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Introduction: The anti-CD20 mAb rituximab has revolutionized the treatment

of B-cell malignancies, improving outcome for patients. Despite these

improvements, the majority of patients still relapse and become refractory

to rituximab. Further efforts to improve anti-CD20 mAb efficacy have recently

focused on obinutuzumab/GA101, a novel anti-CD20 mAb glycoengineered to

display enhanced Fc-mediated effector mechanisms and induce direct cell

death.

Areas covered: We provide an overview of the current insights into the mech-

anisms of action of obinutuzumab focusing on how structural modifications

and differences to rituximab led to designation of obinutuzumab as a type

II antibody. We summarize data from preclinical studies and recent clinical

trials including the Phase III trial in chronic lymphocytic leukemia (CLL), which

led to FDA approval in November 2013.

Expert opinion: Clinical data are now emerging confirming the promise of the

initial preclinical data that demonstrated superior efficacy of obinutuzumab

over rituximab at similar dosing. The emerging randomized Phase III data

from older comorbid patients with previously untreated CLL demonstrated

significant improvements in molecular remission rates and median

progression-free survival of obinutuzumab plus chlorambucil versus rituximab

plus chlorambucil. This emerging data provide reasons to be optimistic that

outcomes for patients with B-cell malignancies can be further improved

with obinutuzumab.

Keywords: antibody, CD20, chronic lymphocytic leukemia, glycoengineering, non-Hodgkin

lymphoma, obinutuzumab
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1. Introduction

An estimated 156,420 people in the US are expected to be diagnosed with a hema-
tological malignancy in 2014 (9.4% of all new cancer cases) [1]. The majority of
these is of B-cell origin and expresses the B-cell restricted antigen CD20 on the
cell surface. The anti-CD20 mAb rituximab has been approved for use in the treat-
ment of the B-cell malignancy follicular lymphoma (FL) since 1997. Subsequently,
the addition of rituximab to chemotherapy demonstrated improvements in overall
survival as part of the initial treatment of non-Hodgkin lymphoma (NHL) such
as diffuse large B-cell lymphoma (DLBCL) and FL and more recently chronic lym-
phocytic leukemia (CLL) [2-8]. Although rituximab/chemotherapy combinations are
now the standard of care in these diseases, a significant number of patients with
DLBCL and most patients with FL or CLL eventually relapse and die of treatment
refractory disease [9,10]. Given the success of rituximab as well as the urgent need to
improve outcomes further, a number of different anti-CD20 mAb with novel or
enhanced antibody effector mechanisms have been developed and are emerging
into the market as potential competition for rituximab in first-line therapies and
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for use in rituximab refractory disease. To date, all of these
anti-CD20 mAbs such as ofatumumab (US FDA licensed in
CLL 2009) are type I anti-CD20 mAb. Obinutuzumab
(Box 1) is the only glycoengineered type II mAb to enter the
clinic and is the focus of this drug evaluation.

2. Preclinical studies

2.1 Type I/II antibody classification
Anti-CD20 mAb engage multiple Fab and Fc-mediated
mechanisms of cellular cytotoxicity, including complement-
dependent cytotoxicity (CDC), antibody-dependent cell-
mediated cytotoxicity (ADCC), antibody-dependent cellular
phagocytosis (ADCP) and direct programmed cell death
(PCD) [11]. The primary mode of action employed, together
with the antigen-binding characteristics of the antibody, allows
the discrimination of anti-CD20 mAbs into two distinct classes
(Table 1). Those which induce high levels of CDC, but low lev-
els of PCD, are designated type I [12-16] and include rituximab,
ofatumumab, ublituximab, veltuzumab and ocaratuzumab
[17-23]. Conversely, type II anti-CD20 mAb such as tositumo-
mab and obinutuzumab only weakly induce CDC but potently
elicit PCD [15,24,25].
Development of next-generation mAbs has focused on

structural modifications, which augment specific cytotoxicity
mechanisms according to the type I/II bias. Thus, the type I
ofatumumab that binds with higher affinity and slower off
rate to an epitope of CD20 distinct from that recognized by
rituximab, consequently displays greatly enhanced CDC
activity [19,26]. Similarly, other mAbs such as ocaratuzumab
(AME-133v) have been designed with enhanced affinity for
both CD20 and CD16, leading to greater activation of NK
cells [27,28].
Obinutuzumab (GA101/Gazyva, Roche Glycart AG) is a

humanized, glycoengineered anti-CD20 mAb classified as a
type II antibody on the basis of minimal capacity to elicit

CDC (being 10 -- 1000 fold less potent than rituximab/
ofatumumab) [29], but displaying enhanced ability to activate
ADCC and evoke PCD [25]. In part, these type II attributes
are a consequence of a modified elbow-hinge sequence in
the variable region, with substitution of a valine residue for
a leucine at Kabat position 11, arising during the process of
humanization. Indeed, mutation of the valine back to the
original leucine leads to increased CDC, decreased homotypic
adhesion and reduces PCD levels back to those seen with rit-
uximab [25]. This molecular modification results in an altered
binding orientation and wider elbow angle of nearly 30� com-
pared to type I mAb [30] with recognition of the core epitopes
172 -- 178 compared to 168 -- 175 for rituximab. Conse-
quently, obinutuzumab induces differential redistribution
and compartmentalization of CD20 antigen compared to
rituximab, resulting in distinct cellular responses according
to the type I/II dichotomy (Table 1). Rituximab and other
type I mAb bind between CD20 tetramers (inter-tetramer)
whereas type II mAb may bind within one tetramer (intra-
tetramer) resulting in a 2:1 binding ratio with two type I
CD20 mAb per CD20 tetramer compared to one type II
mAb [30,31]. Binding of obinutuzumab causes stable accumula-
tion of CD20 at sites of homotypic adhesion during cellular
aggregation, whereas ligation by rituximab in an inter-
tetramer fashion sequesters CD20 molecules within dynamic
assemblies of lipid raft membrane microdomains, providing
a spatial distribution that favors enhanced complement
deposition [25,30].

2.2 Glycoengineering of obinutuzumab
Although the principal effector mechanisms that mediate
therapeutic efficacy achieved with rituximab are unclear,
Fc-mediated effector mechanisms are thought to be important
with Fc-g receptor (FcgR) polymorphisms at residue 158 pre-
dicting response to rituximab monotherapy in FL patients [32].
The significance of this polymorphism is less clear for rituxi-
mab given in combination with chemotherapy in NHL with
prognostic significance in some studies [33-36] but not
others [37-41]. No prognostic significance has so far been
observed in CLL patients, perhaps as a result of overall
impaired function of effector cells in CLL [42-44]. Therefore,
obinutuzumab was glycoengineered to enhance Fc effector
functions. Core fucose residues were removed from carbohy-
drate moieties in the Fc region by defucosylation [25]. The gly-
cosylation status of IgG, as determined by the oligosaccharide
composition of the antibody heavy chain, is known to impact
on effector function by altering the affinity for the cognate Fc
receptor [45]. Defucosylation increases the affinity of the Fc for
FcgRIIIa without impacting on binding to other FcgRs or
FcRn (neonatal receptor), resulting in enhanced recruitment
and activation of immune effector cells [45-49]. Consequently,
obinutuzumab displays a 50-fold higher affinity for FcgRIIIa
compared to nonengineered antibody [47,50] and in compari-
son to the type I mAbs rituximab and ofatumumab has
100-fold greater ADCC activity [29,51]. In vitro, whole blood

Box 1. Drug summary.

Drug name Obinutuzumab
Phase III/Licensed
Indication Treatment of CD20+ (B-cell)

chronic lymphocytic leukemia
Pharmacology
description/mechanism
of action

mAb to CD20 eliciting
antibody-dependent
cell-mediated cytotoxicity (ADCC)
and direct programmed cell death

Route of administration Intravenous
Pivotal trial(s) CLL11 Phase III trial in previously

untreated elderly CLL pts with
comorbidities in combination
with chlorambucil showed
ORR 26.7 versus 11.1 months
chlorambucil alone and led to
FDA approval in CLL.

CLL: Chronic lymphocytic leukemia; ORR: Overall response rates.

T. Illidge et al.
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B-cell depletion assays are a useful tool to measure the
combined effects of mAb effector mechanisms and have
demonstrated the superiority of obinutuzumab to rituximab
and ofatumumab to deplete B cells (healthy volunteers) and
leukemic B cells (CLL patients) [25,29,52-54]. Obinutuzumab
was more effective than a glycoengineered version of rituxi-
mab, suggesting that this activity may be due in part to recog-
nition of a distinct epitope and PCD [25]. Although rituximab
activity was highly complement-dependent, obinutuzumab
activity was less so [29] and could be reduced by blocking
CD16 [52]. Obinutuzumab also induced greater NK-cell
activation [53], neutrophil activation, cytokine production
and phagocytosis than rituximab [54].

More recently, glycoengineering has been shown to result
in enhanced ADCP. Although initial studies showed obinutu-
zumab did not induce greater ADCP than rituximab [29], later
studies in situations more closely reflecting the natural
physiological state where levels of competing nonspecific
endogenous IgGs were high demonstrated enhanced ADCP
in monocytes/macrophages with obinutuzumab through
FcRIIIa binding [55]. Obinutuzumab has also been shown to
have increased affinity for FcgRIIIb on neutrophils [54], lead-
ing to increased neutrophil activation and phagocytosis as a
direct result of glycoengineering.

2.3 Direct cell death
In keeping with its classification as a type II anti-CD20 mAb,
obinutuzumab has been shown to induce direct PCD in a
variety of B-lymphoma cell lines and primary human malig-
nancies, including FL, DLBCL and mantle cell lymphoma
(MCL), as well as CLL [25,56,57]. Ligation of CD20 by type

II mAb, including obinutuzumab, but not type I mAb such
as rituximab, results in homotypic adhesion and caspase-
independent, nonapoptotic cell death that is contingent
upon lysosome permeabilization and cathepsin release
(Figure 1) [24,56-59]. The terminal phase of the cell death path-
way is also dependent on the extra-mitochondrial generation
of reactive oxygen species, arising from the activation of an
NADPH oxidase [60]. Both reactive oxygen species production
and cell death are independent of Bcl2 expression or pharma-
cological inhibition of caspase activity, suggesting that
obinutuzumab and other type II mAb are able to overcome
apoptosis-resistance mechanisms and may enable effective
deletion of malignant clones that are refractory to conven-
tional chemotherapy or immunotherapy. Moreover, the Fc
region of the mAb is dispensable for this mechanism, meaning
that ligation of FcgR is not required for the induction of
direct cell death. Therefore, this pathway potentially remains
active in patients with impaired Fc-dependent responses,
such as those with low-affinity FcgRIIIa polymorphisms, or
in which immune effector cell saturation, exhaustion or
depletion has occurred [32,61,62]. The exact contribution of
PCD-induction to patient outcome remains to be determined
but preclinical evidence supports the notion that type II mAbs
such as obinutuzumab engage effector mechanisms, which
may remain operational in clinical scenarios where type I
mAb activity is diminished.

The underlying mechanisms associated with acquired
rituximab resistance are currently poorly defined. In one
study, a quarter of relapsed NHL patients were shown to
have lost CD20 protein expression [63] and CD20 gene muta-
tions have been reported [64,65] but other mechanisms such as

Table 1. Comparison of type I and type II anti-CD20 mAb.

Type I mAb Type II mAb

Associated mAb Rituximab, ofatumumab, ublituximab,
veltuzumab, ocaratuzumab

Obinutuzumab, tositumumab

Binding characteristics Inter-tetramer binding Inter-tetramer binding, resulting in half-maximal
binding compared to type I mAb (i.e., 2:1 ratio
type I:type II mAb)

CDC Induce re-localization of CD20 to lipid
rafts and potent CDC

Do not induce CD20 redistribution to lipid rafts;
low levels of CDC

ADCC Induce FcgR-mediated cell killing Induce FcgR-mediated cell killing. Defucosylation
increases affinity for FcgRIIIa and enhances
ADCC, for example, obinutuzumab

ADCP Induce phagocytosis of target cells Induce phagocytosis of target cells. Enhanced by
glycoengineering, for example, obinutuzumab

PCD Low/negligible levels of direct PCD,
apoptotic in nature

High levels of caspase-independent PCD,
mediated by homotypic adhesion, lysosome
permeabilization and ROS

Release of immunogenic factors Complement-dependent release of
HMGB1 (demonstrated for rituximab)

PCD-dependent release of HMGB1, HSP, ATP

Modulation of CD20 antigen mAb binding results in internalization of
CD20 antigen or shaving/trogocytosis

No internalization following mAb binding

ADCC: Antibody-dependent cell-mediated cytotoxicity; ADCP: Antibody-dependent cellular phagocytosis CDC: Complement-dependent cytotoxicity; FcgR: Fc-g
receptor; HMGB1: High-mobility group box 1; HSP: Heat shock proteins; PCD: Programmed cell death; ROS: Reactive oxygen species.

Obinutuzumab

Expert Opin. Biol. Ther. (2014) 14(10) 1509
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effector cell exhaustion [62] and tumor/immunological micro-
environment must also have a role to play. Type I mAbs such
as rituximab have been shown to downregulate CD20 on the
cell surface through internalization of the CD20-mAb
complex [66] or trogocytosis (shaving of rituximab-CD20
complexes from the cell surface in an Fc-dependent man-
ner) [67], leading to reduced mAb half-life. Type II mAbs on
the contrary do not induce CD20 internalization and were
shown to be 5 times more potent in B-cell depletion in a
human CD20 transgenic mouse model [66]. Tumor cell resis-
tance to apoptosis can predict impaired response to chemoim-
munotherapy with CLL patients having high expression of the
antiapoptotic protein mcl-1 having reduced responses to
pentostatin, cyclophosphamide and rituximab [68]. Similarly,
expression of the BCL6 marker of germinal center origin, a

protein involved in the suppression of p-53-induced apoptosis
did not benefit from R-CHOP compared to CHOP [69].
Thus, the induction of nonapoptotic direct cell death by
obinutuzumab may offer benefits for those patients whose
tumors are resistant to induction of classical apoptosis.

2.4 Immunogenic cell death
A further consequence of anti-CD20 mAb-mediated cell
death, which has recently been identified, is the release of
intracellular constituents that can function as immune danger
signals. PCD evoked by type II mAb such as obinutuzumab
results in the loss of cellular plasma membrane integrity and
liberation of high-mobility group box 1 (HMGB1), ATP
and heat shock proteins (HSP) 60 and 90; type I mAbs such
as rituximab appear able to mediate release of HMGB1
and HSP90 via a mechanistically distinct pathway that is
dependent upon CDC [70]. When present in the extracellular
milieu, these molecular determinants can function as damage-
associated molecular patterns (DAMP) and potentially
enhance immunogenicity and priming of tumor-specific
CD8 T-cells [71]. In keeping with this concept, DAMP
released following treatment of human lymphoma cells with
obinutuzumab are able to stimulate maturation and activation
of primary human DC and induce T-cell proliferation, at least
during in vitro co-culture assays [70].

Current data on the induction of immunogenic cell death
(ICD) following anti-CD20 mAb therapy remain limited,
and require further characterization and validation. However,
these initial observations raise the possibility that ICD may
contribute, at least in part, to the induction of tumor immu-
nity occasionally observed following treatment with anti-
CD20 mAb. Emerging data suggest that anti-CD20 mAb
can induce a ‘vaccination effect’ with levels of FL idiotype-
specific T cells increased relative to baseline post-rituximab
therapy in five FL patients [72,73]. Furthermore, both CD4
and CD8 T cells have been implicated in therapy and protec-
tion from further disease in immunocompetent mice [74] with
the Fc component critical for long-lasting tumor protection.
Induction of a vaccination effect post-mAb treatment is likely
mediated by antigen-presenting cells (APCs) that have phaga-
cytosed dead or dying cells, which subsequently process and
present tumor antigens to T-lymphocytes to induce long-
term immune responses. Thus, it can be predicted that
increased direct cell death and enhanced binding of obinutu-
zumab to APC through enhanced affinity for FcgR through
glycoengineering [75,76] could optimize APC-related functions
and subsequently obinutuzumab may induce more potent
long-term antitumor T-cell responses.

2.5 In vivo studies
Obinutuzumab has demonstrated superiority to rituximab
and ofatumumab in a variety of lymphoma xenograft models,
even when saturating high doses of 30 mg/kg rituximab are
used [25,29,56]. Crucially, efficacy was seen with obinutuzumab
as a second-line therapy after relapse post-rituximab treatment

CD20
molecule

COOH

ROS

Nonapoptotic
lysosome-dependent

cell death

NH2

Figure 1. The Type II anti-CD20 mAb obinutuzumab has been

glycoengineered by defucosylation of the glycan chain.

Binding of obinutuzumab to CD20 leads to intra-tetramer

binding, actin reorganization, homotypic adhesion, lysosomal

permeabilization and ROS-dependent cell death.
ROS: Reactive oxygen species.

T. Illidge et al.
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in DLBCL models when tumors failed to respond to further
treatment with rituximab or ofatumumab [25,29]. In contrast
to rituximab, therapy was not dependent on complement [56].
Combination studies with cyclophosphamide [56], bendamus-
tine, fludarabine, chlorambucil or cyclophosphamide/
vincristine [77] all showed that obinutuzumab/chemotherapy
combinations were superior to rituximab/chemotherapy
combination with obinutuzumab monotherapy as effective
as rituximab/chemotherapy combinations [77]. In a cynomol-
gus monkey model, although rituximab and obinutuzumab
induced near equivalent levels of B-cell depletion in periph-
eral blood, obinutuzumab was superior at B-cell depletion in
lymphoid and splenic tissue [25].

Preclinical studies suggest that obinutuzumab is able to
induce marked tumor cell killing and B-cell depletion
through mechanisms of action that are in part due to its
glycoengineered Fc arm and in part due to its properties as a
type II mAb which recognizes a distinct epitope of
CD20 through a differing spatial arrangement [31,78]. The
combination of these two properties suggests that obinutuzu-
mab may offer increased clinical efficacy over rituximab and
other novel anti-CD20 mAbs such as the type I glycoengi-
neered ublituximab and may be of particular benefit in
rituximab-refractory patients.

3. Clinical studies

3.1 Early-phase clinical trials
Obinutuzumab underwent testing as monotherapy in
Phase I trials in both CLL and NHL. Twenty patients
with relapsed/refractory NHL received eight cycles of obinu-
tuzumab monotherapy every 3 weeks at doses ranging from
50/100 to 1200/2000 mg with five complete responses (CR)
and four partial responses (PR) [79]. In the second Phase I
study, 22 patients including 5 with CLL received
200 -- 2000 mg of obinutuzumab every 4 weeks for eight
cycles with 5 PR and 13 stable disease (1 of whom later
improved to PR) [80]. Importantly, obinutuzumab induced
responses in rituximab refractory patients, mirroring xeno-
graft studies, and no significant activation of the comple-
ment cascade was observed, emulating in vitro mechanism
of action data [25]. Similarly, 62% (8/13) of heavily pre-
treated relapsed/refractory CLL patients given a single dose
of obinutuzumab (400 -- 2000 mg) every 3 weeks for eight
cycles achieved a partial response with a significant reduction
in B-cell counts [81]. However, the Phase II arm reported a
much lower end-of-treatment response rate with 25%
(4/16) of patients achieving PR [82], potentially as a result
of fewer patients with low tumor burden. Baseline tumor
burden below 2400 mm2 was predictive of response in
both arms of the study, as previously shown for type I
mAbs where serum concentrations can be lower in patients
with high tumor burden and consequently associated with
poorer prognosis [83-86].

Reported adverse events (AEs) post-obinutuzumab infusion
were similar to those observed with other anti-CD20 mAbs.
Although infusion-related reactions (IRRs) were common at
first infusion, there were few grade 3/4 events with the excep-
tion of several episodes of grade 3/4 neutropenia in CLL
patients, which were resolved with or without G-CSF
administration [79,80].

3.2 Phase II studies in NHL
The Phase II GAUGUIN study recently reported results in
relapsed/refractory indolent NHL and aggressive DLBCL/
MCL. Patients were randomized to receive 400 mg obinutuzu-
mab on day 1 and 8 of cycle 1 and day 1 of cycles
2 -- 8 (400/400) or 1600 mg on day 1 and 8 of cycle 1 and
800 mg on day 1 of cycles 2 -- 8 (1600/800) every 3 weeks.
Response rates were consistently higher in the 1600/800 mg
arms with end of treatment overall response rates (ORR)
of 55 and 32% (1600/800 mg) versus 17 and 24%
(400/400 mg) for indolent and aggressive NHL, respec-
tively [87,88]. The ORR in rituximab refractory patients was sim-
ilar at 50% in indolent NHL and 33% in aggressive NHL with
the higher dose of obinutuzumab. Few grade 3/4 AEs were
reported (2/40 and 3/40) and encouragingly best ORR in
heavily pretreated aggressive NHL (median of three prior treat-
ments, many including rituximab) of 32% inDLBCL and 27%
in MCL were comparable to those reported for rituximab
(30%) [89,90] in a less heavily pretreated, rituximab naı̈ve
population. The median response duration was 17.2 months
for indolent NHL and 9.8 months for aggressive NHL.

A Phase II randomized trial comparing 4 weekly infusions
(days 1, 8, 15, 22) of obinutuzumab (1000 mg) or rituximab
(375 mg/m2) in 175 relapsed indolent NHL patients that
had previously demonstrated a response to rituximab reported
investigator assessed end of induction ORR of 43.2% for
obinutuzumab versus 38.7% for rituximab (difference in
response rates 4.6, 95% CI 12, 21.1) [91]. A higher number
of CR were achieved with obinutuzumab (10.8 vs 6.7%)
although no difference in progression-free survival (PFS) was
observed. No new toxicities were reported although more
patients in the obinutuzumab arm reported IRRs (72 vs 49,
grade 3/4 11 vs 5) and 5 times more AEs occurred with obinu-
tuzumab than rituximab -- coughs (10 vs 1), back pain (7 vs 2),
decreased appetite (7 vs 2), insomnia (5 vs 0) and fatigue (23 vs
17). However, more patients discontinued treatment during
the induction phase with rituximab than obinutuzumab (7 vs
4) and a greater number of SAEs were reported (9 vs 5).

Obinutuzumab has also shown significant activity when
used in combination with chemotherapy. A Phase Ib study
(GAUDI) of 56 patients with relapsed/refractory FL showed
induction end ORR of 96% for G-CHOP (obinutuzumab,
cyclophosphamide, doxorubicin, vincristine and prednisone)
and 93% for G-FC (obinutuzumab, fludarabine and
cyclophosphamide) [92] with CR of 39 and 50%, respectively.
Notably, of the rituximab refractory patients all 14
experienced at least a PR.

Obinutuzumab

Expert Opin. Biol. Ther. (2014) 14(10) 1511
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3.3 Phase III trial in CLL
To date, no new treatments/regimens have been shown to be
superior to chlorambucil for the treatment of comorbid CLL
or elderly patients with CLL [93]. In a trial designed to test
whether addition of type I or type II anti-CD20 mAb can
enhance the efficacy of chlorambucil 781 patients with previ-
ously untreated CLL (median age 73) and a score higher
than six on the cumulative illness rating scale (median 8)
were randomized to receive chlorambucil, rituximab plus
chlorambucil or obinutuzumab plus chlorambucil [94].
Approximately 21% of patients were Binet stage A, 42% stage
B and 37% stage C. Patients received treatment over six
28-day cycles with chlorambucil administered orally at
0.5 mg/kg on days 1 and 15 of each cycle, rituximab intrave-
nously at 375 mg/m2 on day 1 of cycle 1 and 500 mg/m2 on
day 1 of cycle 2 -- 6 and obinutuzumab intravenously at
100 mg on day 1, 8 and 15 of cycle 1 and day 1 of cycles
2 -- 6. Grade 3/4 IRRs were higher with obinutuzumab--
chlorambucil than rituximab--chlorambucil (20 vs 4%) during
the first infusion but no grade 3/4 IRRs were reported during
subsequent infusions and no deaths were associated with IRRs.
Higher levels of grade 3 or above AEs were also reported with
obinutuzumab--chlorambucil than rituximab--chlorambucil
such as thrombocytopenia (10 vs 3%) and neutropenia
(33 vs 28%). Overall, a greater number of patients on the obi-
nutuzumab--chlorambucil arm discontinued treatment than
those on the rituximab--chlorambucil arm (8 vs 3), primarily
as a result of IRRs although there were more deaths from
AEs with rituximab--chlorambucil (6 vs 4%). Obinutuzu-
mab--chlorambucil prolonged PFS (26.7 months) over both
rituximab--chlorambucil (15.2 months, hazard ratio [HR]
0.39 [95% CI, 0.31 -- 0.49]) and chlorambucil monotherapy
(11.1 months) (p < 0.001, HR 0.18 [95% CI, 0.13 -- 0.24]).
ORR were 77.3% for obinutuzumab--chlorambucil versus
65.7% for rituximab--chlorambucil and 31.4% with chloram-
bucil alone. There was a higher complete response rate with
obinutuzumab--chlorambucil than rituximab--chlorambucil
(22.3 vs 7.3%, p < 0.001) and no CR were obtained with
chlorambucil alone. Minimal residual disease (MRD) negativ-
ity was higher in the obinutuzumab--chlorambucil arm than
rituximab--chlorambucil (bone marrow, 19.5 vs 2.6%; blood,
37.7 vs 3.3%, respectively, p < 0.001) with no patients obtain-
ing MRD-ve status with chlorambucil monotherapy. Overall
survival analysis showed a significant benefit for obinutuzu-
mab--chlorambucil over chlorambucil (rates of death 9 vs
20%, respectively). As a result of these data obinutuzumab
was licensed by the FDA in November 2013 for use in
combination with chlorambucil in previously untreated CLL
patients.

4. Conclusion

The routine use of rituximab has improved patient outcomes
in CD20-positive B-cell malignancies. Despite the clinical

success achieved with rituximab further improvements in
anti-CD20 mAb efficacy are required to improve outcomes
further. Obinutuzumab is the only type II glycoengineered
anti-CD20 mAb to enter clinical testing. Obinutuzumab
utilizes distinct mechanisms of action relative to type I anti-
bodies such as rituximab, which include enhanced direct cell
death, increased ADCC but reduced CDC. Obinutuzumab
mediates direct cell death via a nonapoptotic, caspase-
independent mechanism that is independent of Fcg receptors,
which may enable activity in patients with impaired
Fc-dependent immune effector mechanisms or tumors resis-
tance to the induction of chemotherapy-induced apoptosis.
In preclinical models, obinutuzumab induced tumor remis-
sion, with high activity in rituximab-refractory tumors.
Obinutuzumab has demonstrated encouraging efficacy as
monotherapy in NHL and CLL and when combined with
chemotherapy in relapsed/refractory NHL and treatment-
naı̈ve symptomatic CLL. In the first report of a recently
completed randomized Phase III trial of patients with
previously untreated comorbid CLL, overall response rate
was significantly greater (78 vs 65%, p <. 0001) and median
PFS was significantly prolonged (26.7 vs 15.2 months,
p < 0001) for obinutuzumab plus chlorambucil versus rituxi-
mab plus chlorambucil. The encouraging early-phase trial
data and these emerging data from Phase III trials in patients
with CLL suggest that patient outcomes can be further
improved by the introduction of obinutuzumab in B-cell
malignancies. Further results from other Phase III clinical
trials including obinutuzumab are eagerly awaited. Ongoing
studies are comparing obinutuzumab plus CHOP versus
rituximab plus CHOP in previously untreated patients with
CD20-positive DLBCL (NCT01659099, NCT01287741),
obinutuzumab or rituximab plus CHOP, CVP or bendamus-
tine in previously untreated advanced indolent NHL
(NCT01332968) in patients with previously untreated
indolent NHL as well as an important study in rituximab-
refractory indolent NHL comparing Bendamustine versus
Bendamustine and obinutuzumab (NCT01059630). In
CLL ongoing Phase III studies are evaluating obinutuzumab
alone or in combination with chemotherapy (NCT0190
5943) and a number of early-phase trials are evaluating obinu-
tuzumab in combination with ABT-199 (NCT01685892) or
lenalidomide (NCT01995669). The results of these trials will
potentially provide additional evidence of whether patient
outcomes in other B-cell malignancies can be further
improved by the introduction of obinutuzumab.

5. Expert opinion

Most anti-CD20 antibodies have been developed based on
improved modes of action to enhance CDC or on structural
modifications to the Fc region that enhance lymphoma
cell killing via ADCC. Obinutuzumab is a unique,
glycoengineered type II anti-CD20 antibody with different
mechanisms of action compared with rituximab, which
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include increased induction of direct cell death and enhanced
ADCC. Preclinical data have demonstrated superior efficacy
of obinutuzumab over rituximab at the same dose of mAb.
These preclinical observations of improved efficacy with the
same mAb dosing are important given the reservations
expressed in the clinical community that any enhanced treat-
ment efficacy is simply related to the increased mAb dosing of
obinutuzumab over rituximab [95]. Indeed the early-phase
clinical trials in relapsed/refractory CLL and NHL subtypes
confirmed this encouraging clinical efficacy of obinutuzumab
as monotherapy using higher doses of obinutuzumab
(1000 mg) than the standard dose of rituximab 375 mg/m2.
In these early-phase trials, more detailed pharmacokinetics
and defining of the optimal dose were performed than with
the pragmatic rituximab dosing adopted into routine clinical
practice. This higher dose of 1000 mg of obinutuzumab was
taken forward in the randomized trials with the comparator
of standard therapy, including rituximab at registration dose
of 375 mg/m2. The emerging randomized Phase III data
from older comorbid patients with previously untreated
CLL demonstrated impressive improvements in molecular
remission rates and median PFS of obinutuzumab plus chlor-
ambucil versus rituximab plus chlorambucil. These emerging
data provides reasons to be optimistic that outcomes for
patients with B-cell malignancies can be further improved
with obinutuzumab. While it is likely that the increased effi-
cacy over rituximab may be at least partially related to the
increased dosing of anti-CD20 mAb known to be important
to increasing efficacy with rituximab in CLL, it appears
most unlikely to be the only explanation for this increased
efficacy. Instead, this increased efficacy is more likely to be
related to the novel mechanisms of action of obinutuzumab
of this type II anti-CD20 mAb and the clinical results are
entirely in keeping with the preclinical studies.

The data using ofatumumab as a single agent and in com-
bination with chlorambucil are also compelling and have led
to recent US FDA approval in April 2014. In the randomized,
open-label, pivotal Phase III COMPLEMENT 1 study,
ofatumumab in combination with chlorambucil versus chlor-
ambucil alone was evaluated in 447 patients with CLL who
were previously untreated and for whom fludarabine-based
therapy was considered inappropriate by study investigators.
Among the 447 patients (median age 69 years) included in
the study, the majority of patients (72 per cent) had two or
more comorbidities. The results of ofatumumab and chloram-
bucil (n = 221) versus chlorambucil alone (n = 226) demon-
strated statistically significant improvement in median PFS
in patients randomized to ofatumumab and chlorambucil
compared to patients randomized to chlorambucil alone
(22.4 months versus 13.1 months, respectively) (HR = 0.57
[95% CI, 0.45, 0.72] p < 0.001) [96]. So which of these

anti-CD20 mAb should be used to replace rituximab in
CLL or other B-cell NHL? In the absence of data from a
direct comparison of the type I anti-CD20 ofatumumab and
the type II obinutuzumab, this question is difficult to answer
definitely and the possibility of such a randomized study
being performed appears remote. Certainly, the preclinical
insights regarding CD20 expression and modulation imply
that the type II anti-CD20 mAb obinutuzumab may be supe-
rior although it is possible that differential effects may be seen
using obinutuzumab with the largest benefits being seen in B-
cell malignancies such as B-CLL and MCL rather than FL.
The opinion among many clinical trial groups is that obinutu-
zumab is the anti-CD20 mAb to take forward and forms the
basis of a number of ongoing Phase III clinical trials in
patients with rituximab-refractory indolent NHL. In particu-
lar, a direct comparison of obinutuzumab-CHOP versus
rituximab-CHOP in previously untreated patients with
CD20-positive DLBCL and obinutuzumab or rituximab
plus CHOP, CVP or bendamustine in previously untreated
advanced indolent NHL. The results of these trials will poten-
tially provide further evidence of whether patient outcomes in
other B-cell malignancies can be further improved by the
introduction of obinutuzumab.

In CLL, the therapeutic alternatives and scheduling options
are even more bewildering with the emerging data of high
clinical activity of the many novel agents that target the
signaling of the cell proliferation pathway such as the PI3K
inhibitor idelalisib and the Bruton’s tyrosine kinase inhibitor
ibrutinib. The Bcl-2 antagonist ABT-199 also appears highly
active and acts to induce cell death (apoptosis) via an unre-
lated mechanism. For CLL many trial groups are considering
perhaps using ‘mild’ short-acting chemotherapy to debulk the
tumor, then intervening using at least 2 -- 3 of the best novel
agents: for example, ABT-199 plus obinutuzumab, or ibruti-
nib plus obinutuzumab, or idelalisib/ibrutinib/ABT-199 [97].
All of these combinations will need rigorous testing in
well-designed clinical trials assessing MRD status.

The results of these ongoing randomized clinical trials in
other B-cell malignancies are eagerly awaited and are required
to provide further evidence of whether results in other B-cell
malignancies can be further improved by the introduction of
obinutuzumab. The results emerging in CLL provide at least
some reasons to be hopeful that outcomes can be further
improved.
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