{H}(\mathrm{A})}=6.7, J_{2^{\prime}, 3^{\prime}}=2.3,2^{\prime}-\mathrm{H}\right){ }^{* * * * ; ~ *, * * ~ d i s t i n-~}$ guishable by an H,H-correlation spectrum; *** $2^{\prime}-\mathrm{H}$ (ddd), $4^{\prime}-\mathrm{H}$ (dd) and $6^{\prime}-\mathrm{H}(\mathrm{dq})$ were distinguished by the differing multiplicity and by the concerning coupling constants; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz ; peak of contaminant at $\delta=68.26): \delta=-4.88$ and $-4.48\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.80\left(3^{\prime}-\mathrm{CH}_{3}\right)^{*}, 14.21(\mathrm{C}-$ $\left.2^{\prime \prime}\right)^{*}, 14.40\left(5^{\prime}-\mathrm{CH}_{3}\right)^{*}, 18.12$ [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $19.53\left(6^{\prime}-\mathrm{CH}_{3}\right)^{*}$, $25.86\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]^{* *}, 36.81\left(\mathrm{C}-5^{\prime}\right)^{* *}, 38.43(\mathrm{C}-2)^{* *}, 39.37\left(\mathrm{C}-3^{\prime}\right)^{* *}, 60.29$ $\left(\mathrm{C}-1^{\prime \prime}\right)^{* * *}, 70.47\left(\mathrm{C}-2^{\prime}\right)^{* * *}, 73.86\left(\mathrm{C}-6^{\prime}\right)^{* * *}, 75.84\left(\mathrm{C}-4^{\prime}\right)^{* * *}, 171.47$ (C-1); *,**,*** distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=$ 2960, 2930, 2900, 2860, 1740, 1460, 1380, 1330, 1285, 1270, 1255, 1180, $1115,1075,1035,1005,865,835,775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$ (344.6): C $62.74, \mathrm{H} 10.53$; found: C 63.07, H 11.05.
Minor diastereomer: $[\alpha]_{\mathrm{D}}^{25}=+15.9 \quad\left(c=0.42\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta=0.05\left(\mathrm{~s}, \mathrm{SiMe}_{2}\right), 0.91\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 0.92\left(\mathrm{~d}, J_{5^{\prime}-\mathrm{Me}^{5}, 5^{\prime}}=6.9,5^{\prime}-\right.$ $\mathrm{Me})^{*}, 1.00\left(\mathrm{~d}, J_{3^{\prime}-\mathrm{Me}, 3^{3}}=7.1,3^{\prime}-\mathrm{Me}\right)^{*}, 1.18\left(\mathrm{~d}, J_{6^{\prime}-\mathrm{Me}, 6^{6}}=6.6,6^{\prime}-\mathrm{Me}\right)^{*}, 1.25(\mathrm{t}$, $\left.J_{2^{\prime \prime}, 1^{\prime \prime}}=7.1,2^{\prime \prime}-\mathrm{H}_{3}\right), 1.65\left(\mathrm{dqd}, J_{5^{\prime}, 6}=J_{5^{\prime}, 5-\mathrm{Me}}=6.8, J_{5^{\prime}, 4}=3.7,5^{\prime}-\mathrm{H}\right)^{* *}, 1.70$ (qdd, $\left.J_{3^{\prime}, 3^{\prime}-\mathrm{Me}}=6.9, J_{3^{\prime}, 2^{\prime}}=J_{3^{\prime}, 4^{\prime}}=5.5,3^{\prime}-\mathrm{H}\right)^{* *}$, AB signal $\left(\delta_{\mathrm{A}}=2.67, \delta_{\mathrm{B}}=2.84\right.$,
$J_{\mathrm{AB}}=15.0$, in addition split by $\left.J_{\mathrm{A}, 2^{2}}=4.8, J_{\mathrm{B}, 2^{\prime}}=8.9,2-\mathrm{H}_{2}\right), 3.61\left(\mathrm{dd}, J_{4^{\prime}, 3^{\prime}}=\right.$ $\left.5.8, J_{4^{\prime}, 5^{\prime}}=3.7,4^{\prime}-\mathrm{H}\right)^{* * *}, 3.80\left(\mathrm{dq}, J_{6^{\prime}, 5^{\prime}}=J_{6,66^{\prime}-\mathrm{Me}}=6.5,6^{\prime}-\mathrm{H}\right){ }^{* * *}, 3.92$ (ddd, $\left.J_{2^{\prime}, 2-\mathrm{H}(\mathrm{B})}=8.9, J_{2^{\prime}, 2-\mathrm{H}(\mathrm{A})}=J_{2^{\prime}, 3^{\prime}}=4.7,2^{\prime}-\mathrm{H}\right)^{* * *}, 4.14\left(\mathrm{q}, J_{1^{\prime \prime}, 2^{\prime \prime}}=7.1,1^{\prime \prime}-\mathrm{H}_{2}\right)$; *,** distinguishable by an H,H-correlation spectrum; *** 2'-H (ddd), 4'$\mathrm{H}(\mathrm{dd})$ and $6^{\prime}-\mathrm{H}(\mathrm{dq})$ were distinguished by the differing multiplicity and by the concerning coupling constants; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): $\delta=-4.71$ and $-4.45\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 13.76\left(5^{\prime}-\mathrm{CH}_{3}\right)^{*}, 14.24\left(\mathrm{C}-2^{\prime \prime}\right)^{*}, 16.15\left(3^{\prime}-\mathrm{CH}_{3}\right)^{*}$, $18.13\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.55\left(6^{\prime}-\mathrm{CH}_{3}\right)^{*}, 25.94$ [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $38.03\left(\mathrm{C}-5^{\prime}\right)^{* *}, 38.30\left(\mathrm{C}-3^{\prime}\right)^{* *}, 39.01(\mathrm{C}-2)^{* *}, 60.25\left(\mathrm{C}-1^{\prime \prime}\right)^{* * *}$, 69.77 (C$\left.6^{\prime}\right)^{* * *}, 73.21\left(\mathrm{C}-2^{\prime}\right)^{* * *}, 73.96\left(\mathrm{C}-4^{\prime}\right)^{* * *}, 172.10(\mathrm{C}-1)$; ${ }^{*}$,**,*** distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=2960,2930,2905,2860$, $1740,1465,1380,1310,1255,1180,1150,1120,1090,1065,1025,865,835$, $775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$ (344.6): C 62.74, H 10.53; found: C 60.77, H 9.58.
(2E,6S,7R)-7-Hydroxy-4,6-dimethyl-2,4-octadienoic acid ethyl ester as a inseparable 89:11 mixture of two unassigned $C^{4}-C^{5}$-bond isomers (24): A solution of tributyl(ethoxycarbonylmethyl)phosphonium bromide (26, $468 \mathrm{mg}, 1.27 \mathrm{mmol}, 2.6$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was washed with aqueous $\mathrm{NaOH}(1 \mathrm{~m}, 2 \times 15 \mathrm{~mL})$, dried with MgSO_{4} and diluted with toluene (3 mL). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was successively evaporated in vacuo. This solution was then transferred via cannula to a refluxing solution of lactol $\mathbf{1 8}$ ($99.1 \mathrm{mg}, \quad 0.485 \mathrm{mmol}$) and benzoic acid $(10.9 \mathrm{mg}, \quad 0.0893 \mathrm{mmol}$, $18 \mathrm{~mol} \%$) in toluene (5 mL). After stirring for 2 h , the reaction mixture was cooled to RT and purified by flash chromatography (2.5 cm , cyclohexane/EtOAc 5:1) to afford the title compound 24 ($54.6 \mathrm{mg}, 53 \%$) as a light yellow liquid. ${ }^{1} \mathrm{H}$ NMR (500 MHz ; slightly contaminated): major isomer: $\delta=1.02$ (d, $\left.J_{6-\mathrm{Me}, 6}=6.8,6-\mathrm{Me}\right), 1.18\left(\mathrm{~d}, J_{8,7}=6.3,8-\mathrm{H}_{3}\right), 1.30(\mathrm{t}$, $\left.J_{2^{\prime}, 1^{\prime}}=7.2,2^{\prime}-\mathrm{H}_{3}\right), 1.60-1.88(\mathrm{~m}, \mathrm{OH})$, superimposed by $1.82\left(\mathrm{~d},{ }^{4} J_{4-\mathrm{Me}, 5}=\right.$ $1.2,4-\mathrm{Me}), 2.57$ (dqd, $\left.J_{6,5}=10.0, J_{6,6-\mathrm{Me}}=6.5, J_{6,7}=6.4,6-\mathrm{H}\right), 3.67(\mathrm{dq}$, $\left.J_{7,6}=J_{7,8}=6.2,7-\mathrm{H}\right), 4.21\left(\mathrm{q}, J_{1^{\prime}, 2^{2}}=7.1,1^{\prime}-\mathrm{H}_{2}\right), 5.79\left(\mathrm{brd}, J_{5,6}=10.0,5-\mathrm{H}\right)$, 5.83 (dd, $\left.J_{\text {trans }}=15.7,{ }^{5} J_{2,5}=0.5,2-\mathrm{H}\right), 7.34$ (dd, $\left.J_{\text {trans }}=15.7,{ }^{4} J_{3,5}=0.6,3-\mathrm{H}\right)$; minor isomer*: $\delta=1.31\left(\mathrm{t}, J_{2,1}=7.2,2^{\prime}-\mathrm{H}_{3}\right), 1.90\left(\mathrm{~d},{ }^{4} J_{4-\mathrm{Me}, 5}=1.2,4-\mathrm{Me}\right)$, $2.76\left(\mathrm{brdqd}, J_{6,5}=10.3, J_{6,6-\mathrm{Me}}=J_{6,7}=6.6,6-\mathrm{H}\right), 3.64\left(\mathrm{dq}, J_{7,6}=J_{7,8}=6.2,7-\right.$ H), $4.23\left(\mathrm{q}, J_{1^{\prime}, 2^{\prime}}=7.1,1^{\prime}-\mathrm{H}_{2}\right), 5.64\left(\mathrm{brd}, J_{5,6}=10.0,5-\mathrm{H}\right), 5.93\left(\mathrm{dd}, J_{\text {trans }}=\right.$ $\left.15.6,{ }^{5} J_{2.5}=0.7,2-\mathrm{H}\right), 7.71\left(\mathrm{~d}, J_{\text {trans }}=15.5,3-\mathrm{H}\right)$; * other signals are superimposed; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): major isomer: $\delta=12.57,14.28,16.45$ and $20.53\left(4-\mathrm{CH}_{3}, 6-\mathrm{CH}_{3}, \mathrm{C}-8, \mathrm{C}-2^{\prime}\right), 40.87(\mathrm{C}-6), 60.20\left(\mathrm{C}-1^{\prime}\right)^{*}, 71.49(\mathrm{C}-$ 7)*, 116.44, 140.97, 143.30, 149.23 (C-2, C-3, C-4, C-5), 167.39 (C-1); * interchangeable; minor isomer*: $\delta=13.60,17.21,20.28$ and $20.55\left(4-\mathrm{CH}_{3}, 6-\right.$ $\left.\mathrm{CH}_{3}, \mathrm{C}-8, \mathrm{C}-2^{\prime}\right), 39.89$ (C-6), 60.33 (C-1')**, 71.54 (C-7)**, 167.45 (C-1); * other signals superimposed; ** interchangeable; IR (film): $\tilde{v}=3450$, 2975, 2930, 2875, 1715, 1625, 1450, 1395, 1370, 1310, 1275, 1175, 1095, 1095, 1030, 985, 940, $905,850 \mathrm{~cm}^{-1} ; m / z: 212.1409 \pm 5 \mathrm{mDa}\left[M^{+}\right]$confirmed by HRMS (EI, 70 eV); elemental analysis calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}$ (212.3): C 67.89, H 9.50; found: C 67.28, H 9.98.

Tributyl(ethoxycarbonylmethyl)phosphonium bromide (26): At $0^{\circ} \mathrm{C}$, a solution of bromoacetic acid ethyl ester $(13.4 \mathrm{~mL}, 20.2 \mathrm{~g}, 121 \mathrm{mmol}$, 1.0 equiv) in toluene (20 mL) was added dropwise to a solution of tributylphosphine ($30 \mathrm{~mL}, 24 \mathrm{~g}, 0.12 \mathrm{~mol}$) in toluene $(120 \mathrm{~mL})$. The reaction mixture was allowed to reach RT, and after 22 h the resulting precipitate was filtered and dried in vacuo ($6 \times 10^{-4} \mathrm{mbar}$) at $50^{\circ} \mathrm{C}$ for 20 h to afford the title compound $26(37.9 \mathrm{~g}, 86 \%)$ as a colorless solid. M.p. $96^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta=0.98\left(\mathrm{t}, J_{4^{\prime}, 3^{\prime}}=7.0,3 \times 4^{\prime}-\mathrm{H}_{3}\right), 1.31\left(\mathrm{t}, J_{2,1}=7.2,2-\right.$ $\left.\mathrm{H}_{3}\right), 1.48-1.64\left(\mathrm{~m}, 3 \times 2^{\prime}-\mathrm{H}_{2}, 3 \times 3^{\prime}-\mathrm{H}_{2}\right), 2.61\left(\mathrm{~m}, 3 \times 1^{\prime}-\mathrm{H}_{2}\right), 4.18(\mathrm{~d}$, ${ }^{2} J_{1^{\prime \prime}, \mathrm{P}}=13.1,1^{\prime \prime}-\mathrm{H}_{2}$), partly superimposed by $4.22\left(\mathrm{q}, J_{1,2}=7.1,1-\mathrm{H}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (100.6 MHz): $\delta=13.38$ (3-fold intensity, $\mathrm{s}, 3 \times \mathrm{C}-4^{\prime}$), 13.95 (s, $\mathrm{C}-2$), 19.56 (3-fold intensity, d, ${ }^{1} \mathrm{~J}_{\mathrm{C}-1, \mathrm{P}}=47,3 \times \mathrm{C}-1^{\prime}$), 23.80 (3-fold intensity, brs, $\left.3 \times \mathrm{C}-2^{\prime}\right), 23.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-3^{3}, \mathrm{P}}=10,3 \times \mathrm{C}-3^{\prime}\right), 27.55\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-1^{1}, \mathrm{P}}=54, \mathrm{C}-\right.$ $1^{\prime \prime}$), $62.80(\mathrm{~s}, \mathrm{C}-1), 165.68(\mathrm{~s}, \mathrm{C}=\mathrm{O})$; IR $\left(\mathrm{CDCl}_{3}\right): \tilde{v}=2965,2935,2875$, $2205,1725,1465,1400,1380,1310,1190,1135,1095,1020,930,925,890$, $885 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{BrO}_{2} \mathrm{P}$ (369.3): C 52.03, H 9.28; found: C 52.15, H 9.41.
(2E,4R,5S,6S,7R)-7-(tert-Butyldimethylsiloxy)-5-(methoxymethoxy)-4,6-dimethyl-2-octenoic acid ethyl ester (28): At $0^{\circ} \mathrm{C}$ tert-butyldimethylsilyl triflate ($77 \mu \mathrm{~L}, 89 \mathrm{mg}, 0.34 \mathrm{mmol}, 2.0$ equiv) was added to a solution of alcohol $22(46.3 \mathrm{mg}, \quad 0.169 \mathrm{mmol})$ and 2,6-lutidine $(70 \mu \mathrm{~L}, 64 \mathrm{mg}$, $0.60 \mathrm{mmol}, 3.6$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$. After stirring at this temperature for 15 h , the reaction mixture was hydrolyzed with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 10 mL), and the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo to afford an oily residue which was sub-
mitted to flash chromatography (cyclohexane/EtOAc 13:1) to afford the title compound $28(55.2 \mathrm{mg}, 84 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=+14.0(c=$ 1.03 in CDCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.046$ and $0.050\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.86\left(\mathrm{~d}, J_{6-\mathrm{Me}, 6}=7.1,6-\mathrm{Me}\right)^{*}, 0.88\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.06\left(\mathrm{~d}, J_{8,7}=6.2,8-\mathrm{H}_{3}\right)^{*}$, $1.08\left(\mathrm{~d}, J_{4-\mathrm{Me}, 4}=6.8,4-\mathrm{Me}\right)^{*}, 1.29\left(\mathrm{t}, J_{2^{\prime}, 1^{\prime}}=7.2,2^{\prime}-\mathrm{H}_{3}\right), 1.85\left(\mathrm{qdd}, J_{6,6-\mathrm{Me}}=\right.$ $J_{6,5}=7.2, J_{6,7}=4.5,6-\mathrm{H}$), 2.61 (qddd, $J_{4,4-\mathrm{Me}}=J_{4,3}=6.9, J_{4,5}=3.7,{ }^{4} J_{4,2}=1.4$, $4-\mathrm{H}), 3.37(\mathrm{~s}, \mathrm{OMe}), 3.41$ (dd, $\left.J_{5,6}=7.7, J_{5,4}=3.8,5-\mathrm{H}\right), 4.05\left(\mathrm{qd}, J_{7,8}=6.2\right.$, $\left.J_{7,6}=4.6,7-\mathrm{H}\right), 4.19\left(\mathrm{q}, J_{1^{\prime}, 2^{\prime}}=7.1,1^{\prime}-\mathrm{H}_{2}\right)$, AB signal $\left(\delta_{\mathrm{A}}=4.55, \delta_{\mathrm{B}}=4.56\right.$, $\left.J_{\mathrm{AB}}=6.9, \mathrm{OCH}_{2} \mathrm{OMe}\right), 5.83\left(\mathrm{dd}, J_{\text {Irans }}=15.8,{ }^{4} J_{2,4}=1.4,2-\mathrm{H}\right), 7.03(\mathrm{dd}$, $\left.J_{\text {trans }}=15.8, J_{3,4}=7.4,3-\mathrm{H}\right)$; * distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): $\delta=-4.75$ and $-4.32\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.38$ (6$\left.\mathrm{CH}_{3}\right)^{*}, 13.13\left(4-\mathrm{CH}_{3}\right)^{*}, 14.27\left(\mathrm{C}-2^{\prime}\right)^{*}, 18.04\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.52(\mathrm{C}-8)^{*}$, 25.87 [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], 38.77 (C-4)**, 43.15 (C-6)**, 56.09 $\left(\mathrm{OCH}_{3}\right)^{* * *}, 60.20\left(\mathrm{C}-1^{\prime}\right)^{* * *}, 68.14(\mathrm{C}-7)^{* * *}, 83.19(\mathrm{C}-5)^{* * *}, 97.65$ $\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 120.55(\mathrm{C}-2), 152.64(\mathrm{C}-3), 166.63(\mathrm{C}-1) ;{ }^{*}, * *,{ }^{* * *}$ distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=2955,2930,2890$, 2835, 1720, 1650, 1470, 1465, 1385, 1370, 1330, 1300, 1255, 1180, 1160, 1140, 1100, 1035, 995, 965, 940, 835, $775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}$ (388.6): C 61.81, H 10.37; found: C 61.86, H 10.35 .
(2E,4R,5S,6S,7R)-7-(tert-Butyldimethylsiloxy)-5-(methoxymethoxy)-4,6-dimethyl-2-octenal (29): At $-78^{\circ} \mathrm{C}$ DIBAL (1.5 m in toluene, 1.8 mL , 2.7 mmol , 3.1 equiv) was added dropwise to a solution of ethyl ester 28 ($340 \mathrm{mg}, 0.875 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. After stirring for 80 min , the reaction mixture was poured into aqueous saturated Rochelle's salt $(50 \mathrm{~mL})$ and stirred at RT for 1 h . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. Evaporation of the solvent in vacuo gave a residue which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$ and treated with $\mathrm{MnO}_{2}(1.69 \mathrm{~g}, 19.6 \mathrm{mmol}$, 22 equiv). After 4 h stirring at RT, the reaction mixture was filtered through a pad of Celite, and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times$ 5 mL). The filtrate and washings were evaporated in vacuo to afford a residue which was submitted to flash chromatography (cyclohexane/ EtOAc 8:1) to afford aldehyde 29 ($269 \mathrm{mg}, 89 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=+7.0\left(c=1.17\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.05$ and 0.06 $\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.857\left(\mathrm{~d}, J_{6-\mathrm{Me}, 6}=6.9,6-\mathrm{Me}\right)^{*}$, superimposes in part 0.864 ($\mathrm{s}, \mathrm{SiCMe}_{3}$), $1.05\left(\mathrm{~d}, J_{8,7}=6.3,8-\mathrm{H}_{3}\right)^{*}, 1.11\left(\mathrm{~d}, J_{4-\mathrm{Me}, 4}=6.8,4-\mathrm{Me}\right)^{*}, 1.85$ (dqd, $\left.J_{6,5}=8.0, J_{6,6-\mathrm{Me}}=7.1, J_{6,7}=4.3,6-\mathrm{H}\right), 2.74\left(\mathrm{qddd}, J_{4,4-\mathrm{Me}}=J_{4,3}=6.8\right.$, $\left.J_{4,5}=3.3,{ }^{4} J_{4,2}=1.5,4-\mathrm{H}\right), 3.33(\mathrm{~s}, \mathrm{OMe}), 3.45\left(\mathrm{dd}, J_{5,6}=8.1, J_{5,4}=3.4,5-\mathrm{H}\right)$, $4.02\left(\mathrm{qd}, J_{7,8}=6.3, J_{7,6}=4.4,7-\mathrm{H}\right)$, extreme AB signal $\left(\delta_{\mathrm{A}}=4.54, \delta_{\mathrm{B}}=4.55\right.$, $\left.J_{\mathrm{AB}}=6.9, \mathrm{OCH}_{2} \mathrm{OMe}\right), 6.11$ (ddd, $\left.J_{\text {trans }}=15.7, J_{2,1}=7.8,{ }^{4} J_{2,4}=1.5,2-\mathrm{H}\right)$, $6.95\left(\mathrm{dd}, J_{\text {trans }}=15.8, J_{3,4}=6.8,3-\mathrm{H}\right), 9.52\left(\mathrm{~d}, J_{1,2}=7.7,1-\mathrm{H}\right)$; * distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): $\delta=-4.71$ and $-4.29\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.70\left(6-\mathrm{CH}_{3}\right)^{*}, 12.79\left(4-\mathrm{CH}_{3}\right)^{*}, 18.04\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 18.65 (C-8)*, 25.86 [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $39.19(\mathrm{C}-4)^{*}, 43.21$ (C$6)^{*}, 56.08\left(\mathrm{OCH}_{3}\right)^{*}, 68.31(\mathrm{C}-7)^{*}, 83.24(\mathrm{C}-5)^{*}, 97.68\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, 131.81 (C-2), 162.52 (C-3), 195.06 (C-1); * assignment by comparison with the analogous resonance of ethyl ester 28-criterion of assignment: $\Delta(\delta) \leq 0.5 \mathrm{ppm}$; IR (film): $\tilde{v}=2955,2930,2890,2835,1695,1635,1465$, $1385,1255,1150,1100,1035,965,835,775 \mathrm{~cm}^{-1} ; m / z: 313.2199 \pm 5 \mathrm{mDa}$ [$\left.M^{+}-\mathrm{OMe}\right]$ confirmed by HRMS (EI, 70 eV); elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$ (344.6): C 62.74, H 10.53; found: C 62.93, H 10.78.

(2E,4R,5S,6R,7R)-5-(tert-Butyldimethylsiloxy)-7-(methoxymethoxy)-4,6-

 dimethyl-2-octenoic acid ethyl ester (30): At $0^{\circ} \mathrm{C}$ (chloromethyl) methyl ether (0.66 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.70 \mathrm{~mL}, 0.46 \mathrm{mmol}, 5.3$ equiv) was added dropwise to a solution of alcohol $21(30.2 \mathrm{mg}, 0.0876 \mathrm{mmol})$ and diisopropylethylamine ($90 \mu \mathrm{~L}, 68 \mathrm{mg}, 0.53 \mathrm{mmol}, 6.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. After 40 min stirring the reaction mixture was allowed to reach RT and stirred for 6 h at this temperature. (Chloromethyl) methyl ether (0.66 m in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.40 \mathrm{~mL}, 0.26 \mathrm{mmol}, 3.0$ equiv), diisopropylethylamine ($60 \mu \mathrm{~L}$, $45 \mathrm{mg}, 0.35 \mathrm{mmol}, 4.0$ equiv) and tetrabutylammonium iodide (4.4 mg , $0.012 \mathrm{mmol}, 14 \mathrm{~mol} \%$) were added, and the reaction was terminated after stirring for another 12 h by addition of water (8 mL). Stirring was continued for 1 h to destroy the excess of (chloromethyl) methyl ether. Then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. The solvent was evaporated in vacuo to afford an oily residue which was submitted to flash chromatography (cyclohexane/EtOAc 10:1) to afford the title compound $30(29.0 \mathrm{mg}, 85 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=+10.6(c=0.60$ in CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.03$ and $0.05\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.87(\mathrm{~d}$, $\left.J_{6-\mathrm{Me}, 6}=7.1,6-\mathrm{Me}\right)^{*}, 0.91\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.06\left(\mathrm{~d}, J_{4-\mathrm{Me}, 4}=6.8,4-\mathrm{Me}\right)^{*}, 1.09(\mathrm{~d}$, $\left.J_{8,7}=6.2,8-\mathrm{H}_{3}\right)^{*}, 1.29\left(\mathrm{t}, J_{2^{\prime}, 1^{\prime}}=7.2,2^{\prime}-\mathrm{H}_{3}\right), 1.90\left(\mathrm{dqd}, J_{6,5}=J_{6,6-\mathrm{Me}}=6.9\right.$,$J_{6,7}=5.3,6-\mathrm{H}$), 2.55 (poorly resolved qddd, $J_{4,4 \mathrm{Me}}=J_{4,3}=7.0, J_{4,5}=4.0$, $\left.{ }^{4} J_{4,2}=1.3,4-\mathrm{H}\right), 3.35(\mathrm{~s}, \mathrm{OMe}), 3.64\left(\mathrm{dd}, J_{5,6}=6.5, J_{5,4}=4.0,5-\mathrm{H}\right), 3.85(\mathrm{qd}$, $\left.J_{7,8}=J_{7,6}=6.0,7-\mathrm{H}\right), 4.19[\mathrm{~m}$; perhaps interpretable as extreme AB signal $\left(\delta_{\mathrm{A}}=4.18, \delta_{\mathrm{B}}=4.20, J_{\mathrm{AB}}=3.2\right.$, in addition split by $\left.\left.J_{\mathrm{A}, 2^{\prime}}=J_{\mathrm{B}, 2^{\prime}}=7.1,1^{\prime}-\mathrm{H}_{2}\right)\right]$, AB signal $\left(\delta_{\mathrm{A}}=4.60, \delta_{\mathrm{B}}=4.64, J_{\mathrm{AB}}=6.8, \mathrm{OCH}_{2} \mathrm{OMe}\right), 5.80\left(\mathrm{dd}, J_{\text {trans }}=\right.$ $\left.15.7,{ }^{4} J_{2.4}=1.4,2-\mathrm{H}\right), 7.00\left(\mathrm{dd}, J_{\text {trans }}=15.8, J_{3.4}=7.6,3-\mathrm{H}\right)$; * distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) *: \delta=-4.00$ and $-3.95\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.75\left(6-\mathrm{CH}_{3}\right)^{*}, 13.69\left(4-\mathrm{CH}_{3}\right)^{*}, 14.26$ or $14.28(\mathrm{C}-$ $\left.2^{\prime}\right)^{* *}, 16.13(\mathrm{C}-8)^{*}, 18.49\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$], 26.06 [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $39.80(\mathrm{C}-4)^{* * *}, 42.91(\mathrm{C}-6)^{* * *}, 55.31\left(\mathrm{OCH}_{3}\right)^{* * * *}, 60.14\left(\mathrm{C}-1^{\prime}\right)^{* * * *}$, $73.38(\mathrm{C}-7)^{* * * *}, 76.24(\mathrm{C}-5)^{* * * *}, 95.00\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 120.49(\mathrm{C}-2)$, 153.26 (C-3), 166.66 (C-1); * distinguishable by a C,H-correlation spectrum; ** two resonances of the same intensity, i.e., one is based on aalbeit unknown-contaminant; ${ }^{* * *, \text {, } * * * *}$ distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=2960,2930,2885,2860,1720,1655,1465$, $1370,1265,1185,1110,1045,840,780 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}$ (388.6): C 61.81, H 10.37; found: C 62.06, H 10.46.

(4E,6R,7S,8S,9R)-9-(tert-Butyldimethylsiloxy)-7-(methoxymethoxy)-6,8-

 dimethyl-1,4-decadien-3-ol (31) as a $50: 50$ mixture of two $\mathbf{C}-3$ diastereomers: At $-78^{\circ} \mathrm{C}$ vinylmagnesium bromide (1.6 m in $\mathrm{Et}_{2} \mathrm{O}, 0.50 \mathrm{~mL}$, $0.8 \mathrm{mmol}, 2.3$ equiv) was added dropwise to a solution of aldehyde 29 $(119.0 \mathrm{mg}, 0.3454 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. After stirring for 70 min , the reaction was terminated by addition of $\mathrm{MeOH}(0.5 \mathrm{~mL})$ in one portion and after that aqueous semisaturated $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$. The aqueous phase was extracted with $t \mathrm{BuOMe}(3 \times 12 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. Evaporation of the solvent in vacuo gave a residue which was submitted to flash chromatography (cyclohexane/EtOAc 6:1) to afford divinyl carbinol $\mathbf{3 1}$ ($120.1 \mathrm{mg}, 93 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$; a $50: 50$ mixture of two diastereom-ers-in case of differing resonances for analogous protons the signals are indicated with "dia.-A" and "dia.-B"): $\delta=0.04$ and $0.05\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.84\left(\mathrm{~d}, J_{8-\mathrm{Me}, 8}=7.1,8-\mathrm{Me}\right)^{*}, 0.89\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right), 1.02\left[\mathrm{~d}, J_{6,6-\mathrm{Me}}=6.9,6-\mathrm{Me}\right.$ (dia.-A)]*, superimposed by $1.03\left[\mathrm{~d}, J_{6-\mathrm{Me} .6}=6.8,6-\mathrm{Me}(\mathrm{dia} .-\mathrm{B})\right]^{*}, 1.04$ (d, $\left.J_{10,9}=6.2,10-\mathrm{H}_{3}\right)^{*}, 1.70(\mathrm{brs}, \mathrm{OH}), 1.84\left(\mathrm{dqd}, J_{8,7}=8.3, J_{8,8-\mathrm{Me}}=7.1, J_{8,9}=\right.$ $4.3,8-\mathrm{H}), 2.45(\mathrm{~m}, 6-\mathrm{H}), 3.29\left(\mathrm{brdd}, J_{7.8}=8.4, J_{7.6}=3.4,7-\mathrm{H}\right), 3.370[\mathrm{~s}$, OMe (dia. A)], poorly separated from 3.371 [s, OMe (dia. B)], 4.07 [qd, $J_{9,10}=6.2, J_{9,8}=4.5,9-\mathrm{H}$ (dia.-A)], superimposes in part 4.09 [qd, $J_{9,10}=$ $6.3, J_{9,8}=4.1,9-\mathrm{H}$ (dia.-B)], AB signal $\left[\delta_{\mathrm{A}}=4.54, \delta_{\mathrm{B}}=4.58, J_{\mathrm{AB}}=6.9\right.$, $\mathrm{OCH}_{2} \mathrm{OMe}$ (dia.-A)], superimposed by AB signal $\left[\delta_{\mathrm{A}}=4.54, \delta_{\mathrm{B}}=4.59\right.$, $J_{\mathrm{AB}}=6.8, \mathrm{OCH}_{2} \mathrm{OMe}$ (dia.-B)], superimposed by 4.60 (brdd, $J_{3,2}=J_{3,4}=$ $7.2,3-\mathrm{H}), 5.13\left(\mathrm{dm}, J_{\text {cis }}=10.3,1-\mathrm{H}^{E}\right), 5.26\left(\mathrm{ddd}, J_{\text {trans }}=17.2, J_{\text {gem }}={ }^{4} J_{1}\right.$. $\left.\mathrm{H}(Z), 3=1.4,1-\mathrm{H}^{Z}\right), 5.53\left(\mathrm{ddd}, J_{\text {trans }}=15.6, J_{4,3}=6.5,{ }^{4} J_{4,6}=1.2,4-\mathrm{H}\right), 5.77\{\mathrm{~m}$, perhaps interpretable as two dd's: 5.76 [dd, $J_{\text {trans }}=17.1, J_{5,6}=8.1,{ }^{4} J_{5,3}=$ $1.2,5-\mathrm{H}$ (dia. A)] and $5.78\left[\mathrm{dd}, J_{\text {trans }}=15.4, J_{5.6}=7.3,{ }^{4} J_{5,3}=1.2,5-\mathrm{H}\right.$ (dia. B)]\}, 5.90 (m , probably interpretable as ddd with a small extra-peak indicating transition to higher-order spectrum, $J_{\text {trans }}=17.2, J_{\text {cis }}=10.4, J_{2,3}=5.9$, 2-H); * distinguishable by an H, H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz , most signals with two resonances due to the existence of two diastereomers): $\delta=-4.67$ (1.5 -fold intensity), -4.36 and -4.32 $\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.13$ and $10.17\left(8-\mathrm{CH}_{3}\right)^{*}, 13.31$ and $13.50\left(6-\mathrm{CH}_{3}\right)^{*}, 18.06$, 18.07, 18.19 and $18.22\left[\mathrm{C}-10, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]^{*}, 25.88$ [3-fold intensity, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 38.12$ and $38.29(\mathrm{C}-6)^{*}, 42.90$ and $42.96(\mathrm{C}-8)^{*}, 56.02$ $\left(\mathrm{OCH}_{3}\right)^{*}, 68.09$ and $68.16(\mathrm{C}-9)^{*}, 73.84(\mathrm{C}-3)^{*}, 84.59$ and $84.67(\mathrm{C}-7)^{*}$, $97.94\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 114.84(\mathrm{C}-1)^{* *}, 130.19$ and $130.27(\mathrm{C}-4)^{* *}, 136.58$ and $136.77(\mathrm{C}-5)^{* *}, 139.61$ and $139.65(\mathrm{C}-2)^{* *}$; * assignment by comparison with the analogous resonance of ethyl ester 28 -criterion of assignment: $\Delta(\delta) \leq 1.2 \mathrm{ppm}$; ** distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=3415,2955,2930,2885,2855,1470,1465,1385,1360,1255$, $1140,1105,1035,990,970,920,835,800,775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$ (372.6): C 64.47, H 10.82; found: C 64.76, H 11.00 .
(2E,6E,8E,10R,11S,12S,13R)-13-(tert-Butyldimethylsiloxy)-11-(methoxy-

 methoxy)-10,12-dimethyl-2,6,8-tetradecatrienoic acid methyl ester (33): A solution of aldehyde $35(91.0 \mathrm{mg}, 0.228 \mathrm{mmol})$ and (methoxycarbonylmethylen)triphenylphosphorane ($234 \mathrm{mg}, 0.701 \mathrm{mmol}, 3.1$ equiv) in toluene $(3 \mathrm{~mL})$ was stirred at RT for 16 h . The reaction mixture was submitted to flash chromatography (cyclohexane/EtOAc 18:1) to afford α, β-unsaturated methyl ester $\mathbf{3 3}(92.7 \mathrm{mg}, 89 \%)$ as a pure diastereomer and a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=+11.9\left(c=0.52\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.036$ and $0.044\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85\left(\mathrm{~d}, J_{12-\mathrm{Me}, 12}=7.1,12-\mathrm{Me}\right)^{*}, 0.88\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.02$ $\left(\mathrm{d}, J_{10,10-\mathrm{Me}}=6.8,10-\mathrm{Me}\right)^{*}, 1.05\left(\mathrm{~d}, J_{14,13}=6.2,14-\mathrm{H}_{3}\right)^{*}, 1.84\left(\mathrm{dqd}, J_{12,11}=\right.$$\left.J_{12,12-\mathrm{Me}}=7.2, J_{12,13}=4.5,12-\mathrm{H}\right)^{*}, 2.23\left(\mathrm{brtd}, J_{5,4}=J_{5,6}=7.0,5-\mathrm{H}_{2}\right)^{* *}, 2.30$ (td with small extra-peaks indicating transition to higher-order spectrum and/or unresolved $\left.{ }^{4} J_{4,2}, J_{4,5}=J_{4,3}=7.0,4-\mathrm{H}_{2}\right) * *, 2.44$ (brdqd, $J_{10,9}=J_{10,10}$. $\left.\mathrm{Me}=6.9, J_{10,11}=4.2,10-\mathrm{H}\right)^{*}, 3.29\left(\mathrm{dd}, J_{11,12}=7.8, J_{11,10}=3.9,11-\mathrm{H}\right)^{*}, 3.37(\mathrm{~s}$, $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right)^{*}, 3.73\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.09\left(\mathrm{qd}, J_{13,14}=6.2, J_{13,12}=4.5,13-\mathrm{H}\right) *$, AB signal $\left(\delta_{\mathrm{A}}=4.56, \delta_{\mathrm{B}}=4.59, J_{\mathrm{AB}}=6.6, \mathrm{OCH}_{2} \mathrm{OMe}\right)^{*}, 5.56$ (dt with small extra-peaks indicating transition to higher-order spectrum, $J_{\text {trans }}=$ $\left.14.5, J_{6.5}=7.0,6-\mathrm{H}\right)^{*}, 5.62\left(\mathrm{dd}, J_{\text {trans }}=14.5, J_{9,10}=7.6,9-\mathrm{H}\right)^{*}, 5.84$ (dt with small extra-peaks indicating transition to higher-order spectrum, $J_{\text {trans }}=$ $\left.15.7,{ }^{4} J_{2,4}=1.5,2-\mathrm{H}\right), 6.01(\mathrm{~m}, 7-\mathrm{H}, 8-\mathrm{H})^{*}, 6.96\left(\mathrm{dt}, J_{\text {trans }}=15.7, J_{3,4}=6.7,3-\right.$ H); * assignment by comparison with the analogous resonance of aldehyde 35-criterion of assignment: $\Delta(\delta) \leq 0.02 \mathrm{ppm}$; ** distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR $(125.7 \mathrm{MHz}) *: \delta=? 4.69$ and ? $4.32\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.21\left(12-\mathrm{CH}_{3}\right)^{*}, 14.09\left(10-\mathrm{CH}_{3}\right)^{*}, 18.06\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 18.33 (C-14)*, 25.89 [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $30.99(\mathrm{C}-5)^{* *}, 32.02$ (C$4)^{* *}, \quad 38.85(\mathrm{C}-10)^{*}, \quad 42.98 \quad(\mathrm{C}-12)^{*}, \quad 51.40 \quad\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), \quad 56.07$ $\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)^{*}, 68.10(\mathrm{C}-13)^{*}, 84.42(\mathrm{C}-9)^{*}, 97.87\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 121.32$ (C-2)***, 129.19 and 131.44 (C-7, C-8) ${ }^{* * *}, 130.59$ (C-6)***, 136.86 (C$9)^{* * *}, 148.60(\mathrm{C}-3)^{* * *}, 167.02$ (C-1); * assignment by comparison with the analogous resonance of aldehyde 35-criterion of assignment: $\Delta(\delta)$ $\leq 0.5 \mathrm{ppm}$; ${ }^{* *}$,*** distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=2955,2930,2890,2855,1730,1660,1460,1440,1380,1315$, $1270,1255,1200,1170,1140,1100,1035,990,965,835,775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}$ (454.7): C 66.03, H 10.20; found: C 66.29, H 10.31 .
(2E,6E,8E,10R,11S,12S,13R)-13-(tert-Butyldimethylsiloxy)-11-(methoxy-methoxy)-10,12-dimethyl-2,4,6-tetradecatrienal (34): At $-78^{\circ} \mathrm{C}$ DIBAL (1.11 m in toluene, $0.40 \mathrm{~mL}, 0.44 \mathrm{mmol}, 4.1$ equiv) was added dropwise to a solution of methyl ester $33(49.0 \mathrm{mg}, 0.108 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After stirring for 2.5 h , the reaction mixture was poured into aqueous saturated Rochelle's salt (8 mL) and stirred at RT for 1 h . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. Evaporation of the solvent in vacuo gave a residue which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and treated with MnO_{2} ($190 \mathrm{~g}, 2.19 \mathrm{mmol}, 20$ equiv). After 14 h stirring at RT, the reaction mixture was filtered through a pad of Celite, and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The filtrate and washings were evaporated in vacuo to afford a residue which was submitted to flash chromatography (cyclohexane/EtOAc 10:1) to afford aldehyde $\mathbf{3 4}(40.6 \mathrm{mg}, 89 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=+12.5\left(c=0.42\right.$ in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}): \delta=$ 0.036 and $0.044\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85\left(\mathrm{~d}, J_{12-\mathrm{Me}, 12}=7.1,12-\mathrm{Me}\right)^{*}, 0.88(\mathrm{~s}$, $\left.\mathrm{SiCMe}_{3}\right), 1.03\left(\mathrm{~d}, J_{10,10-\mathrm{Me}}=6.8,10-\mathrm{Me}\right)^{*}, 1.05\left(\mathrm{~d}, J_{14,13}=6.2,14-\mathrm{H}_{3}\right)^{*}, 1.84$ $\left(\mathrm{dqd}, J_{12,11}=J_{12,12-\mathrm{Me}}=7.2, J_{12,13}=4.5,12-\mathrm{H}\right)^{*}, 2.30\left(\mathrm{brtd}, J_{5,4}=J_{5,6}=7.2,5-\right.$ $\left.\mathrm{H}_{2}\right)^{* *}, 2.44$ (td with small extra-peaks indicating transition to higherorder spectrum and/or unresolved ${ }^{4} J_{4,2}, J_{4,5} \approx J_{4,3} \approx 7.0,4-\mathrm{H}_{2}$)**, superimposed by ca. $2.45(\mathrm{~m}, 10-\mathrm{H})^{*}, 3.30\left(\mathrm{dd}, J_{11,12}=7.8, J_{11,10}=4.0,11-\mathrm{H}\right)^{*}, 3.37$ (s, OMe), $4.09\left(\mathrm{qd}, J_{13,14}=6.2, J_{13,12}=4.5,13-\mathrm{H}\right)^{*}$, AB signal $\left(\delta_{\mathrm{A}}=4.56\right.$, $\left.\delta_{\mathrm{B}}=4.59, J_{\mathrm{AB}}=6.8, \mathrm{OCH}_{2} \mathrm{OMe}\right), 5.56\left(\mathrm{dt}, J_{\text {trans }}=14.3, J_{6.5}=7.0,6-\mathrm{H}\right)^{*}$, $5.64\left(\mathrm{dd}, J_{\text {trans }}=14.5, J_{9,10}=7.5,9-\mathrm{H}\right)^{*}, 6.03(\mathrm{~m}, 7-\mathrm{H}, 8-\mathrm{H})^{*}, 6.14$ (ddt, $\left.J_{\text {trans }}=15.7, J_{2,1}=7.9,{ }^{4} J_{2,4}=1.5,2-\mathrm{H}\right), 6.84\left(\mathrm{dt}, J_{\text {trans }}=15.7, J_{3,4}=6.7,3-\mathrm{H}\right)$, 9.51 (d, $\left.J_{1,2}=7.8,1-\mathrm{H}\right)$; * assignment by comparison with the analogous resonance of methyl ester $\mathbf{3 3}$-criterion of assignment: $\Delta(\delta) \leq 0.02 \mathrm{ppm}$; ** distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C} \mathrm{NMR}$ (125.7 MHz; contains $4 \mathrm{~mol} \%$ of an unassigned diastereomer)*: $\delta=$ -4.69 and $-4.31\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.23\left(12-\mathrm{CH}_{3}\right)^{*}, 14.08\left(10-\mathrm{CH}_{3}\right)^{*}, 18.05$ $\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.33(\mathrm{C}-14)^{*}, 25.89$ [3-fold intensity, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $30.79(\mathrm{C}-$ 5)*, 32.41 (C-4)*, $38.86(\mathrm{C}-10)^{*}, 42.98(\mathrm{C}-12)^{*}, 56.07\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)^{*}$, $68.10(\mathrm{C}-13)^{*}, 84.39(\mathrm{C}-11)^{*}, 97.84\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 129.01$ and $131.81(\mathrm{C}-$ 7, C-8)**, 130.12 (C-6)**, 133.31 (C-2)**, 137.24 (C-9)**, 157.62 (C-3)**, 193.93 (C-1); * assignment by comparison with the analogous resonance of methyl ester 33-criterion of assignment: $\Delta(\delta) \leq 0.4 \mathrm{ppm} ; * *$ distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=2955,2930,2855$, 1695, 1640, 1600, 1470, 1460, 1450, 1385, 1255, 1120, 1035, 1005, 990, 970, $835,775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}$ (424.7): C 67.87, H 10.44; found: C 68.15, H 10.66.

(4E,6E,8R,9S,10S,11R)-11-(tert-Butyldimethylsiloxy)-9-(methoxyme-

thoxy)-8,10-dimethyl-4,6-dodecadienal (35): A refluxing solution of divinyl carbinol $31(69.6 \mathrm{mg}, 0.187 \mathrm{mmol})$ and $\mathrm{Hg}(\mathrm{OAc})_{2}(64.1 \mathrm{mg}$, $0.201 \mathrm{mmol}, 1.1$ equiv) in tert-butyl vinyl ether ($1.7 \mathrm{~mL}, 1.3 \mathrm{~g}, 13 \mathrm{mmol}$, 70 equiv) was stirred for 9 h . The reaction mixture was cooled to RT and then submitted to flash chromatography (cyclohexane/EtOAc 7:1) to
afford an unanalyzed mixture of (regio-)isomers (70.9 mg , 95%), from which the desired rearrangement product $35(57.8 \mathrm{mg}, 78 \%$ based on starting material 31) was obtained as a pure diastereomer and colorless oil by a second flash chromatography (cyclohexane/EtOAc 12:1). $[\alpha]_{\mathrm{D}}^{25}=$ $+13.2\left(c=0.55\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta=0.03$ and 0.04 (s, SiMe_{2}), $0.85\left(\mathrm{~d}, J_{10-\mathrm{Me}, 10}=7.1,10-\mathrm{Me}\right)^{*}, 0.88\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.02\left(\mathrm{~d}, J_{8,8-\mathrm{Me}}=\right.$ $6.9,8-\mathrm{Me})^{*}, 1.04\left(\mathrm{~d}, J_{12,11}=6.3,12-\mathrm{H}_{3}\right)^{*}, 1.84\left(\mathrm{dqd}, J_{10,9}=J_{10,10-\mathrm{Me}}=7.4\right.$, $\left.J_{10.11}=4.6,10-\mathrm{H}\right), 2.41\left(\mathrm{brtd}, J_{3,2}=J_{3,4}=6.9,3-\mathrm{H}_{2}\right)^{* *}$, superimposed by $2.45\left(\mathrm{dqd}, J_{8,7}=J_{8,8-\mathrm{Me}}=6.9, J_{8,9}=4.0,8-\mathrm{H}\right), 2.53(\mathrm{t}$ with a small extra-peak indicating transition to higher-order spectrum and/or unresolved $J_{2,1}$, $\left.J_{2,3}=6.9,2-\mathrm{H}_{2}\right)^{* *}, 3.29\left(\mathrm{dd}, J_{9,10}=7.7, J_{9,8}=4.0,9-\mathrm{H}\right), 3.37(\mathrm{~s}, \mathrm{OMe}), 4.08$ (qd, $\left.J_{11,12}=6.2, J_{11,10}=4.5,11-\mathrm{H}\right)$, AB signal $\left(\delta_{\mathrm{A}}=4.56, \delta_{\mathrm{B}}=4.58, J_{\mathrm{AB}}=6.8\right.$, $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 5.57\left(\mathrm{dt}, J_{\text {trans }}=14.5, J_{4,3}=7.0,4-\mathrm{H}\right)^{* * *}, 5.63$ (dd, $J_{\text {trans }}=14.5$, $\left.J_{7,8}=7.5,7-\mathrm{H}\right)^{* * *}, 5.96-6.07(\mathrm{~m}, 5-\mathrm{H}, 6-\mathrm{H})^{* * *}, 9.78\left(\mathrm{t}, J_{1,2}=1.5,1-\mathrm{H}\right) ;$ * signal assigned by comparison with the analogous resonances and coupling constants of ethyl ester 28, aldehyde 29 and ethyl ester $\mathbf{3 0}$; ** $2-\mathrm{H}_{2}$ (brtd) and $3-\mathrm{H}_{2}\left(\mathrm{t}\right.$; unresolved $\left.J_{2,1}\right)$ were distinguished by the differing multiplicity and by the concerning coupling constants; *** distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): $\delta=-4.69$ and $-4.31\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.23\left(10-\mathrm{CH}_{3}\right)^{*}, 14.13\left(8-\mathrm{CH}_{3}\right)^{*}, 18.06\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 18.35 (C-12)*, 25.12 (C-3)**, 25.89 [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], 38.87 (C$8)^{*}, 42.98(\mathrm{C}-10)^{*}, 43.32(\mathrm{C}-2)^{* *}, 56.08\left(\mathrm{OCH}_{3}\right)^{*}, 68.10(\mathrm{C}-11)^{*}, 84.40$ $(\mathrm{C}-9)^{*}, 97.85\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 129.01$ and $131.63(\mathrm{C}-5, \mathrm{C}-6)^{* * *}, 129.84(\mathrm{C}-$ $4)^{* * *}, 137.18(\mathrm{C}-7)^{* * *}, 201.88$ (C-1) ; * assignment by comparison with the analogous resonance of ethyl ester $\mathbf{2 8}$ and divinyl carbinol 31-criterion of assignment: $\Delta(\delta) \leq 1.0 \mathrm{ppm} ; * *, * * *$ distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=2955,2930,2890,2855,1730,1600,1470$, $1465,1445,1410,1385,1360,1255,1140,1100,1035,990,965,835$, $775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}$ (398.7): C 66.28, H 10.62 ; found: C 66.09, H 10.89.

6-[(3E,5E,7R,8S,9S,10R)-10-(tert-Butyldimethylsiloxy)-8-(methoxyme-

 thoxy)-7,9-dimethyl-3,5-undecadienyl]-1,3-cyclohexadiene-1-carboxylic acid methyl ester as a 50:50 mixture of two C-6-epimers (39): At $-60^{\circ} \mathrm{C}$ a solution of a 90:10 mixture of phosphonates trans- $\mathbf{3 6}$ and cis- $\mathbf{3 6}(0.60 \mathrm{~m}$ in THF, $0.24 \mathrm{~mL}, 0.14 \mathrm{mmol}, 1.9$ equiv) was added dropwise to a solution of lithium N, N-diisopropyamide $(0.29 \mathrm{~m}$ in $\mathrm{THF}, 0.60 \mathrm{~mL}, 0.17 \mathrm{mmol}$, 2.3 equiv). After stirring at this temperature for 25 min , the reaction mixture was treated dropwise with a solution of aldehyde $\mathbf{3 4}(30.9 \mathrm{mg}$, 0.0728 mmol) in THF (1.6 mL), allowed to reach $-30^{\circ} \mathrm{C}$ and after 2 h stirring, treated with aqueous semisaturated ammonium chloride (2 mL). The aqueous phase was extracted with $t \mathrm{BuOMe}(3 \times 2 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. Evaporation of the solvent in vacuo gave a residue which was submitted to flash chromatography (cyclohexane/EtOAc 15:1) to afford the title compound $39(7.7 \mathrm{mg}$, 21%), a 92.6:7.4 mixture (7.3 mg) of $\mathbf{3 9}$ (pure 39: $6.8 \mathrm{mg}, 18 \%$) and all-trans-40 (pure all-trans-40: $0.54 \mathrm{mg}, 1.5 \%$) and all-trans-40 (4.1 mg , $11 \%) .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta=0.03$ and $0.04\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.84\left(\mathrm{~d}, J_{9_{-}}\right.$ ме, $\left.9^{\prime}=6.9,9^{\prime}-\mathrm{Me}\right)^{*}, 0.88\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.01\left(\mathrm{~d}, J_{7^{\prime}-\mathrm{Me}, 7^{7}}=6.9,7^{\prime}-\mathrm{Me}\right)^{*}, 1.04(\mathrm{~d}$, $\left.J_{11^{\prime}, 10^{\prime}}=6.3,11^{\prime}-\mathrm{H}_{3}\right)^{*}, 1.41-1.52\left(\mathrm{~m}, 1^{\prime}-\mathrm{H}_{2}\right), 1.83\left(\mathrm{dqd}, J_{9,8^{\prime}}=J_{9}, 9-9^{-\mathrm{Me}}=7.1\right.$, $\left.J_{9,10^{\prime}}=4.5,9^{\prime}-\mathrm{H}\right)^{*}, \mathrm{AB}$ signal $\left(\delta_{\mathrm{A}}=1.99, \delta_{\mathrm{B}}=2.12, J_{\mathrm{AB}}=15.1\right.$, in addition split by $J_{\mathrm{A}, 1^{\prime}-\mathrm{H}(1)} * * *=8.7, J_{\mathrm{A}, 1^{1}-\mathrm{H}(2)}=J_{\mathrm{A}, 3^{3}} * * *=6.8, J_{\mathrm{B}, 1^{\prime}-\mathrm{H}(2)}=9.4^{* * * *}, J_{\mathrm{B}, 1^{\prime}-}$ $\left.{ }_{\mathrm{H}(1)}=J_{\mathrm{B}, 3}{ }^{* * * *}=5.6,2^{\prime}-\mathrm{H}_{2}\right)^{* *}, 2.34\left(\mathrm{ddd}, J_{g e m}=18.4, J_{5-\mathrm{H}(1), 4}=5.1, J_{5-\mathrm{H}(1), 6}=\right.$ $\left.1.9,5-\mathrm{H}^{1}\right)^{* *}$, ca. $2.36-2.46\left(\mathrm{~m}, 5-\mathrm{H}^{2}, 7^{\prime}-\mathrm{H}\right) * *, 2.72\left(\mathrm{dddd}, J_{6,1^{\top}-\mathrm{H}(1)}=J_{6,5}\right.$ $\left.{ }_{\mathrm{H}(2)}=8.6, J_{6,1^{1}-\mathrm{H}(2)}=5.6, J_{6,5-\mathrm{H}(1)}=1.7,6-\mathrm{H}\right), 3.28\left(\mathrm{dd}, J_{8^{\prime}, 9^{\prime}}=7.9, J_{8^{\prime} 7^{\prime}}=3.9,8^{\prime}-\right.$ $\mathrm{H})^{*}, 3.37\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{OMe}\right)^{*}, 3.75\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.09$ (poorly resolved qd, $\left.J_{10,1^{\prime}}=6.2, J_{10^{\prime}, 9}=4.6,10^{\prime}-\mathrm{H}\right)^{*}$, AB signal $\left(\delta_{\mathrm{A}}=4.55, \delta_{\mathrm{B}}=4.59, J_{\mathrm{A}, \mathrm{B}}=6.6\right.$, $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right)^{*}, 5.53-5.61\left(\mathrm{~m}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)^{*}, 5.96-6.06\left(\mathrm{~m}, 3-\mathrm{H}, 4-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$, $\left.5^{\prime}-\mathrm{H}\right), 6.99\left(\mathrm{dd}, J_{2.3}=4.1,{ }^{4} J_{2.4}=1.3,2-\mathrm{H}\right)$; * signal assigned by comparison with the analogous resonances and coupling constants of methyl ester 33, aldehyde 34, and aldehyde 35-criterion of assignment: $\Delta(\delta) \leq$ $0.02 \mathrm{ppm} ;$ ** distinguishable by an H, H-correlation spectrum; *** inter- * changeable; **** interchangeable; APT- ${ }^{13} \mathrm{C}$ NMR (125.7 MHz): $\delta="+$ " -4.69 and " + " $-4.33\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, " $+" 10.17\left(9^{\prime}-\mathrm{CH}_{3}\right)^{*}$, " $+" 14.11\left(7^{\prime}-\right.$ $\left.\mathrm{CH}_{3}\right)^{*}$, "+" $18.05\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right.$], "+" $18.28\left(\mathrm{C}-11^{\prime}\right)^{*}, "+" 25.89$ [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], "-" 27.32 and "-" $27.34(\mathrm{C}-5)^{* *}$, " + " 29.79 (C-6)*, "-" $29.90\left(\mathrm{C}-2^{\prime}\right)^{* * *}, "-" 30.50\left(\mathrm{C}-1^{\prime}\right)^{* * *}, "+" 38.83\left(\mathrm{C}-7^{\prime}\right)^{*}$, "+" 42.96 $\left(\mathrm{C}-9^{\prime}\right)^{*}, "+" 51.56\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, " + " $56.07\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)^{*}$, " +" $68.09(\mathrm{C}-$ $\left.10^{\prime}\right)^{*}$, "+" $84.50\left(\mathrm{C}-8^{\prime}\right)^{*}$, "-" $97.88\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, "+" 123.49, "+" 129.59, "+" 130.49, "+" 131.81," + " 132.51, " $+" 132.53$ and "+" 135.93 (C-2, C-3, C-4, C-3', C-4', C-5', C-6'), "-" 131.45 (C-1), "-" $167.82\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; * assignment by comparison with the analogous reso-nance of methyl ester $\mathbf{3 3}$, aldehyde $\mathbf{3 4}$, and aldehyde $\mathbf{3 5}$-criterion of assignment: $\Delta(\delta) \leq 0.3 \mathrm{ppm}$; ** two resonances for two C-6-epimers and assigned by a C,H-correlation spectrum; *** distinguishable by a C,Hcorrelation spectrum; IR (film): $\tilde{v}=2955,2930,2855,1710,1575,1470$, $1465,1435,1380,1360,1255,1140,1095,1035,990,965,940,920,835$, $805,775,735,705 \mathrm{~cm}^{-1} ; m / z: 506.3428 \pm 5 \mathrm{mDa}\left(\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Si}\left[M^{+}\right]\right)$confirmed by HRMS (EI, 70 eV); no combustion analysis was performed.
(2E,4E,6E,10E,12E,14R,15S,16S,17R)-17-(tert-Butyldimethylsiloxy)-15-(methoxymethoxy)-14,16-dimethyl-2,4,6,10,12-octadecapentaenoic acid methyl ester (all-trans-40) as a 66.2:33.8 or 93.4:6.6 mixture with the 6 -cis-isomer (cis ${ }^{26,27}-40$): HWE-reaction: At $-60^{\circ} \mathrm{C}$ a solution of lithium N, N-diisopropyamide (0.29 m in THF, $0.75 \mathrm{~mL}, 0.22 \mathrm{mmol}, 1.8$ equiv) in THF (1.0 mL) was added dropwise to a solution of a $90: 10$ mixture of phosphonates trans,trans- $\mathbf{3 7}$ and $c^{\mathrm{H}_{2} \mathrm{CC}=\mathrm{C}}$, trans ${ }^{\mathrm{C}=\mathrm{CCO}_{2} \mathrm{Me}-37} \quad(54 \mathrm{mg}$, $0.23 \mathrm{mmol}, 1.9$ equiv). After stirring at this temperature for 30 min , the reaction mixture stirred at $0^{\circ} \mathrm{C}$ for 15 min , then cooled to $-60^{\circ} \mathrm{C}$ and after 50 min treated dropwise with a solution of aldehyde $35(47.3 \mathrm{mg}$, 0.119 mmol) in THF (2.3 mL). After stirring for 7 min , the reaction mixture was allowed to reach $-40^{\circ} \mathrm{C}$ and after further 1 h stirring, treated with aqueous semisaturated ammonium chloride (5 mL). The aqueous phase was extracted with $t \mathrm{BuOMe}(3 \times 2 \mathrm{~mL})$, and the combined organic phases were dried with MgSO_{4}. Evaporation of the solvent in vacuo gave a residue which was submitted to flash chromatography (cyclohexane/ EtOAc 13:1 \rightarrow fraction 9, 10:1 \rightarrow fraction 30) to afford the title compound $40(44.6 \mathrm{mg}, 74 \%)$ as $66.2: 33.8$ mixture of the $6-E$ - and $6-Z-$ isomer.
Isomerization with iodine: At RT a solution of a 66.2:33.8 mixture $(8.3 \mathrm{mg}, 16 \mu \mathrm{~mol})$ of all-trans- $\mathbf{4 0}$ and cis $^{26,27}-\mathbf{4 0}$ in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ in a NMR tube was treated with iodine (0.031 m in $\mathrm{CDCl}_{3}, 42 \mu \mathrm{~L}, 1.3 \mu \mathrm{~mol}$, $8.1 \mathrm{~mol} \%)$. After 2 min , the isomerization was completed at a 93.4:6.6equilibrium composition of all-trans-40 and cis ${ }^{26,27}-\mathbf{4 0}$ (${ }^{1} \mathrm{H}$ NMR, 500 MHz). The reaction mixture was used without purification for the preparation of aldehyde 41.
all-trans-40: ${ }^{1} \mathrm{H}$ NMR (500 MHz ; sample of a 93.4:6.6 mixture of all-trans-40 and cis $\left.{ }^{26,27}-\mathbf{4 0}\right): \delta=0.036$ and $0.045\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85\left(\mathrm{~d}, J_{16}\right.$ $\mathrm{Me}, 16=7.0,16-\mathrm{Me})^{*}, 0.88\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.02\left(\mathrm{~d}, J_{14-\mathrm{Me}, 14}=6.8,14-\mathrm{Me}\right)^{*}, 1.05$ $\left(\mathrm{d}, J_{18,17}=6.2,18-\mathrm{H}_{3}\right)^{*}, 1.83\left(\mathrm{dqd}, J_{16,15}=J_{16.16-\mathrm{Me}}=7.2, J_{16,17}=4.5,16-\mathrm{H}\right) *$, 2.16-2.27 [m, presumably interpretable as: $\delta=2.19$ (brtd, $J_{9,8}=J_{9,10}=6.4$, $\left.9-\mathrm{H}_{2}\right)^{* *}$ and $\left.\delta=2.24\left(\mathrm{brtd}, J_{8.9}=J_{8,7}=6.3,8-\mathrm{H}_{2}\right)^{* *}\right], 2.44\left(\mathrm{dqd}, J_{14,13}=\right.$ $\left.J_{14,14-\mathrm{Me}}=7.0, J_{14,15}=4.0,14-\mathrm{H}\right)^{*}, 3.29\left(\mathrm{dd}, J_{15,16}=7.8, J_{15,14}=4.0,15-\mathrm{H}\right) *$, $3.367\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{OMe}\right)^{*}, 3.741\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.09\left(\mathrm{qd}, J_{17,18}=6.2, J_{17.16}=4.5\right.$, $17-\mathrm{H})^{*}, \mathrm{AB}$ signal $\left(\delta_{\mathrm{A}}=4.56, \delta_{\mathrm{B}}=4.59, J_{\mathrm{AB}}=6.8, \mathrm{OCH}_{2} \mathrm{OMe}\right)^{*}, 5.57(\mathrm{dt}$, $\left.J_{\text {trans }}=14.2, J_{10.9}=6.7,10-\mathrm{H}\right)^{*}, 5.61\left(\mathrm{dd}, J_{\text {trans }}=14.0, J_{13.14}=7.5,13-\mathrm{H}\right)^{*}, 5.85$ $\left(\mathrm{d}, J_{\text {trans }}=15.4,2-\mathrm{H}\right), 5.92\left(\mathrm{dt}, J_{\text {trans }}=15.1, J_{7,8}=7.2,7-\mathrm{H}\right)^{* * *}, 5.97-6.05(\mathrm{~m}$, $11-\mathrm{H}, 12-\mathrm{H})^{*}, 6.15\left(\mathrm{dd}, J_{\text {trans }}=15.2, J_{6,5}=10.7,6-\mathrm{H}\right) * * *, 6.22\left(\mathrm{dd}, J_{\text {trans }}=\right.$ $\left.14.8, J_{4,3}=11.3,4-\mathrm{H}\right)^{* * *}, 6.52\left(\mathrm{dd}, J_{\text {trans }}=14.8, J_{5,6}=10.7,5-\mathrm{H}\right) * * *, 7.30$ (dd, $J_{\text {trans }}=15.3, J_{3,4}=11.3,3-\mathrm{H}$); * signal assigned by comparison with the analogous resonances and coupling constants of methyl ester 33-criterion of assignment: $\Delta(\delta) \leq 0.02 \mathrm{ppm} ;{ }^{* *, * * *}$ distinguishable by an $\mathrm{H}, \mathrm{H}-$ correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz ; sample of a 93.4:6.6 mixture of all-trans-40 and cis $\left.{ }^{26,27}-\mathbf{4 0}\right)$: $\delta=-4.68$ and $-4.32\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.20(16-$ $\left.\mathrm{CH}_{3}\right)^{*}, 14.11\left(14-\mathrm{CH}_{3}\right)^{*}, 18.06\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.32(\mathrm{C}-18)^{*}, 25.89$ [3-fold intensity, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], $32.01(\mathrm{C}-9)^{* *}, 32.79(\mathrm{C}-8)^{* *}, 38.84(\mathrm{C}-14)^{*}, 42.97$ (C-16)*, $51.45\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 56.07\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)^{*}, 68.09(\mathrm{C}-17)^{*}, 84.43(\mathrm{C}-$ 15)*, $97.85\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 119.72(\mathrm{C}-2)^{* * *}, 128.04(\mathrm{C}-4)^{* * *}, 129.32$ and 131.13 (C-11, C-12)***, 130.23 (C-6)***, 131.32 (C-10)***, 136.55 (C$13)^{* * *}, 139.50(\mathrm{C}-7)^{* * *}, 141.08$ (C-5)***, 144.96 (C-3) ${ }^{* * *}, 167.59$ (C-1); * assignment by comparison with the analogous resonance of methyl ester 33 and aldehyde 34 -criterion of assignment: $\Delta(\delta) \leq 0.4 \mathrm{ppm}$; **,*** distinguishable by a C,H-correlation spectrum;
$\boldsymbol{c i s}^{26,27} \mathbf{- 4 0}:{ }^{1} \mathrm{H}$ NMR (500 MHz ; sample of a 66.2:33.8 mixture of all-trans40 and $\left.c i s^{26,27}-40\right)^{*}: \delta=2.34$ (brtd, $\left.J_{8.9}=J_{8,7}=7.6,8-\mathrm{H}_{2}\right), 3.371(\mathrm{~s}$, $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 3.747\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, AB signal $\left(\delta_{\mathrm{A}}=4.56, \delta_{\mathrm{B}}=4.59, J_{\mathrm{AB}}=6.7\right.$, $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 5.62\left(\mathrm{dd}, J_{\text {trans }}=14.3, J_{13.14}=7.4,13-\mathrm{H}\right)^{* *}, 5.67\left(\mathrm{dt}, J_{\text {cis }}=10.8\right.$, $\left.J_{7,8}=7.7,7-\mathrm{H}\right)^{* *}, 5.88\left(\mathrm{~d}, J_{\text {trans }}=15.7,2-\mathrm{H}\right)^{* *}, 6.10\left(\mathrm{dd}, J_{\text {cis }}=J_{6,5}=10.9,6-\right.$ $\mathrm{H})^{* *}, 6.30\left(\mathrm{dd}, J_{\text {trans }}=14.9, J_{4.3}=11.4,4-\mathrm{H}\right)^{* *}, 6.83\left(\mathrm{dd}, J_{\text {trans }}=14.7, J_{5.6}=\right.$ $11.5,5-\mathrm{H})^{* *}, 7.35\left(\mathrm{dd}, J_{\text {trans }}=15.3, J_{3,4}=11.3,3-\mathrm{H}\right)$; * the signals of other (not listed) protons are superimposed or isochron with all-trans-40; ** distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz; sample of a 66.2:33.8 mixture of all-trans-40 and cis ${ }^{26,27}-\mathbf{4 0}$)*: $\delta=27.94(\mathrm{C}-8), 32.40(\mathrm{C}-9), 51.48\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 120.26(\mathrm{C}-2), 128.33(\mathrm{C}-6)$,
131.22 and 131.25 (C-10, C-11, C-12), 129.90 (C-4), 135.88 (C-5), 136.62 (C-7), 144.86 (C-3), 167.49 (C-1); * resonances of other (not listed) carbons are superimposed/isochron by/with all-trans-40; all signals are assigned by a C,H-correlation spectrum;
IR (film): $\tilde{v}=3020,2955,2855,1710,1620,1465,1435,1380,1360,1310$, $1255,1140,1120,1100,1040,1005,990,965,940,925,835,775 \mathrm{~cm}^{-1}$; elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{Si}$ (506.8): C 68.73, H 9.94; found: C 68.81, H 10.21 .

(2E,4E,6E,10E,12E,14R,15S,16S,17R)-17-(tert-Butyldimethylsiloxy)-15-(methoxymethoxy)-14,16-dimethyl-2,4,6,10,12-octadecapentaenal (all-

 trans-41): At RT a 93.4:6.6 mixture ($8.3 \mathrm{mg}, 0.016 \mathrm{mmol}$) of the methyl esters all-trans- $\mathbf{4 0}$ and cis ${ }^{26,27}-\mathbf{4 0}$ plus iodine (0.031 m in $\mathrm{CDCl}_{3}, 42 \mu \mathrm{~L}$, $1.3 \mu \mathrm{~mol}, 8.1 \mathrm{~mol} \%$) in $\mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$ was treated with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (ca. $0.05 \mathrm{~g})$ and water $(20 \mu \mathrm{~L})$. After the violet color of iodine had disappeared, the solution was filtered through a pipette with MgSO_{4}, and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The filtrate and washings were evaporated in vacuo to a remaining volume of 1.5 mL , cooled to $-78^{\circ} \mathrm{C}$ and treated with DIBAL (1.12 m in toluene, $50 \mu \mathrm{~L}, 0.056 \mathrm{mmol}$, 3.4 equiv). After stirring for 1 h , the reaction mixture was allowed to reach $-55^{\circ} \mathrm{C}$ and after stirring for another 30 min , quenched with aqueous semisaturated Rochelle's salt (0.3 mL) and $\mathrm{MeOH}(0.2 \mathrm{~mL})$. The solution was filtered through a pipette with MgSO_{4}, and the filter cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The filtrate and washings were evaporated in vacuo to a remaining volume of 3 mL , treated with MnO_{2} ($56.1 \mathrm{mg}, 0.645 \mathrm{mmol}, 39$ equiv) and stirred at RT for 1 h . After filtration, the solvent was evaporated in vacuo and at $0^{\circ} \mathrm{C}$ to afford a residue which was submitted to flash chromatography (cyclohexane/EtOAc $8: 1$) to afford aldehyde $41(6.0 \mathrm{mg}, 78 \%)$ as a light yellow oil. $[\alpha]_{\mathrm{D}}^{25}=+12.5(c=$ 0.42 in CHCl_{3}) ; $[\alpha]_{\mathrm{D}}^{25}=+9.9\left(c=0.24\right.$ in $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$; slightly contaminated)*: $\delta=0.036$ and $0.045\left(2 \times \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.85\left(\mathrm{~d}, J_{16}\right.$ ме. $16=7.1,16-\mathrm{Me})^{*}, 0.88\left(\mathrm{~s}, \mathrm{SiCMe}_{3}\right), 1.02\left(\mathrm{~d}, J_{14,14-\mathrm{Me}}=6.8,14-\mathrm{Me}\right) *, 1.05$ $\left(\mathrm{d}, J_{18,17}=6.2,18-\mathrm{H}_{3}\right)^{*}, 1.83\left(\mathrm{dqd}, J_{16,15}=J_{16,16-\mathrm{Me}}=7.2, J_{16,17}=4.5,16-\mathrm{H}\right)$, $2.21\left(\mathrm{brtd}, J_{9,8} \approx J_{9,10} \approx 7.0,9-\mathrm{H}_{2}\right) * *, 2.27\left(\mathrm{brtd}, J_{8,9} \approx J_{8,7} \approx 7.1,8-\mathrm{H}_{2}\right) * *$, $2.45\left(\mathrm{dqd}, J_{14,13}=J_{14,14-\mathrm{Me}}=6.9, J_{14,15}=4.1,14-\mathrm{H}\right)^{*}, 3.29\left(\mathrm{dd}, J_{15,16}=7.9\right.$, $\left.J_{15,14}=4.0,15-\mathrm{H}\right)^{*}, 3.37\left(\mathrm{~s}, \mathrm{OCH}_{2} \mathrm{OMe}\right), 4.09\left(\mathrm{qd}, J_{17,18}=6.2, J_{17,16}=4.5\right.$, $17-\mathrm{H})^{*}, \mathrm{AB}$ signal $\left(\delta_{\mathrm{A}}=4.56, \delta_{\mathrm{B}}=4.59, J_{\mathrm{AB}}=6.6, \mathrm{OCH}_{2} \mathrm{OMe}\right), 5.57(\mathrm{dt}$, $\left.J_{\text {trans }}=14.3, J_{10,9}=7.1,10-\mathrm{H}\right)^{*}, 5.62\left(\mathrm{dd}, J_{\text {trans }}=14.5, J_{13,14}=7.8,13-\mathrm{H}\right)^{*}$, $5.98-6.06\left(\mathrm{~m}, 7-\mathrm{H}, 11-\mathrm{H}^{*}, 12-\mathrm{H}^{*}\right), 6.13\left(\mathrm{dd}, J_{\text {trans }}=15.1, J_{2,1}=8.0,2-\mathrm{H}\right)^{* * *}$, 6.20 (brdd with unresolved ${ }^{4} J_{6,8}, J_{\text {trans }}=15.1, J_{6,5}=10.8,6-\mathrm{H}$) ${ }^{* * *}, 6.35$ (dd, $\left.J_{\text {trans }}=14.8, J_{4,3}=11.2,4-\mathrm{H}\right)^{* * *}, 6.64\left(\mathrm{dd}, J_{\text {trans }}=14.8, J_{5,6}=10.7,5-\mathrm{H}\right)^{* * *}$, $7.11\left(\mathrm{dd}, J_{\text {trans }}=15.2, J_{3,4}=11.1,3-\mathrm{H}\right) * * *, 9.55\left(\mathrm{~d}, J_{1,2}=8.0,1-\mathrm{H}\right) ; *$ signal assigned by comparison with the analogous resonances and coupling constants of methyl esters $\mathbf{3 3}$ and all-trans-40-criterion of assignment: $\Delta(\delta)$ $\leq 0.02 \mathrm{ppm} ;{ }^{* *},{ }^{* * *}$ distinguishable by an H,H-correlation spectrum; ${ }^{13} \mathrm{C}$ NMR (125.7 MHz ; peak of contaminant at $\delta=29.69$): $\delta=-4.68$ and $-4.32\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 10.22\left(16-\mathrm{CH}_{3}\right)^{*}, 14.10\left(14-\mathrm{CH}_{3}\right)^{*}, 18.06\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $18.32(\mathrm{C}-18)^{*}, 25.90\left[3\right.$-fold intensity, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.90(\mathrm{C}-9)^{* *}, 32.86(\mathrm{C}-$ $8)^{* *}, 38.85(\mathrm{C}-14)^{*}, 42.97(\mathrm{C}-16)^{*}, 56.08\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)^{*}, 68.09(\mathrm{C}-17)^{*}$, $84.44(\mathrm{C}-15)^{*}, 97.85\left(\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 128.10(\mathrm{C}-4)^{* * *}, 129.26$ (one carbon of the signal group C-7, C-11, C-12)***, 130.19 (C-6) ${ }^{* * *}$, 130.83 (C$3)^{* * *}, 131.12(\mathrm{C}-10)^{* * *}, 131.25$ (one carbon of the signal group C-7, C$11, \mathrm{C}-12)^{* * *}, 136.69(\mathrm{C}-13)^{* * *}, 141.38$ (one carbon of the signal group C 7, C-11, C-12) ${ }^{* * *}, 142.96$ (C-5) ${ }^{* * *}, 152.24$ (C-3)***, 193.53 (C-1); * assignment by comparison with the analogous resonance of methyl ester all-trans-40-criterion of assignment: $\Delta(\delta) \leq 0.1 \mathrm{ppm} ;{ }^{* *},{ }^{* * *}$ distinguishable by a C,H-correlation spectrum; IR (film): $\tilde{v}=3065,2980,2940,1720$, 1600, 1450, 1375, 1315, 1275, 1180, 1115, 1070, 1025, $715 \mathrm{~cm}^{-1}$; MS (CI, NH_{3}): $m / z(\%): 477$ (12) $\left[M^{+}\right], 445$ (100) [$\left.M^{+}-H O M e\right] ;$ elemental analysis calcd (\%) for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}$ (476.8): C 70.54, H 10.15; found: C 72.14, H 11.39.
Acknowledgment

We thank Witco GmbH and Wacker AG for donating chemicals. We express our gratitude to Dr. Manfred Keller (Institut für Organische Chemie und Biochemie, Universität Freiburg) for measuring the NMR spectra and for assisting in their analysis as well as for performing the Xray structure analysis of compound 4.
[1] a) Autorenkollektiv in Arzneimittelneben- und -wechselwirkungen (Ed.: H. P. T. Ammon), Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 2001, pp. 1456-1462; b) E. Mutschler, G. Geisslinger, H. K. Kroemer, M. Schäfer-Korting, Mutschler Arzneimittelwirkun-gen-Lehrbuch der Pharmakologie und Toxikologie, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 2001, pp. 836-839; c) F. Marty, E. Mylonakis, Exp. Opin. Pharmacother. 2002, 3, 91-102 and references therein.
[2] a) S. Omura, H. Tanaka in Macrolide Antibiotics: Chemistry, Biology and Practice (Ed.: S. Omura), Academic Press, New York, 1984, pp. 351-404; b) J. M. Beau in Recent Progress in the Chemical Synthesis of Antibiotics (Eds.: G. Lukacs, M. Ohno), Springer, Berlin, 1990, pp. 132-182; c) S. D. Rychnovsky, Chem. Rev. 1995, 95, 20212040.
[3] Isolation: a) E. L. Hazen, R. Brown, Science 1950, 112, 423-430; b) E. L. Hazen, R. Brown, Proc. Soc. Exp. Biol. Med. 1951, 76, $93-$ 98.
[4] Isolation: J. Vanderputte, J. L. Wachtel, E. T. Stiller, Antibiot. Annu. 1956, 587-591.
[5] Structure: a) W. Mechlinski, C. P. Schaffner, P. Ganis, G. Avitabile, Tetrahedron Lett. 1970, 11, 3873-3876; b) P. Ganis, G. Avitabile, W. Mechlinski, C. P. Schaffner, J. Am. Chem. Soc. 1971, 93, 4560-4564.
[6] Elucidation of constitution: a) C. N. Chong, R. W. Rickards, Tetrahedron Lett. 1971, 12, 3873-3876; b) E. Borowski, J. Zielinski, L. Falkowski, T. Ziminski, J. Golik, P. Kolodziejczyk, E. Jereczek, M. Gdulewicz, Y. Shenin, T. Kotienko, Tetrahedron Lett. 1971, 12, $685-$ 690.
[7] Elucidation of configuration: a) J.-M. Lancelin, F. Paquet, J.-M. Beau, Tetrahedron Lett. 1988, 29, 23, 2827-2830 (relative configuration); b) K. C. Nicolaou, K. H. Ahn, Tetrahedron Lett. 1989, 30, 1217-1220 (absolute configuration by synthesis of the $\mathrm{C}^{1}-\mathrm{C}^{10}$ fragment); c) J. Prandi, J.-M. Beau, Tetrahedron Lett. 1989, 30, 45174520 (absolute configuration by synthesis of a $\mathrm{C}^{1}-\mathrm{C}^{10}$ fragment); d) J.-M. Lancelin, J.-M. Beau, Tetrahedron Lett. 1989, 30, 45214524.
[8] Total synthesis: a) K. C. Nicolaou, T. K. Chakraborty, Y. Ogawa, R. A. Daines, N. S. Simpkins, G. T. Furst, J. Am. Chem. Soc. 1988, 110, 4660-4672; b) K. C. Nicolaou, R. A. Daines, J. Uenishi, W. S. Li, D. P. Papahatjis, T. K. Chakraborty, J. Am. Chem. Soc. 1988, 110, $4672-4685$; c) K. C. Nicolaou, R. A. Daines, T. K. Chakraborty, Y. Ogawa, J. Am. Chem. Soc. 1988, 110, 4685-4696; d) K. C. Nicolaou, R. A. Daines, Y. Ogawa, T. K. Chakraborty, J. Am. Chem. Soc. 1988, 110, 4696-4705.
[9] Formal total syntheses: a) S. Masamune, P. Ma, H. Okumoto, J. W. Ellingboe, J. Org. Chem. 1984, 49, 2834-2837; b) D. Boschelli, T. Takemasa, Y. Nishitani, S. Masamune, Tetrahedron Lett. 1985, 26, $5239-5242$; c) R. M. Kennedy, A. Abiko, T. Takemasa, H. Okumoto, S. Masamune, Tetrahedron Lett. 1985, 26, 5239-5242, and references therein; d) G. J. McGarvey, J. M. Williams, R. N. Hiner, Y. Matsubara, T. Oh, J. Am. Chem. Soc. 1986, 108, 4943-4952; e) G. J. McGarvey, J. A. Mathys, K. J. Wilson, J. Org. Chem. 1996, 61, 57045705, and references therein.
[10] Leading references: a) G. Solladié, N. Wilb, C. Bauder, Eur. J. Org. Chem. 1999, 3021-3026; b) J. Krüger, E. M. Carreira, Tetrahedron Lett. 1998, 39, 7013-7016; c) C. Gibson, T. Buck, M. Walker, R. Brückner, Synlett 1998, 201-205; d) A. Fürstner, J. Baumgartner, Tetrahedron 1993, 49, 8541-8560; e) S. David, A. Malleron, New J. Chem. 1993, 17, 505-511; f) S. Takano, Y. Shimazaki, Y. Sekiguchi, K. Ogasawara, Chem. Lett. 1988, 2041-2044; g) R. Brückner, Tetrahedron Lett. 1988, 29, 5747-5750; h) D. Liang, A. DeCamp Schuda, B. Fraser-Reid, Carbohydr. Res. 1987, 229-240, and references therein; i) M. Kinoshita, H. Takami, M. Taniguchi, T. Tamai, Bull. Chem. Soc. Jpn. 1987, 60, 2151-2161; j) M. Kinoshita, M. Morioka, M. Taniguchi, J. Shimizu, Bull. Chem. Soc. Jpn. 1987, 60, 40054014; k) S. Hanessian, S. P. Sahoo, M. Botta, Tetrahedron Lett. 1987, 28, 1143-1146; 1) S. Hanessian, S. P. Sahoo, M. Botta, Tetrahedron Lett. 1987, 28, 1147-1150; m) G. Solladié, G. Demally, C. Greck, Tetrahedron Lett. 1985, 26, 435-438; n) D. W. Brooks, R. P. Kellogg, Tetrahedron Lett. 1982, 23, 4991-4994.
[11] a) C. Bonini, G. Righi, L. Rossi, Tetrahedron 1992, 48, 9801-9808; b) C. Bonini, A. Giugliano, R. Racioppi, G. Righi, Tetrahedron Lett.

1996, 37, 2487-2490; c) C. Schneider, M. Rehfeuter, Tetrahedron Lett. 1998, 39, 9-12; d) G. Solladié, N. Wilb, C. Bauder, J. Org. Chem. 1999, 64, 5447-5452.
[12] Procedure: G. Dahmann, R. W. Hoffmann, Liebigs Ann. Chem. 1994, 837-845.
[13] Compound 6 was prepared according to G. R. Pettit, D. D. Burkett, J. Barkóczy, G. L. Breneman, W. E. Pettit, Synthesis 1996, 719-725.
[14] Leading references for asymmetrical Evans aldol reaction: a) D. A. Evans, E. B. Sjogren, A. E. Weber, R. E. Conn, Tetrahedron Lett. 1987, 28, 39-42; b) D. A. Evans, E. B. Sjogren, J. Bartoli, R. L. Dow, Tetrahedron Lett. 1986, 27, 4957-4960; c) D. A. Evans, A. E. Weber, J. Am. Chem. Soc. 1986, 108, 6757-6761; d) D. A. Evans, M. M. Morrissey, R. L. Dorow, J. Am. Chem. Soc. 1981, 103, 2127-2129.
[15] (E)-2-Methylbutenal is commercially available from ALDRICH.
[16] Compound 7 was previously described by: a) K. J. Hale, G. S. Bhatia, S. Andrew Peak, S. Manaviazar, Tetrahedron Lett. 1993, 34, 5343-5346; b) J. D. White, A. T. Johnson, J. Org. Chem. 1994, 59, 3347-3358.
[17] Compound 9 was prepared according to: D. A. Evans, R. L. Dow, T. L. Shih, J. M. Takacs, R. Zahler, J. Am. Chem. Soc. 1990, 112, 5291-5313.
[18] All new compounds gave satisfactory ${ }^{1} \mathrm{H}$ NMR and IR spectra. Except compounds 12, 23, 39, and 41 they also gave correct combustion analyses.
[19] R. F. W. Jackson, M. A. Sutter, D. Seebach, Liebigs Ann. Chem. 1985, 2313-2327.
[20] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923-2925.
[21] Earlier preparations of compound 8: a) M. Ono, N. Yoshida, Y. Kokubu, E. Sato, H. Akita, Chem. Pharm. Bull. 1997, 45, 1428-1434 (racemic synthesis); b) H. Akita, H. Matskura, T. Oishi, Tetrahedron Lett. 1986, 27, 5241-5244 (synthesis with moderate enantioselectivity: $38 \%<e e<64 \%$); ref. [16a] (enantioselective synthesis via 7).
[22] Procedure: E. J. Corey, H. Cho, C. Rücker, D. H. Hua, Tetrahedron Lett. 1981, 22, 3455-3458.
[23] a) D. A. Evans, J. Bartoli, T. Godel, Tetrahedron Lett. 1982, 23, 4577-4580; b) W. C. Still, J. C. Barrish, J. Am. Chem. Soc. 1983, 105, 2487-2489; c) K. N. Houk, N. G. Rondan, Y.-D. Wu, J. T. Metz, M. N. Paddon-Row, Tetrahedron 1984, 40, 2257-2274.
[24] Method: G. W. Kalbaka, T. M. Shoup, N. M. Goudgaon, J. Org. Chem. 1989, 54, 5930-5933.
[25] This reagent was freshly prepared from 2,3-dimethyl-2-butene and $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in THF (E.-I. Negishi, H. C. Brown, J. Am. Chem. Soc. 1972, 94, 3567-3572).
[26] This solution is normally used for the work-up of asymmetrical Sharpless epoxidations (Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, K. B. Sharpless, J. Am. Chem. Soc. 1987, 109, 5765-5780).
[27] Earlier preparation of compound 4: Ref. [10i].
[28] Earlier preparation of compound 15: Ref. [10n].
[29] Compound $\mathbf{1 7}$ could be used as a crude product.
[30] Procedure: G. Stork, T. Takahashi, J. Am. Chem. Soc. 1977, 99, 1275-1276.
[31] Compounds $\mathbf{1 6}$ and $\mathbf{1 8}$ were previously described: Ref. [10i].
[32] B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863-927.
[33] a) F. J. L. Aparicio, F. J. L. Herrera, Carbohydr. Res. 1980, 80, C4C7; b) C. Lievre, C. Frechou, G. Demailly, Tetrahedron Lett. 1993, 34, 5895-5898; c) C. Lievre, C. Frechou, G. Demailly, Tetrahedron Lett. 1995, 36, 6467-6470.
[34] a) J. G. Buchanan, A. E. Edgar, M. J. Power, P. D. Teaker, Carbohydr. Res. 1974, 38, C22-C24; b) E. J. Corey, G. Goto, Tetrahedron Lett. 1980, 21, 3463-3466; c) C. Harcken, S. F. Martin, Org. Lett. 2001, 3, 3591-3593.
[35] Procedure: I. H. Aspinall, P. M. Cowley, G. Mitchell, C. M. Raynor, R. J. Stoodley, J. Chem. Soc. Perkin Trans. 1 1999, 2591-2600.
[36] We followed the procedure of ref. [34c].
[37] A unsuccessful Wittig reaction employing compound $\mathbf{1 8}$ is described in ref. [10i].
[38] Procedure: E. Adler, H.-D. Becker, Acta Chem. Scand. 1961, 15, 849-852.
[39] Isomer ratios were derived from suitable ${ }^{13} \mathrm{C}$ NMR integrals.
[40] Methods: a) P. A. Wender, T. M. Dore, Tetrahedron Lett. 1998, 39, $8589-8592\left[\mathrm{Hg}(\mathrm{OAc})_{2}\right.$ (cat.), tert-butyl vinyl ether, sealed vessel, 17 bar, $200^{\circ} \mathrm{C}$]; b) H. Zhang, M. Seepersaud, S. Seepersaud, D. R. Mootoo, J. Org. Chem. 1998, 63, 2049-2052 $\left[\mathrm{Hg}(\mathrm{OAc})_{2}\right.$ (1.0 equiv), n-butyl vinyl ether, reflux].
[41] First Claisen rearrangement of a vinyl ether derived from a symmetrical divinyl carbinol: S. F. Reed, Jr., J. Org. Chem. 1965, 30, 1663 1665. First Claisen rearrangement of a vinyl ether derived from an unsymmetrical divinyl carbinol: P. Cresson, L. Lacour, C. R. Acad. Sci. Ser. C 1966, 262, 1157-1160.
[42] In order to obtain compound $\mathbf{4 1}$ we also tested Hoffmann's aldehyde homologation strategy " $n+6$ " with aldehyde 34 and their (dioxenyl)propenyl borolane (R. W. Hoffmann, F. Schäfer, E. Haeberlin, T. Rhode, K. Körber, Synthesis 2000, 2060-2068), however, without success (T. Berkenbusch, Dissertation, Universität Freiburg, 2002, pp. 134-138).
[43] For a related cyclocondensation from our laboratory giving a cyclohexadiene in an attempted Horner-Wadsworth-Emmons olefination see J. Hübner, Dissertation, Universität Freiburg, 2001, pp. 125-145.
[44] Compound 37 was prepared from 4-bromocrotonate in 25% overall yield [DIBAL; $\mathrm{MnO}_{2} ; \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me} ; \mathrm{P}(\mathrm{OMe})_{3}$] as a $90: 10$ trans,trans: cis ${ }^{\mathrm{H}_{2} \mathrm{CC}=\mathrm{C}}$, trans ${ }^{\mathrm{C}=\mathrm{CCO}_{2} \mathrm{Me}}$ mixture following the procedure of ref. [10i].
[45] Method: I. Ernest, A. J. Main, R. Menassé, Tetrahedron Lett. 1982, 23, 167-170.

Received: September 11, 2003 [F5540]

[^0]: [a] Dr. T. Berkenbusch
 Present address: Bayer AG
 BCH-FCH-RD-LP2
 Building G 8, 51368 Leverkusen (Germany)
 [b] Prof. Dr. R. Brückner
 Institut für Organische Chemie und Biochemie
 der Albert-Ludwigs-Universität
 Albertstrasse 21, 79104 Freiburg (Germany)
 Fax: (+49) 761-203-6100
 E-mail: reinhard.brueckner@organik.chemie.uni-freiburg.de

